
ALGEBRAIC DE RHAM COHOMOLOGY VIA STACKS

KENTA SUZUKI

Abstract. We cover Chapter 2 of Bhatt’s notes [Bha22] on Primstic F -gauges.

1. Linear algebra via stacks

Let R be a commutative ring. We hope to express the category of graded R-modules and filtered
R-modules using the language of stacks.

1.1. Graded R-modules. The derived category of graded R-modules is defined as Dgr(R) :=
Fun(Z,D(R)), where Z is considered a discrete category. Concretely, the objects of Dgr(R) is just a
collection of objects F (i) ∈ D(R) indexed by integers i ∈ Z. This is a symmetric monoidal category,
with tensor product defined by:

(F ⊗G)(n) :=
⊕

i+j=n

F (i)⊗G(j).

Now we can re-write Dgr(R) using the language of stacks as follows. First, recall that BGm is the
stack classifying line bundles on R-schemes, so it carries a tautological line bundle O(1).

Proposition 1.2. There is an equivalence of monoidal categories

Dgr(R) ≃ Dqc(BGm)

defined by

F 7→
⊕
i∈Z

F (i)⊗R O(−i),

with inverse defined by

M 7→
(
i 7→ RΓ

(
BGm,M(i)

))
.

Moreover, it fits into a commutative diagram

Dgr(R) Dqc(BGm)

D(R),

≃

Forg π∗

where the functor Forg forgets the grading (i.e., is M 7→
⊕

iM(i)) and π is the map Spec(R) →
BGm.

1.3. Filtered R-modules. Next, we hope to provide a similar description for the category of
filtered R-modules. In the non-derived setting, filtered R-modules were defined as follows:

Definition 1.4. A filtered R-module is a R-module F together with a sub-modules Fili F indexed
by i ∈ Z such that Fili+1 F ⊂ Fili F . A filtered R-module is exhaustive if

F =
⋃
i∈Z

Fili F.
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Filtered R-modules can be visualized as a chain:

· · · ⊂ Fili+1 F ⊂ Fili F ⊂ Fili−1 F ⊂ · · · .

We want to define the derived category of filtered R-modules Dfil(R). In the derived category, it

does not make sense to talk about sub-modules, so we instead replace the inclusions Fili+1M ↪→
FiliM by arbitrary maps. this gives the following:

Definition 1.5. The derived category of filtered R-modules is

Dfil(R) := Fun
(
Zop
≥ ,D(R)

)
,

where Z≥ is the usual poset of integers considered as a category. We denote the value of a functor

F at i ∈ Z as Fili F .

Now, a derived filtered R-module can be visualized as a chain:

· · · → Fili+1 F → Fili F → Fili−1 F → · · · .

We give two sources of filtered R-modules:

Example 1.6 (canonical filtration). There is a fully faithful embedding

D(R) ↪→ Dfil(R),

which associates to K ∈ D(R) the filtered R-module K̃ ∈ Dfil(R) given by

Fili K̃ := τ≤−iK.

Here gri K̃ = (H−iK)[i]. In fact, the essential image is exactly those F ∈ Dfil(R) such that gri F
is concentrated in cohomological degree −i and is complete in the sense defined below.

Example 1.7 (stupid filtration). There is a fully faithful functor

Ch(R) ↪→ Dfil(R)

sending a chain complex K• of R-modules to

FiliK• = K≥i.

Here griK• = Ki[−i]. In fact, the essential image is exactly those F ∈ Dfil(R) such that gri F is
concentrated in cohomological degree i.

By analogy to non-derived filtered R-modules, we can define the following notions:

• The underlying object is F := colimi Fil
i F . For an non-derived exhaustive filtered R-module

this is the usual notion of an underlying R-module.
• There is a symmetric monoidal structure on Dfil(R) defined by

Filn(F ⊗G) = colimi+j≥n Fil
i F ⊗ Filj G.

• We let griFil F := Cone(Fili+1 F → Fili F ). The construction

F 7→ gr∗Fil F =
⊕
i

griFil F

gives an exact colimit-preserving symmetric monoidal functor

Dfil(R)→ Dgr(R).

