ALGEBRAIC DE RHAM COHOMOLOGY VIA STACKS

KENTA SUZUKI

ABSTRACT. We cover Chapter 2 of Bhatt's notes $[Bha22]$ on Primstic F -gauges.

1. Linear algebra via stacks

Let R be a commutative ring. We hope to express the category of graded R -modules and filtered R-modules using the language of stacks.

1.1. Graded R-modules. The derived category of graded R-modules is defined as $\mathcal{D}_{qr}(R)$:= Fun(Z, $\mathcal{D}(R)$), where Z is considered a discrete category. Concretely, the objects of $\mathcal{D}_{gr}(R)$ is just a collection of objects $F(i) \in \mathcal{D}(R)$ indexed by integers $i \in \mathbb{Z}$. This is a symmetric monoidal category, with tensor product defined by:

$$
(F \otimes G)(n) := \bigoplus_{i+j=n} F(i) \otimes G(j).
$$

Now we can re-write $\mathcal{D}_{qr}(R)$ using the language of stacks as follows. First, recall that $B\mathbb{G}_m$ is the stack classifying line bundles on R-schemes, so it carries a tautological line bundle $\mathcal{O}(1)$.

Proposition 1.2. There is an equivalence of monoidal categories

$$
\mathcal{D}_{gr}(R) \simeq \mathcal{D}_{qc}(B\mathbb{G}_m)
$$

defined by

$$
F \mapsto \bigoplus_{i \in \mathbb{Z}} F(i) \otimes_R \mathcal{O}(-i),
$$

with inverse defined by

$$
M \mapsto \bigg(i \mapsto R\Gamma\big(B\mathbb{G}_m, M(i)\big)\bigg).
$$

Moreover, it fits into a commutative diagram

$$
\mathcal{D}_{gr}(R) \xrightarrow{\simeq} \mathcal{D}_{qc}(B\mathbb{G}_m)
$$

For $g \rightarrow \mathcal{D}(R)$,

where the functor Forg forgets the grading (i.e., is $M \mapsto \bigoplus_i M(i)$) and π is the map $Spec(R) \to$ $B\mathbb{G}_m$.

1.3. Filtered R-modules. Next, we hope to provide a similar description for the category of filtered R-modules. In the non-derived setting, filtered R-modules were defined as follows:

Definition 1.4. A filtered R-module is a R-module F together with a sub-modules Filⁱ F indexed by $i \in \mathbb{Z}$ such that $\text{Fil}^{i+1} F \subset \text{Fil}^i F$. A filtered R-module is exhaustive if

$$
F = \bigcup_{i \in \mathbb{Z}} \mathrm{Fil}^i F.
$$

Filtered R-modules can be visualized as a chain:

$$
\cdots \subset \mathrm{Fil}^{i+1} F \subset \mathrm{Fil}^i F \subset \mathrm{Fil}^{i-1} F \subset \cdots.
$$

We want to define the derived category of filtered R-modules $\mathcal{D}_{fil}(R)$. In the derived category, it does not make sense to talk about sub-modules, so we instead replace the inclusions Filⁱ⁺¹ $M \hookrightarrow$ Fil^{ι} M by arbitrary maps. this gives the following:

Definition 1.5. The derived category of filtered R-modules is

$$
\mathcal{D}_{fil}(R) := \text{Fun}\left(\mathbb{Z}_\geq^{op}, \mathcal{D}(R)\right),\
$$

where \mathbb{Z}_{\geq} is the usual poset of integers considered as a category. We denote the value of a functor F at $i \in \mathbb{Z}$ as Filⁱ F.

Now, a derived filtered R-module can be visualized as a chain:

 $\cdots \rightarrow$ Filⁱ⁺¹ $F \rightarrow$ Filⁱ $F \rightarrow$ Filⁱ⁻¹ $F \rightarrow \cdots$.

We give two sources of filtered R-modules:

Example 1.6 (canonical filtration). There is a fully faithful embedding

$$
\mathcal{D}(R) \hookrightarrow \mathcal{D}_{fil}(R),
$$

which associates to $K \in \mathcal{D}(R)$ the filtered R-module $\widetilde{K} \in \mathcal{D}_{fil}(R)$ given by

$$
\operatorname{Fil}^i \widetilde{K} := \tau^{\leq -i} K.
$$

Here $gr^{i}\widetilde{K} = (H^{-i}K)[i]$. In fact, the essential image is exactly those $F \in \mathcal{D}_{fil}(R)$ such that $gr^{i}F$ is concentrated in cohomological degree $-i$ and is complete in the sense defined below.

Example 1.7 (stupid filtration). There is a fully faithful functor

$$
\text{Ch}(R) \hookrightarrow \mathcal{D}_{fil}(R)
$$

sending a chain complex K^{\bullet} of R-modules to

$$
\text{Fil}^i K^\bullet = K^{\geq i}.
$$

Here $gr^i K^{\bullet} = K^i[-i]$. In fact, the essential image is exactly those $F \in \mathcal{D}_{fil}(R)$ such that $gr^i F$ is concentrated in cohomological degree i.

By analogy to non-derived filtered R-modules, we can define the following notions:

- The underlying object is $\underline{F} := \operatorname{colim}_i \mathrm{Fil}^i F$. For an non-derived exhaustive filtered R-module this is the usual notion of an underlying R-module.
- There is a symmetric monoidal structure on $\mathcal{D}_{fil}(R)$ defined by

$$
\mathrm{Fil}^n(F \otimes G) = \mathrm{colim}_{i+j \ge n} \mathrm{Fil}^i F \otimes \mathrm{Fil}^j G.
$$

• We let $\operatorname{gr}_{\operatorname{Fil}}^i F := \operatorname{Cone}(\operatorname{Fil}^{i+1} F \to \operatorname{Fil}^i F)$. The construction

$$
F\mapsto \operatorname{gr}^*_{\operatorname{Fil}} F=\bigoplus_i \operatorname{gr}^i_{\operatorname{Fil}} F
$$

gives an exact colimit-preserving symmetric monoidal functor

$$
\mathcal{D}_{fil}(R) \to \mathcal{D}_{gr}(R).
$$

This is the derived analog of the classical construction

$$
\operatorname{gr}_{\operatorname{Fil}}^* F = \bigoplus_i \operatorname{Fil}^i F / \operatorname{Fil}^{i+1} F.
$$

