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In this talk, I’ll define the curvature of a connection, and define a connection to be integrable
(or flat but this is potentially confusing) if its curvature vanishes. I’ll then prove the main theorem,
stating that on smooth manifolds, local systems are equivalent to vector bundles with integrable
connections. This is a baby case of the much more general Riemann–Hilbert correspondence be-
tween D-modules and perverse sheaves. Finally I’ll state the relative version of this theorem.

1 Review and an example

Let X be a complex manifold, V a holomorphic vector bundle on X (equivalently, a locally free
sheaf of OX -modules). Recall the definition of a connection last time: it is a C-linear map ∇ : V →
Ω1
X ⊗ V , satisfying the Leibniz rule ∇(fs) = df ⊗ s+ f∇s for sections.
Intuition from differential geometry suggests that this should define a “parallel transport” iden-

tifying nearby fibers of the vector bundle. We saw last time that indeed it provides an identification
of fibers over first order infinitesimal neighborhoods: Ω1

X = ker(OX1 → OX), so ∇ gives a map
V → OX1 ⊗ V = (p1)∗(p2)

∗V , which by adjunction is a map (p1)
∗V → (p2)

∗V restricting to the
identity on the diagonal X ⊂ X1. Also recall from last time that we can inherit natural connections
on direct sums, tensor products, duals, and sheaf homs of vector bundles with connections.

1.1 Example. Recall the example last time. Suppose we’re working over a smooth curve. Locally,
X ⊂ C and V = On. Then a section of V is a bunch of functions s1, . . . , sn. Let M ∈ Γ(EndV ) be
a matrix of holomorphic functions. If we want to solve s′ = Ms, this is the same as ∇s = 0 where
∇ = d−M . It is always possible to solve a linear system of ODEs locally.

On the other hand suppose we are on a higher dimensional manifold, say X ⊂ C2, and for
simplicity just take V = O. Any connection looks like ∇ = d− ω, where ω = f(x, y)dx+ g(x, y)dy
is a 1-form. Then ∇s = 0 is a system of PDEs

∂s

∂x
= f(x, y),

∂s

∂y
= g(x, y)

which does not always have a solution (draw the square for example). The condition that guarantees
a solution is ∂f

∂y = ∂g
∂x , which is a nontrivial condition. So, for something like R–H correspondence

to hold, we need to put some conditions on the connection. This is where the term “integrable”
comes from. This should also be related to integrable systems.

2 The absolute case

Fix a connection ∇ on V . Recall that Ωn
X = ∧nΩ1

X are sheaves of holomorphic differential forms.
They carry a natural differential which forms the de Rham complex, which is a resolution of OX .
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2.1 Definition. We can define ∇ : Ωn
X ⊗ V → Ωn+1

X ⊗ V by ∇(α⊗ s) = dα⊗ s+ (−1)nα ∧∇s.

This negative sign is from the Koszul sign convention. It is necessary for this to be well-defined:

2.2 Exercise. Check that ∇(fα⊗ s) = ∇(α⊗ fs) for f ∈ Γ(OX).

2.3 Exercise. Show that for u1 ∈ Γ(Ωn1
X ⊗ V1), u2 ∈ Γ(Ωn2

X ⊗ V2), ∇(u1 ∧ u2) = ∇u1 ∧ u2 +
(−1)n1u1 ∧∇u2. Here u1 ∧ u2 ∈ Γ(Ωn1+n2

X ⊗ V1 ⊗ V2) naturally.

It is natural to ask whether this gives a differential on Ω∗
X ⊗ V .

2.4 Exercise. The map ∇∇ : V → Ω2
X ⊗ V is OX -linear.

Proof. ∇∇(fs) = ∇(df ⊗ s+ f∇s) = −df ⊗∇s+ df ⊗∇s+ f∇∇s = f∇∇s.

2.5 Definition. The curvature R of ∇ is this map viewed as a section of Ω2
X ⊗ EndV .

2.6 Exercise (Second Bianchi identity). ∇R = 0.

2.7 Exercise. R(v, w)s = ∇v∇ws−∇w∇vs−∇[v,w]s.

Proof. It’s easy to verify (α ∧ ∇s)(v, w) = α(v)∇ws − α(w)∇vs. Now, let ∇s =


αi ⊗ si, then
∇∇s =


(dαi ⊗ si + αi ∧∇si), so applying this to (v, w) gives



i

((v(αi(w))− w(αi(v))− αi([v, w]))si + αi(v)∇wsi − αi(w)∇vsi) = ∇v∇ws−∇w∇vs−∇[v,w]s

as desired.

