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In this introductory talk, I’ll sketch Bhatt–Scholze’s definition of prismatic cohomology, and talk
about several interesting applications of the theory. This is a quickly growing field and if you have
a better idea of what’s going on, feel free to interrupt me at any moment.

Before I get started, here are some things I personally want to get out of this seminar. Feel free
to make suggestions about where you’d like this seminar to go.

1. I want to have an (at least somewhat rigorous) understanding of different approaches of defining
prismatic cohomology, and why they’re equivalent;

2. I want to be able to translate between the topological viewpoint and the algebraic viewpoint
e.g. in Bhatt’s lectures;

3. Motivate myself to do more calculations in homotopy theory.

1 Background

1.1 Motivation. In complex geometry, we study smooth projective varieties X/C. Such an object
admits many different points of view:

• As a topological space it has singular (co)homology groups H∗(X;Z).

• As a smooth real manifold it has de Rham cohomology H∗
dR(X;C).

• As a Kähler manifold it has Hodge decomposition Hp,q(X).

Classical theorems give us canonical isomorphisms between these. In other words, we can see lots
of topological information of X through geometry, and vice versa.

Unfortunately, integrating forms in char. 0 does not see the torsion in singular homology. If we
want to both have torsion information and geometric tools, we would like to be in mixed charac-
teristic. For example, let X now be a smooth projective variety over Zp. By base change we get
a special fiber XFp and a generic fiber XCp . Note that Cp ≃ C abstractly as fields so the latter is
really a geometric object. A principle developed in the 20th century is that the p-torsion topological
information in XCp can be seen by the algebraic differential forms on XFp . Sasha told me about
something Fontaine knew already before prismatic cohomology, the statement being that in degree
less than p, the étale and de Rham cohomologies (both with Zp coefficients) are noncanonically
isomorphic.

1.2 An example application. Primsatic cohomology associates to X a finitely generated Fp[[t]]-
module H∗

∆(X;Fp). It can be seen as a deformation of the de Rham cohomology. It satisfies the
comparison isomorphisms (in the derived sense)

• H∗
∆(X;Fp)/t ≃ H∗

dR(XFp);
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• H∗
∆(X;Fp)[t

−1] ≃ H∗(XCp ;Fp)((t)).

Consequently, by the structure theorems of finitely generated modules over a PID, we see the torsion
inequality

dimFp H
n(XCp ;Fp) ≤ dimFp H

n
dR(XFp).

This inequality can be strict, and it cannot be shown by directly putting one as a subquotient of
the other.

This object has several different distinct incarnations. The original construction in BMS1 uses
perfectoid spaces and the almost purity theorem. In BMS2 there was a construction using the motivic
filtration on topological periodic homology (but this only gives the Nygaard-completed version). I’ll
focus on the construction using prisms, which is the most elementary. There is also a stacky approach
by Drinfeld and Bhatt–Lurie.

This is the end of the motivational section so people should comment now.

1.3 δ-rings. A δ-ring is just a ring A together with a map δ : A → A satisfying a bunch of axioms
which make φ(x) = xp + pδ(x) a ring homomorphism. Examples: Z, Zp, Zp[x], Zp[[x]], ...

Maybe a good way to think about this is through Witt vectors. For each ring A there is
a ring W (A) the p-typical Witt vectors, whose elements can be expressed as infinite sequences
(x0, x1, . . . ) with addition and multiplication such that the ghost map W (A) →

󰁔
N A, (x0, x1, . . . ) 󰀁→

(
󰁓n

i=0 p
ixpn−i

i )n is a natural transformation of functors of rings. When A is a perfect Fp-algebra,
W (A) should be seen as the universal deformation of A over Zp, analogous to the situation of k[[x]]
for k. Let Wn(A) be the subring of sequences where xi = 0 for i ≥ n. This is analogous to k[ε]/εn.
We see that in W2(A) the ghost map is (x0, x1) 󰀁→ (x0, x

p
0 + px1). Thus, a δ-ring structure on A is a

section A → W2(A) of the zeroth ghost map W2(A) → A. This is like the definition of a derivation
on A being a section to the projection A[ε]/ε2 → A.