• When F is a non-derived filtered R -module, the filtration is *complete* when

$$
\bigcap_{i\in\mathbb{Z}}\mathrm{Fil}^i F=0.
$$

Analogously, for $F \in \mathcal{D}_{fil}(R)$, we say F is *complete* when

$$
\lim_{i} \mathrm{Fil}^{i} F = 0.
$$

Let $\widehat{\mathcal{D}}_{fil}(R) \subset \mathcal{D}_{fil}(R)$ be the full subcategory of complete filtered R-modules. The inclusion has a left-adjoint given by

$$
\widehat{F} := \mathrm{Cone} \left(\mathrm{Const}(\lim_i \mathrm{Fil}^i F) \to F \right),
$$

where for $X \in \mathcal{D}(R)$, we let $\text{Const}(X)$ denote the constant functor $\text{Fil}^i \text{Const}(X) = X$. • Given $F \in \mathcal{D}_{fil}(R)$, we can define $F\{n\}$ to be shift by n, i.e.,

$$
\mathrm{Fil}^i(F\{n\}) := \mathrm{Fil}^{i+n} F.
$$

There is a natural map $F\{1\} \rightarrow F$, given by the map

$$
\operatorname{Fil}^i(F\{1\}) = \operatorname{Fil}^{i+1} F \to \operatorname{Fil}^i F,
$$

such that

$$
\mathrm{Fil}^i(F/F\{1\}) = \mathrm{gr}^i F.
$$

- There are two natural *t*-structures on $\mathcal{D}_{fil}(R)$:
	- The standard t-structure: $F \in \mathcal{D}_{fil}(R)$ is connective (resp., co-connective) when Filⁱ F is connective (resp., co-connective) for each i
	- The Beilinson t-structure: $F \in \mathcal{D}_{fil}(R)$ is connective (resp., co-connective) when $gr^i F \in \mathcal{D}^{\leq i}$ (resp., $gr^i F \in \mathcal{D}^{\geq i}$) for each $i \in \mathbb{Z}$. By Example [1.7,](#page-1-0) the stupid filtration gives an equivalence between $\text{Ch}(R)$ and the heart of the Beilinson t-structure.

We ultimately hope to prove an equivalence between $\mathcal{D}_{qc}(\mathbb{A}^1/\mathbb{G}_m)$ and $\mathcal{D}_{fil}(R)$. Here, we let $\mathbb{A}^1 = \operatorname{Spec} R[t]$ and let the \mathbb{G}_m -action give t degree 1. Thus, there is an equivalence $\mathcal{D}_{qc}(\mathbb{A}^1/\mathbb{G}_m) \simeq$ $\mathcal{D}_{gr}(R[t])$, where $\mathcal{D}_{gr}(R[t])$ is the derived category of graded $R[t]$ -modules. First, let us recall what the stack $\mathbb{A}^1/\mathbb{G}_m$ classifies:

Remark 1.8. Given a scheme T, the groupoid $\mathbb{A}^1/\mathbb{G}_m(T)$ classifies \mathbb{G}_m -torsors $T' \to T$ together with a \mathbb{G}_m -equivariant map $T' \to \mathbb{A}^1$. A \mathbb{G}_m -torsor must be of the form

$$
T' = \operatorname{Spec}(\bigoplus_{i \in \mathbb{Z}} \mathcal{L}^{-i})
$$

for a line bundle $\mathcal L$ on T, and a map $T' \to \mathbb{A}^1$ is equivalent to a $\mathcal O_T$ -linear map $\mathcal O_T \to \mathcal L^{-1}$. Thus

$$
\mathbb{A}^1/\mathbb{G}_m(T) \simeq \{ \text{a line bundle } \mathcal{L} \text{ on } T, \text{ with a } \mathcal{O}_T\text{-linear map } \mathcal{L} \to \mathcal{O}_T \}.
$$

In particular, there is a universal pair $t: \mathcal{O}_{\mathbb{A}^1/\mathbb{G}_m}(-1) \to \mathcal{O}_{\mathbb{A}^1/\mathbb{G}_m}$ over $\mathbb{A}^1/\mathbb{G}_m$. As graded $R[t]$ modules, this is the inclusion

$$
tR[t] \subset R[t]
$$

of graded R[t]-modules. The vanishing locus of t is the Cartier divisor $B\mathbb{G}_m \subset \mathbb{A}^1/\mathbb{G}_m$. Moreover, $\mathcal{O}_{\mathbb{A}^1/\mathbb{G}_m}(t)|_{B\mathbb{G}_m} \simeq \mathcal{O}_{B\mathbb{G}_m}(-1)$, since the graded $R[t]$ -module $tR[t]/t^2R[t]$ is a copy of R in degree 1.

Now, the main theorem is:

Theorem 1.9. There is an equivalence of symmetric monoidal categories

$$
\text{Rees} \colon \mathcal{D}_{fil}(R) \simeq \mathcal{D}_{qc}(\mathbb{A}^1/\mathbb{G}_m)
$$

defined by sending $F \in \mathcal{D}_{fil}(R)$ to the graded R[t]-module

$$
\mathrm{Rees}(F) := \bigoplus_{i \in \mathbb{Z}} \mathrm{Fil}^i F \cdot t^{-i}.
$$

It has the following properties:

- (1) Rees is t-exact with the standard t-structures.
- (2) There is a commutative diagram

where j: $Spec(R) = \mathbb{G}_m/\mathbb{G}_m \to \mathbb{A}^1/\mathbb{G}_m$ is the standard open immersion and Forg forgets the filtration (i.e., takes the underlying module.)

(3) Restriction to the Cartier divisor i: $\mathbf{B}\mathbb{G}_m \to \mathbb{A}^1/\mathbb{G}_m$ corresponds to passing to the associated graded, up to a change of sign. More precisely, for $F \in \mathcal{D}_{fil}(R)$ and $i \in \mathbb{Z}$,

$$
i^* \operatorname{Rees}(F) = \bigoplus_{i \in \mathbb{Z}} \operatorname{gr}_{\operatorname{Fil}}^i F \otimes \mathcal{O}(i),
$$

or, equivalently,

$$
\operatorname{gr}_{\operatorname{Fil}}^i F \simeq R\Gamma(B\mathbb{G}_m, i^*\operatorname{Rees}(F)(-i)).
$$

(4) $F \in \mathcal{D}_{fil}(R)$ is complete as a filtered R-module if and only if $\text{Rees}(F) \in \mathcal{D}_{qc}(A^1/\mathbb{G}_m)$ is derived t-complete. Here, $M \in \mathcal{D}_{qc}(\mathbb{A}^1/\mathbb{G}_m)$ is derived t-complete when the derived limit of the diagram

$$
\cdots \xrightarrow{t} M \xrightarrow{t} M \xrightarrow{t} M
$$

is zero.