2.8 Definition. A connection is integrable if R ≡ 0.

Here are three alternative ways of understanding integrability.

2.9 Remark. Local coordinates viewpoint. In local coordinates z1, . . . , zn, and pick e1, . . . , em basis
of V , the map ∇ : V → Ω1

X ⊗ V is determined by ∇ej = Γk
ijdz

iek (Christoffel symbols). The

integrability condition is a collection of differential equations on Γk
ij . We can compute

∇∇ek =


i<j

Rℓ
ijk(dz

i ∧ dzj ⊗ eℓ)

where

Rℓ
ijk =



s

(Γs
jkΓ

ℓ
is − Γs

ikΓ
ℓ
js) +

∂Γℓ
jk

∂zi
−

∂Γℓ
ik

∂zj
.

This is the full Riemann curvature tensor as in differential geometry.
Another way to write it is Cartan’s formalism: ∇ = d+ ω where ω is a matrix of 1-forms, and

R = dω + ω ∧ ω is a matrix of 2-forms.
Flat spaces are not very interesting. But somehow in algebraic geometry we are more interested

in flat connections.

2.10 Remark. Geometric viewpoint. Think about the vector bundle geometrically and fix local
coordinates as above. For any section s = (s1, . . . , sm), We can compute ∇s = 0 iff

∂sk
∂zi

+


j

sjΓ
k
ij = 0.

2



Thus, if we fix a point x ∈ X and choose a point x0 ∈ V in its fiber (an initial condition), then
the existence of this section is equivalent to the above system of PDEs having a solution. Suppose
that there exists such a solution. Then the tangent bundle of this section (viewed as a submanifold
of V ) is given in coordinates by the image of ds : TX → TV , which sends ∂zi to ∂zi +


k

∂sk
∂zi

∂vk .

This motivates us to define Xi = ∂zi −


j,k vjΓ
k
ij∂vk , for 1 ≤ i ≤ n, which are vector fields on V

which span a rank n subbundle W of TV . So ds(TX) lands in W iff ∇s = 0. One can compute
[Xi, Xj ] = −


k,ℓR

ℓ
ijkvk∂vℓ , so we conclude that R ≡ 0 iff [Xi, Xj ] = 0 iff W is closed under

brackets.

2.11 Remark. Crystalline viewpoint. Suppose X is smooth. Recall that ∇ can be interpreted as
an isomorphism p∗1V → p∗2V which lifts the identity on X ↩→ X1, where p1, p2 : X1 → X ×X → X.
Now let X ′

1 be the first infinitesimal neighborhood of the diagonal in X × X × X. Then the
isomorphism satisfies the cocycle condition on X ′

1 if and only if ∇ is integrable. This makes sense
intuitively by the same picture (an infinitesimal triangle).

2.12 Theorem (Baby Riemann–Hilbert correspondence). There is an equivalence of categories

{finite dimensional local systems on X} ⇋ {vector bundles on X with integrable connection}

given on the one hand by L → V = L⊗COX together with the canonical connection ∇(ℓ⊗f) = ℓ⊗df ,
and on the other hand V → L = {s : ∇s = 0}.

We first prove a small lemma.

2.13 Proposition. Let V be a vector bundle with any connection ∇. Then the sheaf L of horizontal
sections of V forms a sheaf of C-vector spaces which has finite dimensional stalks. Furthermore,
the sets X≤d = {x ∈ X : dimLx ≤ d} are closed and L|X≤d\X≤d−1 are locally constant.

Proof. For the first statement we can work locally and it suffices to show that given an initial value
of a section at a point, there is at most one way of extending it to a germ. This is because the
connection already tells you what the value has to be as an integral.

For the second statement, it is clear that X\X≤d is open. Now let x ∈ X≤d\X≤d−1. We can
restrict to an open neighborhood of x which has exactly d independent horizontal sections. This
gives a map of O-modules Od → V , which is an injection on the stalk at x, hence is a subbundle
on some further open neighborhood of x, which then implies that the map Cd → L is an injection
on stalks. Restricting to X≤d\X≤d−1, it is an isomorphism on stalks, hence is an isomorphism.

Proof of theorem. 1) It is clear that the canonical connection is a connection. To see it is integrable,
we can work locally and take coordinates z1, . . . , zn on X, and assume L is constant sheaf Cm. Then
∇(ℓ⊗ df) =


∇i(ℓ⊗ ∂f

∂zi
dzi) =


i,j ℓ⊗

∂f
∂zj

∂f
∂zi

dzj ∧ dzi = 0.