This is the derived analog of the classical construction

gr∗Fil F =
⊕
i

Fili F/Fili+1 F.



ALGEBRAIC DE RHAM COHOMOLOGY VIA STACKS 3

• When F is a non-derived filtered R-module, the filtration is complete when⋂
i∈Z

Fili F = 0.

Analogously, for F ∈ Dfil(R), we say F is complete when

lim
i
Fili F = 0.

Let D̂fil(R) ⊂ Dfil(R) be the full subcategory of complete filtered R-modules. The inclusion
has a left-adjoint given by

F̂ := Cone
(
Const(lim

i
Fili F )→ F

)
,

where for X ∈ D(R), we let Const(X) denote the constant functor FiliConst(X) = X.
• Given F ∈ Dfil(R), we can define F{n} to be shift by n, i.e.,

Fili(F{n}) := Fili+n F.

There is a natural map F{1} → F , given by the map

Fili(F{1}) = Fili+1 F → Fili F,

such that

Fili(F/F{1}) = gri F.

• There are two natural t-structures on Dfil(R):

– The standard t-structure: F ∈ Dfil(R) is connective (resp., co-connective) when Fili F
is connective (resp., co-connective) for each i

– The Beilinson t-structure: F ∈ Dfil(R) is connective (resp., co-connective) when
gri F ∈ D≤i (resp., gri F ∈ D≥i) for each i ∈ Z. By Example 1.7, the stupid filtration
gives an equivalence between Ch(R) and the heart of the Beilinson t-structure.

We ultimately hope to prove an equivalence between Dqc(A1/Gm) and Dfil(R). Here, we let
A1 = SpecR[t] and let the Gm-action give t degree 1. Thus, there is an equivalence Dqc(A1/Gm) ≃
Dgr(R[t]), where Dgr(R[t]) is the derived category of graded R[t]-modules. First, let us recall what
the stack A1/Gm classifies:

Remark 1.8. Given a scheme T , the groupoid A1/Gm(T ) classifies Gm-torsors T ′ → T together
with a Gm-equivariant map T ′ → A1. A Gm-torsor must be of the form

T ′ = Spec(
⊕
i∈Z
L−i)

for a line bundle L on T , and a map T ′ → A1 is equivalent to a OT -linear map OT → L−1. Thus

A1/Gm(T ) ≃ {a line bundle L on T , with a OT -linear map L → OT }.

In particular, there is a universal pair t : OA1/Gm
(−1) → OA1/Gm

over A1/Gm. As graded R[t]-
modules, this is the inclusion

tR[t] ⊂ R[t]

of graded R[t]-modules. The vanishing locus of t is the Cartier divisor BGm ⊂ A1/Gm. Moreover,
OA1/Gm

(t)|BGm ≃ OBGm(−1), since the graded R[t]-module tR[t]/t2R[t] is a copy of R in degree 1.

Now, the main theorem is:
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Theorem 1.9. There is an equivalence of symmetric monoidal categories

Rees : Dfil(R) ≃ Dqc(A1/Gm)

defined by sending F ∈ Dfil(R) to the graded R[t]-module

Rees(F ) :=
⊕
i∈Z

Fili F · t−i.

It has the following properties:

(1) Rees is t-exact with the standard t-structures.
(2) There is a commutative diagram

Dfil(R) Dqc(A1/Gm)

D(R),

Rees
≃

Forg j∗

where j : Spec(R) = Gm/Gm → A1/Gm is the standard open immersion and Forg forgets
the filtration (i.e., takes the underlying module.)

(3) Restriction to the Cartier divisor i : BGm → A1/Gm corresponds to passing to the associated
graded, up to a change of sign. More precisely, for F ∈ Dfil(R) and i ∈ Z,

i∗Rees(F ) =
⊕
i∈Z

griFil F ⊗O(i),

or, equivalently,

griFil F ≃ RΓ(BGm, i∗Rees(F )(−i)).
(4) F ∈ Dfil(R) is complete as a filtered R-module if and only if Rees(F ) ∈ Dqc(A1/Gm) is

derived t-complete. Here, M ∈ Dqc(A1/Gm) is derived t-complete when the derived limit
of the diagram

· · · t−→M
t−→M

t−→M

is zero.
(5) For any F ∈ Dfil(R) there is an isomorphism Rees(F{n}) ≃ Rees(F )⊗OA1/Gm

(−n).