(5) For any $F \in \mathcal{D}_{fil}(R)$ there is an isomorphism $\text{Rees}(F\{n\}) \simeq \text{Rees}(F) \otimes \mathcal{O}_{\mathbb{A}^1/\mathbb{G}_m}(-n)$.

Proof Sketch. Given an object $M \in \mathcal{D}_{qc}(\mathbb{A}^1/\mathbb{G}_m)$, we can consider the filtered R-module given by taking $R\Gamma(\mathbb{A}^1/\mathbb{G}_m, -)$ of the diagram

$$
\cdots \xrightarrow{t} M \otimes_{\mathcal{O}} \mathcal{O}(i-1) \xrightarrow{t} M \otimes_{\mathcal{O}} \mathcal{O}(i) \xrightarrow{t} M \otimes_{\mathcal{O}} \mathcal{O}(i+1) \xrightarrow{t} \cdots
$$

In the language of graded $R[t]$ -modules, given $M = \bigoplus_i M(i) \in \mathcal{D}_{gr}(R[t])$, we can take

$$
\text{Fil}^i(\text{Rees}^{-1} M) = M(-i)
$$

with transition maps $t: M(-i) \to M(-i+1)$.

Remark 1.10. Any perfect complex $M \in \text{Perf}(\mathbb{A}^1/\mathbb{G}_m)$ is derived t-complete. Indeed, it suffices to check this when $M = \mathcal{O}_{A^1/\mathbb{G}_m}$, which is essentially the fact that $k[t] \simeq \lim k[t]/t^n$ as graded vector spaces.

Remark 1.11 (Vector bundles on $\mathbb{A}^1/\mathbb{G}_m$). Under the Rees equivalence, the category $\text{Vect}(\mathbb{A}^1/\mathbb{G}_m)$ of vector bundles on $\mathbb{A}^1/\mathbb{G}_m$ is identified with the category of pairs (M, F^*) where M is a finite projective R-module and F^* is a finite exhaustive filtration on M (in the non-derived sense) such that $\operatorname{gr}^i_F M$ is finite projective for all *i*.

$$
\qquad \qquad \Box
$$

Remark 1.12 (Canonical filtrations). The composition of functors from Example [1.6](#page-1-1) and the theorem gives

$$
\mathcal{D}(R) \hookrightarrow \mathcal{D}_{fil}(R) \simeq \mathcal{D}_{qc}(\mathbb{A}^1/\mathbb{G}_m).
$$

The essential image consists of objects $M \in \mathcal{D}_{qc}(\mathbb{A}^1/\mathbb{G}_m)$ which are complete and such that $\mathcal{H}^{i}(M)(i)$ is constant, i.e., pulled back from $\text{Spec}(R)$, for all i.

Definition 1.13. A *filtered stack* is a stack $\mathfrak X$ together with a morphism $f: \mathfrak X \to \mathbb A^1/\mathbb G_m$.

Remark 1.14. A filtered stack can be viewed as a filtratio on the stack

$$
\underline{\mathfrak{X}}:=f^{-1}(\mathbb{G}_m/\mathbb{G}_m)
$$

with associated graded

$$
\operatorname{Gr}(\mathfrak{X}) := f^{-1}(B\mathbb{G}_m).
$$

Assuming f_* preserves quasi-coherence (e.g., when f is representable qcqs), for any $M \in \mathcal{D}_{qc}(\mathfrak{X})$, the pushforward

$$
f_*M \in \mathcal{D}_{qc}(\mathbb{A}^1/\mathbb{G}_m) \simeq \mathcal{D}_{fil}(R)
$$

is a filtration on $R\Gamma(\underline{\mathfrak{X}},M)$ with associated graded $R\Gamma(\mathrm{Gr}(\mathfrak{X}),M)$.

1.15. Endomorphisms and $B\widehat{\mathbb{G}}_a$.

Definition 1.16. Let $\widehat{\mathbb{G}}_a \subset \mathbb{G}_a$ be the formal completion at 0; the functor of points is $\widehat{\mathbb{G}}_a(S)$ = $Nil(S)$ for any R-algebra S.

Then we have the proposition:

Proposition 1.17. Let R be a commutative \mathbb{Q} -algebra. There is an equivalence of symmetric monoidal categories

$$
\Phi \colon \mathcal{D}_{qc}(B\widehat{\mathbb{G}}_a) \simeq \mathcal{D}(R[t]),
$$

where $\mathcal{D}(R[t])$ is a symmetric monoidal category under convolution, i.e., for $M, N \in \mathcal{D}(R[t])$ the convolution $M \star N$ has underlying R-module $M \otimes_R N$ and t acts via $t_M \otimes 1_N + 1_M \otimes t_N$. The $functor \Phi$ has properties:

(1) There is a commutative diagram

$$
\mathcal{D}_{qc}(B\widehat{\mathbb{G}}_a) \xrightarrow{\Phi} \mathcal{D}(R[t])
$$
\n
$$
\begin{array}{c}\n\stackrel{\Phi}{\longrightarrow} \\
\uparrow \\
\mathcal{D}(R),\n\end{array}\n\qquad\n\qquad\n\mathcal{D}(R[t])
$$

where π : Spec $(R) \to B\widehat{\mathbb{G}}_a$ is the standard map and Forg forgets the action of t. (2) Φ sends $\mathcal{O}_{B\widehat{\mathbb{G}}_a}$ to $R[t]/(t) \simeq R$. Thus, for $M \in \mathcal{D}_{qc}(B\widehat{\mathbb{G}}_a)$, there is a natural isomorphism

$$
R\Gamma(B\widehat{\mathbb{G}}_a, M) \simeq \mathrm{RHom}_{k[t]}(k, \Phi(M)) \simeq \mathrm{Fib}(\Phi(M) \xrightarrow{t} \Phi(M)).
$$

In particular, $R\Gamma(B\widehat{\mathbb{G}}_a,-)$ has cohomological dimension 1.

Proof. Write X for the coordinate on $\widehat{\mathbb{G}}_a$ that is \mathbb{G}_m -equivariantly dual to t. Then for $M \in \mathcal{D}(R[t])$, the corresponding quasi-coherent sheaf on $B\widehat{\mathbb{G}}_a$ is given by the co-action map

$$
c\colon M\to M[\![X]\!]
$$

$$
m\mapsto \exp(tX)m:=\sum_{i\geq 0}t^i(m)\frac{X^i}{i!}.
$$

Moreover, the $R[t]$ -module structure can be recovered as the coefficient of X.