2) Let V be a vector bundle with integrable connection. By the above lemma it suffices to show
L has constant maximal dimension on stalks. In other words any initial condition determines some
germ. Recall Frobenius’s theorem which says that for any smooth real manifold M and pointwise
independent vector fields X1, . . . , Xn, if their span is closed under brackets, then they arise from
some foliation of M . This also works for complex manifolds, because a smooth submanifold of a
complex manifold is a complex submanifold iff its tangent spaces are complex vector subspaces (by
Newlander–Nirenberg, say). Applying this to M = V and X1, . . . , Xn as above, we see that there
exists a section as desired.

2.14 Exercise. This correspondence preserves tensor product, duals and homs, and sends C to O.
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2.15 Exercise. The chain complex (Ω∗
X ⊗ V,∇), called the holomorphic de Rham complex with

values (coefficients?) in V , forms a resolution of V .

2.16 Example (Gauss–Manin connection). One way to get local systems is to take (co)homology.
Suppose f : E → X is a proper map, where E,X are Hausdorff and X is locally compact. (Recall
that this means f−1(compact) = compact, or equivalently f is closed and fibers are compact.)
Then for any sheaf F on E,

(Rif∗F )|x = H i(f−1(x), F |f−1(x)).

The LHS is the fiber, not the stalk. This is analogous to the cohomology and base change theorem.
Now if f is smooth (a submersion) and E,X are complex manifolds, then Ehresmann’s lemma
tells us it is a fiber bundle, so Rif∗L are local systems for local systems L (suppose fibers have
finite dimensional cohomology). It corresponds to the vector bundle Rif∗L⊗COX , which is in fact
isomorphic to Rif∗(Ω

∗
X/S ⊗C L) (Deligne 2.28). The connection there is called the Gauss–Manin

connection.

2.17 Example. For this example we want to take a family of elliptic curves. Let X = P1\{0, 1}
and E the family of smooth elliptic curves given by y2z = x(x − z)(x − tz). (Another common
choice is the Dwork family x3 + y3 + z3 − txyz.) Then the R1f∗C are rank 2 local systems on
X. The 1-form ω = dx

y on E is a section of the local system, so it must satisfy some differential

equation, simply because ω, dωdt ,
d2ω
dt2

have to be linearly dependent fiberwise. You can just compute
this directly and someone should tell me if there’s a better way. This is called the Picard–Fuchs
equation

t(1− t)
d2ω

dt2
+ (1− 2t)

dω

dt
− 1

4
,

which is a hypergeometric differential equation a = b = 1
2 , c = 1.

3 The relative case

All the above can be seen as the “absolute” case, over C. All these make sense for schemes over
an arbitrary base. Recall that a morphism of schemes is smooth (of relative dimension n) if the
following equivalent conditions hold (Vakil 24.8.8):

• locally it looks like

U ↩→ SpecA[x1, . . . , xn+m]/(f1, . . . , fm) → SpecA

where the first map is an open immersion and det(∂fi/∂xj)1≤i,j≤m is nonzero on U .

• it is locally of finite presentation, flat of relative dimension n (all fibers have pure dimension
n), and ΩX/Y is locally free of rank n.

• it is locally of finite presentation, flat, and all fibers are smooth k-schemes of pure dimension
n.

Now let f : X → S be a smooth morphism of schemes, and V a quasicoherent sheaf on X.

3.1 Definition. A relative connection on V is a f−1OS-linear
1 map∇ : V → Ω1

X/S⊗OX
V satisfying

Leibniz’s rule. Similarly one can define the curvature R ∈ Ω2
X/S ⊗ EndV and extend ∇ to a map

Ωn
X/S ⊗ V → Ωn+1

X/S ⊗ V , and define integrable connections.

1Deligne said f∗OS here but I think it’s a typo, and similar for a couple other places in the same section.
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Same definition can be made for analytic spaces. Let f : X → S be a smooth morphism of
analytic spaces. Recall this means that locally it is isomorphic to a projection D × S → S where
D is a polydisk.

3.2 Definition. A relative local system on V is a sheaf of f−1OS-modules which is locally isomor-
phic to one of form f−1M for some coherent analytic sheaf M on S.

3.3 Theorem (Baby Riemann–Hilbert correspondence, relative case). There is an equivalence of
categories

{relative local systems for X} ⇋ {vector bundles on X with integrable relative connection}

given on the one hand by L → V = L⊗f−1OS
OX together with the canonical connection ∇(ℓ⊗f) =

ℓ⊗ df , and on the other hand V → L = {s : ∇s = 0}.

I refer the reader to Deligne 2.23 for the proof.

3.4 Corollary. For V integrable, the chain complex (Ω∗
X/S ⊗ V,∇) forms a resolution of V .
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