Proof Sketch. Given an object M ∈ Dqc(A1/Gm), we can consider the filtered R-module given by
taking RΓ(A1/Gm,−) of the diagram

· · · t−→M ⊗O O(i− 1)
t−→M ⊗O O(i)

t−→M ⊗O O(i+ 1)
t−→ · · · .

In the language of graded R[t]-modules, given M =
⊕

iM(i) ∈ Dgr(R[t]), we can take

Fili(Rees−1M) = M(−i)

with transition maps t : M(−i)→M(−i+ 1). □

Remark 1.10. Any perfect complex M ∈ Perf(A1/Gm) is derived t-complete. Indeed, it suffices
to check this when M = OA1/Gm

, which is essentially the fact that k[t] ≃ lim k[t]/tn as graded
vector spaces.

Remark 1.11 (Vector bundles on A1/Gm). Under the Rees equivalence, the category Vect(A1/Gm)
of vector bundles on A1/Gm is identified with the category of pairs (M,F ∗) where M is a finite
projective R-module and F ∗ is a finite exhaustive filtration on M (in the non-derived sense) such
that griF M is finite projective for all i.
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Remark 1.12 (Canonical filtrations). The composition of functors from Example 1.6 and the
theorem gives

D(R) ↪→ Dfil(R) ≃ Dqc(A1/Gm).

The essential image consists of objects M ∈ Dqc(A1/Gm) which are complete and such that
Hi(M)(i) is constant, i.e., pulled back from Spec(R), for all i.

Definition 1.13. A filtered stack is a stack X together with a morphism f : X→ A1/Gm.

Remark 1.14. A filtered stack can be viewed as a filtratio on the stack

X := f−1(Gm/Gm)

with associated graded
Gr(X) := f−1(BGm).

Assuming f∗ preserves quasi-coherence (e.g., when f is representable qcqs), for any M ∈ Dqc(X),
the pushforward

f∗M ∈ Dqc(A1/Gm) ≃ Dfil(R)

is a filtration on RΓ(X,M) with associated graded RΓ(Gr(X),M).

1.15. Endomorphisms and BĜa.

Definition 1.16. Let Ĝa ⊂ Ga be the formal completion at 0; the functor of points is Ĝa(S) =
Nil(S) for any R-algebra S.

Then we have the proposition:

Proposition 1.17. Let R be a commutative Q-algebra. There is an equivalence of symmetric
monoidal categories

Φ: Dqc(BĜa) ≃ D(R[t]),

where D(R[t]) is a symmetric monoidal category under convolution, i.e., for M,N ∈ D(R[t]) the
convolution M ⋆ N has underlying R-module M ⊗R N and t acts via tM ⊗ 1N + 1M ⊗ tN . The
functor Φ has properties:

(1) There is a commutative diagram

Dqc(BĜa) D(R[t])

D(R),

Φ
≃

π∗ Forg

where π : Spec(R)→ BĜa is the standard map and Forg forgets the action of t.

(2) Φ sends O
BĜa

to R[t]/(t) ≃ R. Thus, for M ∈ Dqc(BĜa), there is a natural isomorphism

RΓ(BĜa,M) ≃ RHomk[t](k,Φ(M)) ≃ Fib(Φ(M)
t−→ Φ(M)).

In particular, RΓ(BĜa,−) has cohomological dimension 1.

Proof. Write X for the coordinate on Ĝa that is Gm-equivariantly dual to t. Then for M ∈ D(R[t]),

the corresponding quasi-coherent sheaf on BĜa is given by the co-action map

c : M →M [[X]]

m 7→ exp(tX)m :=
∑
i≥0

ti(m)
Xi

i!
.