Example 1.18. The inclusion $\widehat{\mathbb{G}}_a \subset \mathbb{G}_a$ gives a $k[t]$ -module structure on $\mathcal{O}(\mathbb{G}_a) = k[X]$, which is simply $t = \frac{d}{dX}$.

In other words, $\widehat{\mathbb{G}}_a$ -representations are equivalent to modules with an endomorphism.

In fact, Proposition [1.17](#page-4-0) can be upgraded to work in families. Given a finite projective R-module E, consider the associated vector bundle $V(E)$. We can analogously define $V(E)$. Then we have:

Proposition 1.19. Let R be a commutative \mathbb{Q} -algebra and let E be a finite projective R -module. Then there is a natural equivalence of symmetric monoidal categories

$$
\mathcal{D}_{qc}(B\widehat{\mathbf{V}(E)}) \simeq \mathcal{D}_{qc}(\mathbf{V}(E^{\vee}))
$$

where $\mathcal{D}_{ac}(\mathbf{V}(E^{\vee}))$ is given the convolution product. There is a commutative diagram

where as usual $\pi: Spec(R) \to B\widehat{\mathbf{V}(E)}$ is the tautological map, and s is the structure map $\mathbf{V}(E^{\vee}) \to$ $Spec(R)$.

Remark 1.20. We can use the Proposition to compute the cohomology of $\mathbf{V}(E)$ -representations. Recall that an object $M \in \mathcal{D}_{qc}(\widehat{BV(E)})$ can be regarded as a $\widehat{V(E)}$ -representation on $\pi^*M \in \mathcal{D}(R)$. By the proposition, $\pi^* M$ carries a natural action of $S = \text{Sym}_{R}^*(E)$, and

$$
R\Gamma(\widehat{BV(E)},M):=\operatorname{RHom}_{B\widehat{\mathbf{V}(E)}}(\mathcal{O},M)\simeq \operatorname{RHom}_S(R,\pi^*M).
$$

The derived Hom can be computed using the Koszul resolution of R.

We need a relative version of the Remark [1.20:](#page-5-0)

Remark 1.21. Suppose we have a qcqs morphism $f: Y \to Z$ of characteristic 0 schemes, a line bundle $\mathcal L$ on Z, and a Z-linear action of $G = V(\mathcal L)$ on Y. Then we have a recipe to compute pushforwards along $f_G: Y/G \to Z$. Consider the cartesian diagram

$$
\begin{array}{ccc}\nY & \xrightarrow{f} & Z \\
\pi_Y & & \downarrow \pi_Z \\
Y/G & \xrightarrow{\widetilde{f}} & BG.\n\end{array}
$$

The horizontal map is qcqs, so the pushforward along the map preserves quasi-coherence. Moreover, given $M \in \mathcal{D}_{qc}(Y/G)$, flat base change shows

$$
\pi_Z^* R \widetilde{f}_* M \simeq R f_* \pi_Y^* M.
$$

Pushing forward $R\widetilde{f}_*M$ along the structure map $g: BG \to Z$ and using Remark [1.20,](#page-5-0) we learn that $Rf_{G,*}M \simeq Rg_*R\tilde{f}^*M$ sits in a fiber sequence

$$
Rf_{G,*}M \to Rf_*\pi_Y^*M \to Rf_*\pi_Y^*M \otimes \mathcal{L}^{-1}.
$$

Thus, $Rf_{G,*}M$ is quasi-coherent.

Analogously, there are equivalences:

(1.1)
$$
\mathcal{D}_{qc}(B\mathbb{G}_a) \simeq \mathcal{D}_{qc}(\widehat{\mathbb{G}}_a)
$$

(1.2)
$$
\mathcal{D}_{qc}(B\mathbf{V}(E)) \simeq \mathcal{D}_{qc}(\widehat{\mathbf{V}(E^{\vee})}),
$$

swapping the role of \mathbb{G}_a and $\widehat{\mathbb{G}}_a$.

We will use the following variant of Serre vanishing:

Lemma 1.22. Let R be any commutative ring. Then

$$
R\Gamma_{et}(\operatorname{Spec}(R),\widehat{\mathbb{G}}_a)\simeq \operatorname{Nil}(R)[0].
$$

Proof. It suffices to check that for any étale cover $R \to S$ with Cech nerve $R \to S^{\bullet}$ we have

$$
\text{Nil}(R) \simeq \lim \text{Nil}(S^{\bullet}).
$$

Since $R \to S$ is étale, Nil $(R) \otimes_R S^{\bullet} \simeq$ Nil (S^{\bullet}) so

$$
\lim \text{Nil}(S^{\bullet}) \simeq \lim \text{Nil}(R) \otimes_R S^{\bullet} \simeq \text{Nil}(R)
$$

by fpqc descent for quasi-coherent sheaves. \Box

2. de Rham cohomology in characteristic 0 via stacks

In this section, we work over a ground field k of characteristic 0.

Definition 2.1. The scheme \mathbb{G}_a is naturally a ring scheme, and the subfunctor $\widehat{\mathbb{G}}_a \subset \mathbb{G}_a$ is an ideal group scheme. Thus, the quotient sheaf $\mathbb{G}_a^{dR} := \mathbb{G}_a/\widehat{\mathbb{G}}_a$ is a sheaf of rings, and for any ring R,

$$
\mathbb{G}_a^{dR}(R) = R_{red}.
$$

Remark 2.2. Of course, $\mathbb{G}_a(R)/\widehat{\mathbb{G}}_a(R) = R/Nil(R) = R_{red}$. The fact that even upon sheafification we have $\mathbb{G}_a^{dR}(R) = R_{red}$ is due to Lemma [1.22.](#page-6-0)

Now, using the ring stack \mathbb{G}_a^{dR} , we can define the de Rham space:

Definition 2.3. For any k-scheme X, let the de Rham space X^{dR} be the functor on finite-type k-algebras given by

$$
X^{dR}(R) := X(\mathbb{G}_a^{dR}(R)) = X(R_{red}).
$$

Remark 2.4. In general, there is a natural map $X \to X^{dR}$ induced by the quotient map $\mathbb{G}_a \to \mathbb{G}_a^{dR}$. When X is smooth, this map $X \to X^{dR}$ is a surjection of étale sheaves, by the infinitesimal lifting property of smoothness. For any k-algebra T, we claim $X(T) \to X(T^{red})$ is surjective. But the infinitesimal lifting property states that in the diagram

$$
\begin{array}{ccc}\n\text{Spec}(T^{red}) & \longrightarrow & X \\
\downarrow & \downarrow & \downarrow \\
\text{Spec}(T) & \longrightarrow & \text{Spec}(k),\n\end{array}
$$

there exists a lifting $Spec(T) \to X$, which is exactly what we want.