Another view, when A is p-torsion free, is that we have the fiber product of rings W2(A) =
A ×A/p A, where one of the maps is just mod p and the other is mod p followed by Frobenius. So
SpecW2(A) is two copies of SpecA glued along Frobenius on SpecA/p. A δ-ring structure is then
a retract SpecW2(A) → SpecA. For general A this has to be interpreted in a derived way.

1.4 Derived completeness. This is just a technical point that maybe we’ll gloss over now. Let A
be a ring and I ⊂ A a finitely generated ideal. Classically, we define the I-completion of an A-module
M to be M∧

I = limn M/InM . However, this notion is not so well-behaved. For example, classically
I-complete modules do not form an abelian subcategory, and completions of flat A-modules are not
necessarily flat. The replacement notion is:

1.5 Definition. An A-module M is derived I-complete if for any f ∈ I, RHomA(Af ,M) ≃ 0
(equivalently Hom and Ext1 vanish).

1.6 Proposition. Good properties of derived completeness:

1. M is classically I-complete iff M is derived I-complete and I-separated.

2. (Derived Nakayama’s lemma) For M derived I-complete, M = IM =⇒ M = 0.

3. The category of derived I-complete modules is an abelian subcategory (but not AB5).

4. The inclusion from derived I-complete modules to modules admits a left adjoint, called the
derived I-completion (−)∧I .

5. When I = (f) is principal this is concretely M∧
f = Ext1A(Af/A,M). Moreover, if M has

bounded f -torsion then this coincides with classical f -completion.

6. If A is derived I-complete, then it is I-local, and every finitely presented A-module is derived
I-complete.
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2 Prismatic cohomology

2.1 Prisms. A prism is a pair (A, I) where A is a δ-ring, I an invertible ideal (i.e. locally principal
generated by non-zero-divisor), p ∈ (I,φ(I)), and A is derived (p, I)-complete. In particular A is
(p, I)-local.

In many cases we can reduce to the local situation: I = (f) is principal (“oriented”), we have
p ∈ (f,φ(f)) ⇐⇒ δ(f) is a unit, which is equivalent to f being a distinguished element. This is
roughly saying that f vanishes to first order in A/p according to the derivation δ.

Say A is bounded if A/I has bounded p-torsion (which implies that A is classically (p, I)-
complete), and perfect if φ is an automorphism. A map of prisms (A, I) → (B, J) is a map of
δ-rings f : A → B such that f(I) ⊂ J . Exercise: this necessarily implies IB = J .

2.2 Example. (1) (Crystalline prisms) A is a p-complete, p-torsion-free δ-ring, and I = (p). For
example, A = W (R) where R is a perfect Fp-algebra with characteristic p, then the Frobenius on
A which shifts the ghost coordinates (w0, w1, . . . ) 󰀁→ (w1, w2, . . . ) lifts the Frobenius on R = A/p.
It is a general property that in this case A = W (R) satisfies the assumptions, and furthermore it is
bounded.

(2) A = Zp[[t]] with φ(t) = tp, and I = (t− p). Then A/I = Zp.
(3) A = Zp[[q − 1]] with φ(q) = qp, and I = [p]q = 1 + q + · · ·+ qp−1. Then A/I = Zp[ζp].
(4) Perfect prisms (A, I) are equivalent to perfectoid rings A/I. I don’t know much about what

those are so someone should tell me.

2.3 Prismatic envelope. For any prism (A, I), the forgetful functor

{prisms (B, J) over (A, I)} → {δ-pairs (B, J) over (A, I)}

has a left adjoint called the prismatic envelope.