Moreover, the R[t]-module structure can be recovered as the coefficient of X. □
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Example 1.18. The inclusion Ĝa ⊂ Ga gives a k[t]-module structure on O(Ga) = k[X], which is
simply t = d

dX .

In other words, Ĝa-representations are equivalent to modules with an endomorphism.
In fact, Proposition 1.17 can be upgraded to work in families. Given a finite projective R-module

E, consider the associated vector bundle V(E). We can analogously define V̂(E). Then we have:

Proposition 1.19. Let R be a commutative Q-algebra and let E be a finite projective R-module.
Then there is a natural equivalence of symmetric monoidal categories

Dqc(BV̂(E)) ≃ Dqc(V(E∨))

where Dqc(V(E∨)) is given the convolution product. There is a commutative diagram

Dqc(BV̂(E)) Dqc(V(E∨))

D(R),

Φ
≃

π∗ s∗

where as usual π : Spec(R)→ BV̂(E) is the tautological map, and s is the structure map V(E∨)→
Spec(R).

Remark 1.20. We can use the Proposition to compute the cohomology of V̂(E)-representations.

Recall that an object M ∈ Dqc(BV̂(E)) can be regarded as a V̂(E)-representation on π∗M ∈ D(R).
By the proposition, π∗M carries a natural action of S = Sym∗

R(E), and

RΓ(BV̂(E),M) := RHom
BV̂(E)

(O,M) ≃ RHomS(R, π∗M).

The derived Hom can be computed using the Koszul resolution of R.

We need a relative version of the Remark 1.20:

Remark 1.21. Suppose we have a qcqs morphism f : Y → Z of characteristic 0 schemes, a line

bundle L on Z, and a Z-linear action of G = V̂(L) on Y . Then we have a recipe to compute
pushforwards along fG : Y/G→ Z. Consider the cartesian diagram

Y Z

Y/G BG.

f

πY πZ

f̃

The horizontal map is qcqs, so the pushforward along the map preserves quasi-coherence. Moreover,
given M ∈ Dqc(Y/G), flat base change shows

π∗
ZRf̃∗M ≃ Rf∗π

∗
Y M.

Pushing forward Rf̃∗M along the structure map g : BG→ Z and using Remark 1.20, we learn that

RfG,∗M ≃ Rg∗Rf̃∗M sits in a fiber sequence

RfG,∗M → Rf∗π
∗
Y M → Rf∗π

∗
Y M ⊗ L−1.

Thus, RfG,∗M is quasi-coherent.

Analogously, there are equivalences:

Dqc(BGa) ≃ Dqc(Ĝa)(1.1)

Dqc(BV(E)) ≃ Dqc(V̂(E∨)),(1.2)
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swapping the role of Ga and Ĝa.
We will use the following variant of Serre vanishing:

Lemma 1.22. Let R be any commutative ring. Then

RΓet(Spec(R), Ĝa) ≃ Nil(R)[0].

Proof. It suffices to check that for any étale cover R→ S with Cech nerve R→ S• we have

Nil(R) ≃ limNil(S•).

Since R→ S is étale, Nil(R)⊗R S• ≃ Nil(S•) so

limNil(S•) ≃ limNil(R)⊗R S• ≃ Nil(R)

by fpqc descent for quasi-coherent sheaves. □

2. de Rham cohomology in characteristic 0 via stacks

In this section, we work over a ground field k of characteristic 0.

Definition 2.1. The scheme Ga is naturally a ring scheme, and the subfunctor Ĝa ⊂ Ga is an

ideal group scheme. Thus, the quotient sheaf GdR
a := Ga/Ĝa is a sheaf of rings, and for any ring R,

GdR
a (R) = Rred.

Remark 2.2. Of course, Ga(R)/Ĝa(R) = R/Nil(R) = Rred. The fact that even upon sheafification
we have GdR

a (R) = Rred is due to Lemma 1.22.

Now, using the ring stack GdR
a , we can define the de Rham space:

Definition 2.3. For any k-scheme X, let the de Rham space XdR be the functor on finite-type
k-algebras given by

XdR(R) := X(GdR
a (R)) = X(Rred).