Now our goal is to show:

Theorem 2.5 (de Rham cohomology via X^{dR}). For a smooth k-scheme X, there is a natural identification

$$
R\Gamma(X^{dR}, \mathcal{O}_{X^{dR}}) \simeq R\Gamma(X, \Omega^{\bullet}_{X/k}).
$$

Under this isomorphism, pulling back along $X \to X^{dR}$ corresponds to the projection

$$
\operatorname{gr}_H^0 R\Gamma(X,\Omega^{\bullet}_{X/k}) \simeq R\Gamma(X,\mathcal{O}_X)
$$

given by the Hodge filtration.

To prove the theorem, we construct a filtration on $R\Gamma(X^{dR}, \mathcal{O}_{X^{dR}})$, and, in fact, on X^{dR} . Recall that filtering X^{dR} means finding a stack $\mathfrak{X} \to \mathbb{A}^1/\mathbb{G}_m$ such that $\mathfrak{X}|_{\mathbb{G}_m/\mathbb{G}_m} \simeq X^{dR}$.

Definition 2.6. Consider the universal effective Cartier divisor $t: \mathcal{O}(-1) \to \mathcal{O}$ on the stack $\mathbb{A}^1/\mathbb{G}_m$. Passing to the associated vector bundle schemes, we have a morphism

$$
d\colon \widehat{\mathbf{V}(\mathcal{O}(-1))} \stackrel{t}{\to} \mathbf{V}(\mathcal{O}) = \mathbb{G}_a.
$$

over $\mathbb{A}^1/\mathbb{G}_m$. Now, the stack quotient

$$
\mathbb{G}_a^{dR,+} = \mathrm{Cone}(\widehat{\mathbf{V}(\mathcal{O}(-1))} \to \mathbb{G}_a)
$$

becomes a 1-truncated animated \mathbb{G}_a -algebra over $\mathbb{A}^1/\mathbb{G}_m$. In other words, if a map $Spec(R) \to$ $\mathbb{A}^1/\mathbb{G}_m$ is given by $(L \in Pic(R), L \to R)$, then

$$
\mathbb{G}_a^{dR,+}(\operatorname{Spec}(R) \to \mathbb{A}^1/\mathbb{G}_m) = \operatorname{Cone}(\operatorname{Nil}(R) \otimes_R L \to R).
$$

Remark 2.7. There are isomorphisms

$$
\mathbb{G}_a^{dR,+}|_{\mathbb{G}_m/\mathbb{G}_m} \simeq \mathbb{G}_a^{dR}
$$

$$
\mathbb{G}_a^{dR,+}|_{B\mathbb{G}_m} \simeq \mathbb{G}_a^{Hodge},
$$

where

$$
\mathbb{G}_a^{Hodge}:=\mathbb{G}_a\oplus \mathbf{V}(\widehat{\mathcal{O}(-1)})[1],
$$

i.e.,

$$
\mathbb{G}_a^{Hodge}(\operatorname{Spec}(R) \to B\mathbb{G}_m) = R \oplus Nil(R) \otimes_R L[1].
$$

Indeed, over $\mathbb{G}_m/\mathbb{G}_m$ the map $L \to R$ is an isomorphism, so

$$
Cone(Nil(R) \otimes_R L \to R) \simeq Cone(Nil(R) \to R) = R_{red}
$$

and over $\mathbb{A}^1/\mathbb{G}_m$, the map $L \to R$ is zero so

$$
Cone(Nil(R)\otimes_R L \to R) \simeq R \oplus Nil(R)\otimes_R L[1]
$$

Now, we can define the filtered de Rham stack:

Definition 2.8. For a smooth k-scheme X, the filtered de Rham space is the map $X^{dR,+} \to \mathbb{A}^1/\mathbb{G}_m$ whose functor of points is

$$
X^{dR,+}(\operatorname{Spec}(R) \to \mathbb{A}^1/\mathbb{G}_m) = X(\mathbb{G}_a^{dR,+}(R)),
$$

where the right-hand side is the groupoid of maps $Spec(\mathbb{G}_a^{dR,+}(R)) \to X$ in derived algebraic geometry. The fiber

$$
X^{Hodge} := X^{dR,+} \times_{\mathbb{A}^1/\mathbb{G}_m} B\mathbb{G}_m
$$

is called the *Hodge stack* of X, so the functor X^{Hodge} on $B\mathbb{G}_m$ -schemes is given by

$$
X^{Hodge}(\operatorname{Spec}(R) \to B\mathbb{G}_m) = X(\mathbb{G}_a^{Hodge}(R)).
$$

The filtered de Rham stack recovers X^{dR} over $\mathbb{G}_m/\mathbb{G}_m$:

$$
X^{dR} \simeq X^{dR,+} \times_{\mathbb{A}^1/\mathbb{G}_m} \mathbb{G}_m/\mathbb{G}_m.
$$

Remark 2.9. Generalizing Remark [2.4,](#page-6-1) the quotient maps $\mathbb{G}_a \to \mathbb{G}_a^{dR}$, $\mathbb{G}_a \to \mathbb{G}_a^{Hodge}$, and $\mathbb{G}_a \to \mathbb{G}_a^{dR}$ $\mathbb{G}_a^{dR,+}$ induce maps

$$
X \to X^{dR}
$$

$$
X \times B\mathbb{G}_m \to X^{Hodge}
$$

$$
X \times \mathbb{A}^1/\mathbb{G}_m \to X^{dR,+}.
$$

When X is smooth, all of these are surjections of étale sheaves.

Now, Theorem [2.5](#page-6-2) follows from the stronger theorem:

Theorem 2.10 (Hodge-filtered de Rham cohomology via $X^{dR,+}$). For X/k a smooth variety, let $\pi_X \colon X^{dR,+} \to \mathbb{A}^1/\mathbb{G}_m$ be the structure map. Then

$$
\mathcal{H}_{dR,+} (X) := R\pi_*\mathcal{O}_{X^{dR,+}}
$$

is quasi-coherent and complete, and the corresponding filtered object of $\widehat{\mathcal{D}}_{fil}(k)$ identifies with the Hodge-filtered de Rham cohomology $\mathrm{Fil}^*_H R\Gamma(X,\Omega^\bullet_{X/k})$.