2.4 The relative prismatic site. Let (A, I) a bounded prism. We will just do the affine situation.
Let R be a (formally smooth) ring over A/I. An object in the relative prismatic site (R/A)∆ (I guess
opposite) is a bounded prism (B, J) over (A, I) together with a map of A/I-algebras R → B/J .
We’ll give it the “indiscrete topology”, meaning that the only covers are isomorphisms. So every
presheaf is a sheaf. (In the non-affine case, we’ll have to use the flat topology.) The struture sheaf
O∆ is (B, J) 󰀁→ B, and the reduced structure sheaf O∆ is (B, J) 󰀁→ B/J .

In general, there is no terminal object in this category. Maybe a good example is R = (A/I)[x]∧p .
There exists a bounded prism (B, J) where B = A[x]∧(p,I) (classical completion) such that R ≃ B/J ,

but it is not terminal. But there is always a weakly terminal object: let B′ be the free δ-ring over
A on the set of elements of R, and let J ′ = ker(B′ → R), then let (B, J) be the prismatic envelope
of (B′, J ′). This is weakly terminal.

2.5 Computing cohomology in the indiscrete topology. Suppose X is a weakly terminal
object, then R∗Γ(C;F ) can be computed by the Čech complex of X:

0 → F (X) 󰃃 F (X ×X) →→→ · · ·

2.6 Relative prismatic cohomology. Define ∆R/A = RΓ((R/A)∆,O∆) and the Hodge–Tate com-

plex ∆R/A = RΓ((R/A)∆,O∆). They canonically live in D(A) but admit no obvious models.
∆R/A is a derived (p, I)-complete commutative algebra object. In fact, it admits the structure

of an E∞-algebra in the ∞-category, but it cannot be modeled by a CDGA. ∆R/A also naturally
carries a Frobenius φ : φ∗

A∆R/A → ∆R/A.
By the previous section we can get a hold on ∆R/A using the above cosimplicial ring. This should

also present some stack?

Draw the picture for the following theorem.
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2.7 Theorem. Let A as in example 2. Suppose R is the p-completion of a smooth A-algebra.

1. (Hodge–Tate comparison) There is a canonical quasi-isomorphism 󰁥Ω∗
R/A

→ H∗(∆R/A){∗}
where the latter has the Bockstein differential. This is specialization along t = p.

2. (de Rham comparison) There is a canonical quasi-isomorphism 󰁥Ω∗
RFp/Fp

→ (φ∗∆R/A) ⊗A Fp.

This is specialization at t = p = 0. (In fact this lifts to specializing at t = pp.)

3. (étale comparison) There is a canonical quasi-isomorphism H∗
ét(SpecRCp

;Fp) ≃ (∆R/A ⊗
Fp((t)))

φ−1 (the derived fixed points).

4. The map φ becomes a quasi-isomorphism after inverting t− p.

2.8 The absolute prismatic site and the Nygaard filtration. If we do not fix a base prism
A/I and instead just take the site of bounded prisms (B, J) admitting a map Spf R → B/J , we get
the absolute site, and we can similarly define absolute prismatic cohomology. The right way to do
this is probably via prismatization, which will be a later talk.

The absolute ∆R carries a canonical filtration. Roughly this plays the same role as the Hodge
filtration for de Rham cohomology. The easiest way to define this is probably through topology and
arises from the homotopy fixed point spectral sequence on TC−. This will also be mentioned in a
later talk.

2.9 q-de Rham complexes. As a final application, consider a smooth Zp-algebra R, and a choice
of coordinates (étale map An

Zp
→ R), we can define a q-deformed version of the de Rham complex

of R/Zp. The complex depends wildly on the choice of coordinates, but Scholze conjectured that
it is a canonical object in the derived category. A surprising application of prismatic cohomology
(with base prism example 3) proved this conjecture: in fact after completing R there is a canonical
quasi-isomorphism qΩ∗

R/Zp
≃ ∆R⊗ZpA/A, and the latter does not depend on the coordinates. Maybe

do an example calculation.
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