Remark 2.4. In general, there is a natural mapX → XdR induced by the quotient map Ga → GdR
a .

When X is smooth, this map X → XdR is a surjection of étale sheaves, by the infinitesimal lifting
property of smoothness. For any k-algebra T , we claim X(T ) → X(T red) is surjective. But the
infinitesimal lifting property states that in the diagram

Spec(T red) X

Spec(T ) Spec(k),

there exists a lifting Spec(T )→ X, which is exactly what we want.

Now our goal is to show:

Theorem 2.5 (de Rham cohomology via XdR). For a smooth k-scheme X, there is a natural
identification

RΓ(XdR,OXdR) ≃ RΓ(X,Ω•
X/k).

Under this isomorphism, pulling back along X → XdR corresponds to the projection

gr0H RΓ(X,Ω•
X/k) ≃ RΓ(X,OX)

given by the Hodge filtration.

To prove the theorem, we construct a filtration on RΓ(XdR,OXdR), and, in fact, on XdR. Recall
that filtering XdR means finding a stack X→ A1/Gm such that X|Gm/Gm

≃ XdR.
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Definition 2.6. Consider the universal effective Cartier divisor t : O(−1)→ O on the stack A1/Gm.
Passing to the associated vector bundle schemes, we have a morphism

d : ̂V(O(−1)) t−→ V(O) = Ga.

over A1/Gm. Now, the stack quotient

GdR,+
a = Cone( ̂V(O(−1))→ Ga)

becomes a 1-truncated animated Ga-algebra over A1/Gm. In other words, if a map Spec(R) →
A1/Gm is given by (L ∈ Pic(R), L→ R), then

GdR,+
a (Spec(R)→ A1/Gm) = Cone(Nil(R)⊗R L→ R).

Remark 2.7. There are isomorphisms

GdR,+
a |Gm/Gm

≃ GdR
a

GdR,+
a |BGm ≃ GHodge

a ,

where

GHodge
a := Ga ⊕ ̂V(O(−1))[1],

i.e.,

GHodge
a (Spec(R)→ BGm) = R⊕Nil(R)⊗R L[1].

Indeed, over Gm/Gm the map L→ R is an isomorphism, so

Cone(Nil(R)⊗R L→ R) ≃ Cone(Nil(R)→ R) = Rred

and over A1/Gm, the map L→ R is zero so

Cone(Nil(R)⊗R L→ R) ≃ R⊕Nil(R)⊗R L[1]

Now, we can define the filtered de Rham stack:

Definition 2.8. For a smooth k-scheme X, the filtered de Rham space is the map XdR,+ → A1/Gm

whose functor of points is

XdR,+(Spec(R)→ A1/Gm) = X(GdR,+
a (R)),

where the right-hand side is the groupoid of maps Spec(GdR,+
a (R)) → X in derived algebraic

geometry. The fiber

XHodge := XdR,+ ×A1/Gm
BGm

is called the Hodge stack of X, so the functor XHodge on BGm-schemes is given by

XHodge(Spec(R)→ BGm) = X(GHodge
a (R)).

The filtered de Rham stack recovers XdR over Gm/Gm:

XdR ≃ XdR,+ ×A1/Gm
Gm/Gm.

Remark 2.9. Generalizing Remark 2.4, the quotient maps Ga → GdR
a , Ga → GHodge

a , and Ga →
GdR,+

a induce maps

X → XdR

X ×BGm → XHodge

X × A1/Gm → XdR,+.

When X is smooth, all of these are surjections of étale sheaves.

Now, Theorem 2.5 follows from the stronger theorem:
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Theorem 2.10 (Hodge-filtered de Rham cohomology via XdR,+). For X/k a smooth variety, let
πX : XdR,+ → A1/Gm be the structure map. Then

HdR,+(X) := Rπ∗OXdR,+

is quasi-coherent and complete, and the corresponding filtered object of D̂fil(k) identifies with the
Hodge-filtered de Rham cohomology Fil∗H RΓ(X,Ω•

X/k).