In fact, what we prove is that

$$
U \mapsto \mathcal{H}_{dR,+}(U) \in \mathcal{D}_{qc}(\mathbb{A}^1/\mathbb{G}_m)
$$

can be regarded as a Zariski sheaf $\mathcal F$ on X valued in $\mathcal D_{qc}(\mathbb{A}^1/\mathbb{G}_m)$. The category

 $\operatorname{Shv}(X, \mathcal{D}_{qc}(\mathbb{A}^1/\mathbb{G}_m)) \simeq \operatorname{Shv}(X, \mathcal{D}_{fil}(k))$

carries a Beilinson t-structure, whose heart is the abelian category of chain complexes of sheaves of k-modules on X. We show that $U \mapsto \mathcal{H}_{dR,+}(U)$ lies in the heart of the t-structure, and it corresponds exactly to the de Rham complex $\Omega_{X/k}^{\bullet}$.

First, we record some properties of the functor $X \mapsto X^{dR,+}$.

Lemma 2.11. The functor $X \mapsto X^{dR,+}$ from k-schemes to stacks over $\mathbb{A}^1/\mathbb{G}_m$ satisfies the following properties:

- (a) The functor commutes with products.
- (b) If $f: U \to X$ is étale then the diagram

(2.1)
$$
U \times \mathbb{A}^1/\mathbb{G}_m \longrightarrow U^{dR,+}
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
X \times \mathbb{A}^1/\mathbb{G}_m \longrightarrow X^{dR,+}
$$

is cartesian. Moreover, the vertical functors are $\acute{e}t$ and if f is open then the vertical functors are open.

(c) If X is a colimit of a finite diagram U^{\bullet} of affine open subschemes of X, then $U^{\bullet, dR,+}$ forms a finite subfunctors of affine open subfunctors of $X^{dR,+}$ with colimit $X^{dR,+}$.

Proof. [\(a\)](#page-8-0) is by definition. To check [\(b\),](#page-8-1) we need to prove, for any $Spec(R) \to \mathbb{A}^1/\mathbb{G}_m$, i.e., a pair $L \in Pic(R)$ and a homomorphism $L \to R$, there is an isomorphism

$$
X(R) \times_{X(\text{Cone}[Nil(R)\otimes_R L \to R])} U(\text{Cone}[Nil(R) \otimes_R L \to R]) \simeq U(R).
$$

This is equivalent to unique infinitesimal lifting for the diagram

For [\(c\),](#page-8-2) note that since $U^{\bullet, dR,+}$ are open subfunctors by [\(b\),](#page-8-1) we have an inclusion

$$
\operatorname{colim} U^{\bullet, dR,+} \hookrightarrow X^{dR,+}.
$$

We hope to check this is surjective. There is a diagram (2.1) gives

$$
\begin{aligned}\n\text{colim } U^{\bullet} \times \mathbb{A}^1/\mathbb{G}_m &\longrightarrow \text{colim } U^{\bullet, dR,+} \\
&\simeq \bigcup_{X \times \mathbb{A}^1/\mathbb{G}_m} \longrightarrow X^{dR,+}\n\end{aligned}
$$

By Remark [2.9,](#page-7-0) we know the horizontal maps are surjective, so the right vecrtical map must also be surjective, as desired. □

Now, we can finally:

Proof of Theorem [2.10.](#page-7-1) We proceed in three steps:

(1) We claim $\mathcal{H}_{dR,+}(X) \in \mathcal{D}(\mathbb{A}^1/\mathbb{G}_m, \mathcal{O})$ is quasi-coherent and t-complete, and moreover its restriction to $B\mathbb{G}_m$ agrees with the natural pushforward map along $X^{Hodge} \to B\mathbb{G}_m$. By Lemma [2.11](#page-8-4)[\(c\)](#page-8-2) it suffices to check when there is an étale map $f : X \to \mathbb{A}^n$. By [\(b\)](#page-8-1) there is a cartesian square

$$
X \times \mathbb{A}^1/\mathbb{G}_m \longrightarrow X^{dR,+}
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\mathbb{A}^n \times \mathbb{A}^1/\mathbb{G}_m \longrightarrow (\mathbb{A}^n)^{dR,+}.
$$

The bottom map is a $G = \widehat{V(O(-1))}^n$ -torsor. Indeed, by [\(a\)](#page-8-0) it suffices to consider $n = 1$, in which case it follows by definition. Now the top horizontal map must be a G-torsor as well, so we have an isomorphism

$$
X^{dR,+} \simeq (X \times \mathbb{A}^1/\mathbb{G}_m)/G.
$$

Now by Remark [1.21](#page-5-1) the pushforward $\mathcal{H}_{dR,+}(X)$ is quasi-coherent and is compatible with base change. Moreover, t-completeness follows from transporting completeness along the equivalence $\mathcal{D}_{qc}(\mathbb{A}^1/\mathbb{G}_m) \simeq \mathcal{D}_{fil}(k)$, as in Theorem [1.9\(](#page-2-0)[4\)](#page-3-0).

(2) By derived deformation theory, there is an isomorphism

$$
X^{Hodge} \simeq BV(\widehat{T_{X/k}}(-1)),
$$

where $T_{X/k}(-1) = pr_1^* T_{X/k} \otimes pr_2^* \mathcal{O}_{B\mathbb{G}_m}(-1)$. Indeed, given:

- a finite type k -scheme X ;
- an animated k-algebra R ;
- a map η : Spec $(R) \to X$ of derived k-schemes; and
- a square-zero extension $R' \to R$ in animated k-algebras by $N \in \mathcal{D}^{\leq 0}(R)$,

the fiber of the map $X(R') \to X(R)$ over $\eta \in X(R)$ is a torsor for

$$
\mathrm{Der}(\mathcal{O}_X, \eta_* N) \simeq \mathrm{Map}_R(\eta^* L_{X/k}, N).
$$

When X is smooth and $N = L[1] \in \mathcal{D}^{\leq -1}(R)$, we have

$$
\operatorname{Map}_R(\eta^* L_{X/k}, N) \simeq B(\eta^* T_{X/k} \otimes_R L).
$$

When furthermore $R' \to R$ is split, the fiber of $X(R') \to X(R)$ is a split torsor, canonically identified with $B(\eta^*T_{X/k} \otimes_R L)$.