In fact, what we prove is that

U 7→ HdR,+(U) ∈ Dqc(A1/Gm)

can be regarded as a Zariski sheaf F on X valued in Dqc(A1/Gm). The category

Shv(X,Dqc(A1/Gm)) ≃ Shv(X,Dfil(k))

carries a Beilinson t-structure, whose heart is the abelian category of chain complexes of sheaves
of k-modules on X. We show that U 7→ HdR,+(U) lies in the heart of the t-structure, and it
corresponds exactly to the de Rham complex Ω•

X/k.

First, we record some properties of the functor X 7→ XdR,+.

Lemma 2.11. The functor X 7→ XdR,+ from k-schemes to stacks over A1/Gm satisfies the follow-
ing properties:

(a) The functor commutes with products.
(b) If f : U → X is étale then the diagram

(2.1)

U × A1/Gm UdR,+

X × A1/Gm XdR,+

is cartesian. Moreover, the vertical functors are étale and if f is open then the vertical
functors are open.

(c) If X is a colimit of a finite diagram U• of affine open subschemes of X, then U•,dR,+ forms
a finite subfunctors of affine open subfunctors of XdR,+ with colimit XdR,+.

Proof. (a) is by definition. To check (b), we need to prove, for any Spec(R)→ A1/Gm, i.e., a pair
L ∈ Pic(R) and a homomorphism L→ R, there is an isomorphism

X(R)×X(Cone[Nil(R)⊗RL→R]) U(Cone[Nil(R)⊗R L→ R]) ≃ U(R).

This is equivalent to unique infinitesimal lifting for the diagram

Spec(Cone[Nil(R)⊗R L→ R]) U

Spec(R) X.

f

For (c), note that since U•,dR,+ are open subfunctors by (b), we have an inclusion

colimU•,dR,+ ↪→ XdR,+.

We hope to check this is surjective. There is a diagram (2.1) gives

colimU• × A1/Gm colimU•,dR,+

X × A1/Gm XdR,+

≃
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By Remark 2.9, we know the horizontal maps are surjective, so the right vecrtical map must also
be surjective, as desired. □

Now, we can finally:

Proof of Theorem 2.10. We proceed in three steps:

(1) We claim HdR,+(X) ∈ D(A1/Gm,O) is quasi-coherent and t-complete, and moreover its

restriction to BGm agrees with the natural pushforward map along XHodge → BGm. By
Lemma 2.11(c) it suffices to check when there is an étale map f : X → An. By (b) there is
a cartesian square

X × A1/Gm XdR,+

An × A1/Gm (An)dR,+.

The bottom map is a G = ̂V(O(−1))
n
-torsor. Indeed, by (a) it suffices to consider n = 1,

in which case it follows by definition. Now the top horizontal map must be a G-torsor as
well, so we have an isomorphism

XdR,+ ≃ (X × A1/Gm)/G.

Now by Remark 1.21 the pushforward HdR,+(X) is quasi-coherent and is compatible with
base change. Moreover, t-completeness follows from transporting completeness along the
equivalence Dqc(A1/Gm) ≃ Dfil(k), as in Theorem 1.9(4).

(2) By derived deformation theory, there is an isomorphism

XHodge ≃ B ̂V(TX/k(−1)),

where TX/k(−1) = pr∗1TX/k ⊗ pr∗2OBGm(−1). Indeed, given:
• a finite type k-scheme X;
• an animated k-algebra R;
• a map η : Spec(R)→ X of derived k-schemes; and
• a square-zero extension R′ → R in animated k-algebras by N ∈ D≤0(R),

the fiber of the map X(R′)→ X(R) over η ∈ X(R) is a torsor for

Der(OX , η∗N) ≃ MapR(η
∗LX/k, N).

When X is smooth and N = L[1] ∈ D≤−1(R), we have

MapR(η
∗LX/k, N) ≃ B(η∗TX/k ⊗R L).

When furthermore R′ → R is split, the fiber of X(R′)→ X(R) is a split torsor, canonically
identified with B(η∗TX/k ⊗R L).

Let us apply this to the square-zero extension

R⊕Nil(R)(−1)[1]→ R

by Nil(R)(−1)[1], so XHodge → X is a split torsor with fibers

B(η∗TX/k ⊗R Nil(R)⊗R L),

i.e.,

XHodge ≃ B ̂V(TX/k(−1)).
Now, Proposition 1.19, gives an equivalence

Dqc(X
Hodge) ≃ Dqc(V(ΩX/k(1))),
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sending OXHodge to OX×Gm . To compute the pushforward πX,∗OXHodge , note that under
the equivalence this is equivalent to computing

RHomV(ΩX/k(1))(OX×Gm ,OX×Gm).

But the Koszul resolution provides a quasi-isomorphsim between OX×Gm and

[· · · OV(ΩX/k(1)) ⊗OX×BGm
∧2TX/k(−2)→ OV(ΩX/k(1)) ⊗OX×BGm

TX/k(−1)→ OV(ΩX/k(1))],

which provides an isomorphism

RHomV(ΩX/k(1))(OX×Gm ,OX×Gm) ≃ RHomV(ΩX/k(1))([· · · → OV(ΩX/k(1)) ⊗ TX/k(−1)→ OV(ΩX/k(1))],OX×Gm)

≃ RHomX×Gm(· · ·
0−→ TX/k(−1)

0−→ OX×Gm ,OX×Gm)

≃
⊕
i

RΓ(X,Ωi
X/k[−i])(i).

(3) We have a presheaf F : U 7→ HdR,+(U) on X valued in Dqc(A1/Gm) ≃ Dfil(k), which is a
sheaf by (c). Moreover, by the first two parts, the sheaf F lies in the heart of the Beilinson
t-structure. Thus, it is represented by a chain complex, which by (2) must be of the form

OX
δ−→ Ω1

X/k
δ−→ Ω2

X/k
δ−→ · · · ,

for some differentials δ, equipped with the stupid filtration. To prove the theorem, we need
only check that δ are the de Rham differentials. By Lemma 2.11, it suffices to show the

case X = A1. In this case, XdR,+ = GdR,+
a and by Remark 1.21 the cohomology HdR,+(X)

is computed by the graded k[t]-complex

k[t, x]
t d
dx−−→ k[t, x](1),

since the differential is d
dx on the non-filtered objects. Thus translating to filtered objects,

we see that δ = d
dx . □

The stack XdR,+ not only geometrizes de Rham cohomology, but it also geometrizes the category
of vector bundles with flat connections.

Remark 2.12. By pullback along the map X × A1/Gm → XdR,+ from Remark 2.9, the category
Vect(XdR,+) of vector bundles on XdR,+ is identified with the category of triples (E,∇, F ∗) where:

• E is a vector bundle on X;
• ∇ : E → Ω1

X/k ⊗OX
E is a flat connection; and

• F ∗ if a finite filtration of E by submodules satisfying Griffits transversality:

∇(F i) ⊂ Ω1
X/k ⊗OX

F i−1.

Similarly, the pullback along X × BGm → XHodge identifies Vect(XHodge) with the category of
graded Higgs bundles, i.e., graded vector bundles M =

⊕
iMi together with a Higgs field Θ: M →

Ω1
X/k ⊗OX

M (i.e., such that Θ ∧ Θ = 0) taking Mi to Ω1
X/k ⊗OX

Mi+1. Under this description,

Vect(XdR,+)→ Vect(XHodge) simply takes associated graded.

3. Linear algebra outside of characteristic 0

The key tool in the stacky description of de Rham cohomology in characteristic zero was Re-
mark 1.20 and the relative analog, Remark 1.21. To extend to arbitrary characterstic, we need:
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Definition 3.1. Let G#
a be the PD1-hull of the origin in Ga over Z. Explicitly, letting Ga =

SpecZ[t], we let

G#
a := Spec

(
Z
[
t,
t2

2!
,
t3

3!
, · · ·

])
.