Let us apply this to the square-zero extension

$$
R \oplus \text{Nil}(R)(-1)[1] \to R
$$

by Nil $(R)(-1)[1]$, so $X^{Hodge} \to X$ is a split torsor with fibers

$$
B(\eta^*T_{X/k}\otimes_R \mathrm{Nil}(R)\otimes_R L),
$$

i.e.,

$$
X^{Hodge} \simeq BV(\widehat{T_{X/k}}(-1)).
$$

Now, Proposition [1.19,](#page-5-2) gives an equivalence

$$
\mathcal{D}_{qc}(X^{Hodge}) \simeq \mathcal{D}_{qc}(\mathbf{V}(\Omega_{X/k}(1))),
$$

sending $\mathcal{O}_{X^{Hodge}}$ to $\mathcal{O}_{X\times\mathbb{G}_m}$. To compute the pushforward $\pi_{X,*}\mathcal{O}_{X^{Hodge}}$, note that under the equivalence this is equivalent to computing

$$
R Hom_{{\bf V}(\Omega_{X/k}(1))}({\cal O}_{X \times {\mathbb G}_m}, {\cal O}_{X \times {\mathbb G}_m}).
$$

But the Koszul resolution provides a quasi-isomorphsim between $\mathcal{O}_{X\times\mathbb{G}_m}$ and

$$
[\cdots \mathcal{O}_{\mathbf{V}(\Omega_{X/k}(1))} \otimes_{\mathcal{O}_{X \times B\mathbb{G}_m}} \wedge^2 T_{X/k}(-2) \to \mathcal{O}_{\mathbf{V}(\Omega_{X/k}(1))} \otimes_{\mathcal{O}_{X \times B\mathbb{G}_m}} T_{X/k}(-1) \to \mathcal{O}_{\mathbf{V}(\Omega_{X/k}(1))}],
$$

which provides an isomorphism

$$
RHom_{\mathbf{V}(\Omega_{X/k}(1))}(\mathcal{O}_{X \times \mathbb{G}_m}, \mathcal{O}_{X \times \mathbb{G}_m}) \simeq RHom_{\mathbf{V}(\Omega_{X/k}(1))}([\cdots \to \mathcal{O}_{\mathbf{V}(\Omega_{X/k}(1))} \otimes T_{X/k}(-1) \to \mathcal{O}_{\mathbf{V}(\Omega_{X/k}(1))}], \mathcal{O}_{X \times \mathbb{G}_m})
$$

\n
$$
\simeq RHom_{X \times \mathbb{G}_m}(\cdots \xrightarrow{0} T_{X/k}(-1) \xrightarrow{0} \mathcal{O}_{X \times \mathbb{G}_m}, \mathcal{O}_{X \times \mathbb{G}_m})
$$

\n
$$
\simeq \bigoplus_{i} R\Gamma(X, \Omega_{X/k}^i[-i])(i).
$$

(3) We have a presheaf $\mathcal{F}: U \mapsto \mathcal{H}_{dR,+}(U)$ on X valued in $\mathcal{D}_{qc}(\mathbb{A}^1/\mathbb{G}_m) \simeq \mathcal{D}_{fil}(k)$, which is a sheaf by (c) . Moreover, by the first two parts, the sheaf $\mathcal F$ lies in the heart of the Beilinson t-structure. Thus, it is represented by a chain complex, which by (2) must be of the form

$$
\mathcal{O}_X \xrightarrow{\delta} \Omega^1_{X/k} \xrightarrow{\delta} \Omega^2_{X/k} \xrightarrow{\delta} \cdots,
$$

for some differentials δ , equipped with the stupid filtration. To prove the theorem, we need only check that δ are the de Rham differentials. By Lemma [2.11,](#page-8-4) it suffices to show the case $X = \mathbb{A}^1$. In this case, $X^{dR,+} = \mathbb{G}_a^{dR,+}$ and by Remark [1.21](#page-5-1) the cohomology $\mathcal{H}_{dR,+}(X)$ is computed by the graded $k[t]$ -complex

$$
k[t, x] \xrightarrow{t \frac{d}{dx}} k[t, x](1),
$$

since the differential is $\frac{d}{dx}$ on the non-filtered objects. Thus translating to filtered objects, we see that $\delta = \frac{d}{ds}$ $\frac{d}{dx}$.

The stack $X^{dR,+}$ not only geometrizes de Rham cohomology, but it also geometrizes the category of vector bundles with flat connections.

Remark 2.12. By pullback along the map $X \times \mathbb{A}^1/\mathbb{G}_m \to X^{dR,+}$ from Remark [2.9,](#page-7-0) the category Vect($X^{dR,+}$) of vector bundles on $X^{dR,+}$ is identified with the category of triples (E,∇,F^*) where:

- E is a vector bundle on X ;
- $\nabla: E \to \Omega^1_{X/k} \otimes_{\mathcal{O}_X} E$ is a flat connection; and
- F^* if a finite filtration of E by submodules satisfying Griffits transversality:

$$
\nabla(F^i) \subset \Omega^1_{X/k} \otimes_{\mathcal{O}_X} F^{i-1}.
$$

Similarly, the pullback along $X \times B\mathbb{G}_m \to X^{Hodge}$ identifies $Vect(X^{Hodge})$ with the category of graded Higgs bundles, i.e., graded vector bundles $M = \bigoplus_i M_i$ together with a Higgs field $\Theta: M \to$ $\Omega^1_{X/k} \otimes_{\mathcal{O}_X} M$ (i.e., such that $\Theta \wedge \Theta = 0$) taking M_i to $\Omega^1_{X/k} \otimes_{\mathcal{O}_X} M_{i+1}$. Under this description, $Vect(X^{dR,+}) \to Vect(X^{Hodge})$ simply takes associated graded.