Thus, an R-point of G#
a is exactly an element x ∈ R with a compatible system of divided powers,

i.e., elements {xn}n≥1 of R such that x1 = x and

xmxn =

(
m+ n

m

)
xm+n.

There is a natural map G#
a → Ga which is an isomorphism upon base change to Q, and the group

law on Ga induces a group law on G#
a , since

(x+ y)n

n!
=

∑
i+j=n

xi

i!

yj

j!
.

Moreover G#
a is a Ga-module since

(xy)n

n!
= xn

yn

n!
,

so G#
a is a quasi-ideal in Ga.

Example 3.2. If R is Z-flat (or equivalently, torsion-free), then G#
a (R)→ Ga(R) = R is injective,

with image consisting of x ∈ R such that xn ∈ n! · R. In particular, when R = Zp, we have

G#
a (Zp) = pZp ⊂ Zp, since xn ∈ n!Zp is equivalent to vp(x

n) ≥ vp(n!).

Example 3.3. When R is a Fp-algebra, G#
a (R) → Ga(R) = R is injective if and only if R is

reduced. Indeed, the kernel consists of a system of divided powers {xn}n≥1 such that x1 = 0. If R
is reduced, then xn = 0, since

xpn =
(pn)!

n!p
xnp = 0.

On the other hand, suppose G#
a (R)→ R and x ∈ R is such that x2 = 0. Then

xn =

{
x n = p

0 n ̸= p

is a compatible system of divided powers with x1 = 0.

Definition 3.1 globalizes:

Definition 3.4. If E is a vector bundle on a scheme X, we let V(E)# denote the PD-hull of the
0-section in V(E). Then V(E)# is a Ga-module scheme over X and the map V(E)# → V(E) is a
Ga-module homomorphism.

Now, we have the following generalization of (1.1), with the same proof:

Proposition 3.5. There is a natural monoidal equivalence

Dqc(BG#
a ) ≃ Dqc(Ĝa),

where the right-hand side has the convolution product. Moreover:

1PD stands for the French puissances divisées for divided powers.
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(1) There is a commutative diagram

Dqc(BG#
a ) Dqc(Ĝa)

D(R),

Φ
≃

π∗ RΓ

where π : Spec(Z)→ BG#
a is the standard map and RΓ denotes the local cohomology at 0.

(2) The equivalence is t-exact, with respect to the standard t-structure on the LHS and the
torsion t-structure on the RHS.

Remark 3.6. The torsion t-structure is given by the following general construction: given a
commutative ring R with finitely generated ideal I, let DI−comp(R) (resp., DI−tors(R)) be the full
subcategories of D(R) spanned by derived I-complete (resp., I∞-torsion) R-complexes. Then the
functor taking local cohomology RΓI(−) and (−)∧I give an equivalence DI−comp(R) ≃ DI−tors(R).
The standard t-structure on the torsion side induces a t-structure on the complete side, called the
“torsion t-structure.” In our situation R = Z[[t]] and I = (t). Then the equivalence is

Dt−comp(Z[[t]]) ≃ Dt−tors(Z[[t]])

M 7→ RΓt(M) = Fib
(
M →M ⊗L

Z[[t]] Z((t))
)
= M ⊗L Z((t))/Z[[t]][−1]

M̂ = lim
n

M ⊗L
Z[[t]] Z[t]/t

n ←M.

For example, Z[t]/tN 7→ Z[t]/tN . In general the functor is non-trivial:

̂Z((t))/Z[[t]] ≃ lim
n

Z((t))/Z[[t]]⊗L Z[t]/tn

≃ lim
n

Cone
(
Z((t))/t−nZ[[t]]→ Z((t))/Z[[t]]

)
≃ lim

n
t−nZ[[t]]/Z[[t]][1]

≃ Z[[t]][1].

There is also a relative analog:

Proposition 3.7. Let X be a scheme and let E be a vector bundle on X. Then there is a t-exact
monoidal equivalence

Dqc(BV(E)#) ≃ Dqc(V̂(E∨))

compatible with forgetful functors.
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