3. Linear algebra outside of characteristic 0

The key tool in the stacky description of de Rham cohomology in characteristic zero was Remark [1.20](#page-5-0) and the relative analog, Remark [1.21.](#page-5-1) To extend to arbitrary characterstic, we need:

Definition 3.[1](#page-11-0). Let $\mathbb{G}_a^{\#}$ be the PD¹-hull of the origin in \mathbb{G}_a over Z. Explicitly, letting \mathbb{G}_a = $\text{Spec } \mathbb{Z}[t]$, we let

$$
\mathbb{G}_a^{\#} := \mathrm{Spec}\left(\mathbb{Z}\left[t, \frac{t^2}{2!}, \frac{t^3}{3!}, \cdots\right]\right).
$$

Thus, an R-point of $\mathbb{G}_a^{\#}$ is exactly an element $x \in R$ with a compatible system of divided powers, i.e., elements $\{x_n\}_{n\geq 1}$ of R such that $x_1 = x$ and

$$
x_m x_n = \binom{m+n}{m} x_{m+n}.
$$

There is a natural map $\mathbb{G}_a^{\#} \to \mathbb{G}_a$ which is an isomorphism upon base change to Q, and the group law on \mathbb{G}_a induces a group law on $\mathbb{G}_a^{\#}$, since

$$
\frac{(x+y)^n}{n!} = \sum_{i+j=n} \frac{x^i}{i!} \frac{y^j}{j!}.
$$

Moreover $\mathbb{G}_a^{\#}$ is a \mathbb{G}_a -module since

$$
\frac{(xy)^n}{n!} = x^n \frac{y^n}{n!},
$$

so $\mathbb{G}_a^{\#}$ is a quasi-ideal in \mathbb{G}_a .

Example 3.2. If R is Z-flat (or equivalently, torsion-free), then $\mathbb{G}_a^{\#}(R) \to \mathbb{G}_a(R) = R$ is injective, with image consisting of $x \in R$ such that $x^n \in n! \cdot R$. In particular, when $R = \mathbb{Z}_p$, we have $\mathbb{G}_a^{\#}(\mathbb{Z}_p) = p\mathbb{Z}_p \subset \mathbb{Z}_p$, since $x^n \in n! \mathbb{Z}_p$ is equivalent to $v_p(x^n) \ge v_p(n!)$.

Example 3.3. When R is a \mathbb{F}_p -algebra, $\mathbb{G}_a^{\#}(R) \to \mathbb{G}_a(R) = R$ is injective if and only if R is reduced. Indeed, the kernel consists of a system of divided powers $\{x_n\}_{n\geq 1}$ such that $x_1 = 0$. If R is reduced, then $x_n = 0$, since

$$
x_n^p = \frac{(pn)!}{n!^p} x_{np} = 0.
$$

On the other hand, suppose $\mathbb{G}_a^{\#}(R) \to R$ and $x \in R$ is such that $x^2 = 0$. Then

$$
x_n = \begin{cases} x & n = p \\ 0 & n \neq p \end{cases}
$$

is a compatible system of divided powers with $x_1 = 0$.

Definition [3.1](#page-10-0) globalizes:

Definition 3.4. If E is a vector bundle on a scheme X, we let $V(E)^{\#}$ denote the PD-hull of the 0-section in $V(E)$. Then $V(E)^{\#}$ is a \mathbb{G}_a -module scheme over X and the map $V(E)^{\#} \to V(E)$ is a \mathbb{G}_a -module homomorphism.

Now, we have the following generalization of (1.1) , with the same proof:

Proposition 3.5. There is a natural monoidal equivalence

$$
\mathcal{D}_{qc}(B\mathbb{G}_a^{\#}) \simeq \mathcal{D}_{qc}(\widehat{\mathbb{G}}_a),
$$

where the right-hand side has the convolution product. Moreover:

 1PD stands for the French *puissances divisées* for divided powers.

(1) There is a commutative diagram

where $\pi: Spec(\mathbb{Z}) \to B\mathbb{G}_a^{\#}$ is the standard map and RT denotes the local cohomology at 0. (2) The equivalence is t-exact, with respect to the standard t-structure on the LHS and the torsion t-structure on the RHS.

Remark 3.6. The torsion t -structure is given by the following general construction: given a commutative ring R with finitely generated ideal I, let $\mathcal{D}_{I-comp}(R)$ (resp., $\mathcal{D}_{I-tors}(R)$) be the full subcategories of $\mathcal{D}(R)$ spanned by derived *I*-complete (resp., I^{∞} -torsion) *R*-complexes. Then the functor taking local cohomology $R\Gamma_I(-)$ and $(-)^\wedge_I$ give an equivalence $\mathcal{D}_{I-comp}(R) \simeq \mathcal{D}_{I-tors}(R)$. The standard t-structure on the torsion side induces a t-structure on the complete side, called the "torsion t-structure." In our situation $R = \mathbb{Z}[t]$ and $I = (t)$. Then the equivalence is

$$
\mathcal{D}_{t-comp}(\mathbb{Z}[\![t]\!]) \simeq \mathcal{D}_{t-tors}(\mathbb{Z}[\![t]\!])
$$

$$
M \mapsto R\Gamma_t(M) = \text{Fib}\big(M \to M \otimes_{\mathbb{Z}[\![t]\!]}^{\mathbb{L}} \mathbb{Z}(\!(t)\!) \big) = M \otimes^{\mathbb{L}} \mathbb{Z}(\!(t)\!)/\mathbb{Z}[\![t]\!][-1]
$$

$$
\widehat{M} = \lim_{n} M \otimes_{\mathbb{Z}[\![t]\!]}^{\mathbb{L}} \mathbb{Z}[t]/t^n \leftarrow M.
$$

For example, $\mathbb{Z}[t]/t^N \mapsto \mathbb{Z}[t]/t^N.$ In general the functor is non-trivial:

$$
\mathbb{Z}(\widehat{(t)})/\mathbb{Z}[\![t]\!] \simeq \lim_{n} \mathbb{Z}(\!(t)\!)/\mathbb{Z}[\![t]\!] \otimes^{\mathbb{L}} \mathbb{Z}[t]/t^n
$$

\n
$$
\simeq \lim_{n} \text{Cone}(\mathbb{Z}(\!(t)\!)/t^{-n}\mathbb{Z}[\![t]\!]\!] \to \mathbb{Z}(\!(t)\!)/\mathbb{Z}[\![t]\!])
$$

\n
$$
\simeq \lim_{n} t^{-n}\mathbb{Z}[\![t]\!]/\mathbb{Z}[\![t]\!][1]
$$

\n
$$
\simeq \mathbb{Z}[\![t]\!][1].
$$

There is also a relative analog:

Proposition 3.7. Let X be a scheme and let E be a vector bundle on X. Then there is a t-exact monoidal equivalence

$$
\mathcal{D}_{qc}(B\mathbf{V}(E)^\#) \simeq \mathcal{D}_{qc}(\widehat{\mathbb{V}(E^\vee)})
$$

compatible with forgetful functors.

REFERENCES

[Bha22] Bhargav Bhatt, Prismatic F-gauges.

M.I.T., 77 Massachusetts Avenue, Cambridge, MA, USA Email address: kjsuzuki@mit.edu