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Fields and Galois Theory
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CHAPTER 2

Lie Groups and Lie Algebras

1. Finite-dimensional Lie algebras

1.1. Basic definitions.

1.1.1. Definition. Let F be a field. A Lie algebra over F is a F -vector space L, together with a skew-
symmetric bilinear map [ , ] : L× L → L, satisfying Jacobi’s identity.

For this section, Lie algebras will be assumed to be finite-dimensional.

1.1.2. Definition. A Lie subalgebra M ⊂ L is a subspace closed under the Lie bracket. An ideal I ⊂ L is
a subspace satisfying that for every x ∈ I, y ∈ L, [x, y] ∈ I.

1.1.3. Example. Here are some standard constructions:

• There is a homomorphism of Lie algebras ad : L → gl(L) called the adjoint representation, given
by x %→ (y %→ [x, y]).

• For any Lie algebra L, [L,L] ⊂ L is an ideal.
• The center Z = {x ∈ L : [x, L] = 0} ⊂ L is an ideal. It is the kernel of the adjoint representation.
• Let M ⊂ L be a subalgebra. Its normalizer NL(M) = {x ∈ L : [x,M ] ⊂ M} is a subalgebra
containing M .

• Let S ⊂ L be a subset. Its centralizer CL(S) = {x ∈ L : [x, S] = 0} is a subalgebra. It is an ideal
if S is.

• The Killing form K : L × L → F is a bilinear form, defined as K(x, y) = Tr(adx ad y). It is
invariant, meaning that K(x, [y, z]) = K([x, y], z).

• The universal enveloping algebra U = U(L) is a filtered algebra, defined by

U(L) = T (L)/(x⊗ y − y ⊗ x− [x, y]).

The filtration F•U is given by FjU = im(T jL). Since [FiU,FjU ] ⊂ Fi+j−1U (here the bracket is
in the sense of algebras, [v, w] = v ⊗ w − w ⊗ v), grU(L) is commutative.

1.1.4. Remark (Motivation for the universal enveloping algebra). We want to write [x, y] = xy−yx, which
does’t make sense a priori, and U(L) is the smallest construction which makes sense of it. Also, we want to
view L-reps as actual modules over some ring, and U(L) is the natural such ring.

1.1.5. Theorem (PBW). The natural map of commutative algebras S(L) → grU(L) is an isomorphism.

In other words, if we fix an F -basis x1, . . . , xn of L, then U(L) has an F -basis given by xe1
1 ⊗ · · ·⊗ xen

n .
In particular, this means that the map L → U(L) is injective.

Proof. It suffices to show that these “ordered” elements xe1
1 ⊗ · · · ⊗ xen

n are linearly independent in
U(L). To do that, it suffices to construct a linear map Φ : T (L) → S(L) that maps xe1

1 ⊗ · · · ⊗ xen
n to

themselves, and that kills the two-sided ideal (x ⊗ y − y ⊗ x − [x, y]), so that it factors through U(L).
This is done inductively on the degree d. For example, x2x1 should be mapped to x1x2 − [x1, x2], and
x3x1x2 %→ x1x2x3 − x1[x2, x3] − [x1, x3]x2 . In general, for a permutation t = tmr

. . . tm2
tm1

on d elements
(where tm is the transposition (m,m + 1)), suppose X = xi1xi2 . . . xid is an ordered monomial, then let
t(X) = xit(1) . . . xit(d) , and define

Φ(t(X)) = X −
r−1!

i=0

Φ(umi+1(tmi . . . tm1(X)))

where um(xi1 . . . xid) = xi1 . . . xim−1 [xim , xim+1 ]xim+2 . . . xid . One can show that this does not depend on the
way t is written as the product of neighboring transpositions. □
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1. FINITE-DIMENSIONAL LIE ALGEBRAS 3

1.1.6. Definition. Let L be a Lie algebra. Its lower central series is the sequence of subalgebras

L0 ⊃ L1 ⊃ L2 ⊃ · · ·
where L0 = L, Ln = [L,Ln−1]. It is nilpotent if its lower central series terminates (Ln = 0 for some n).

1.1.7. Definition. Let L be a Lie algebra. Its derived series is the sequence of subalgebras

L(0) ⊃ L(1) ⊃ L(2) ⊃ · · ·
where L(0) = L, L(n) = [L(n−1), L(n−1)]. It is solvable if its derived series terminates (L(n) = 0 for some n).

We also recall the Jordan–Chevalley decomposition theorem in linear algebra. Let V be a finite-
dimensional vector space over an algebraically closed field F (not necessarily of characteristic 0). Call
an element x ∈ EndV semisimple if its minimal polynomial over F has distinct roots (equivalently, it is
diagonalizable).

1.1.8. Theorem (Jordan–Chevalley). Let x ∈ EndV .

(1) There exists unique xs, xn ∈ EndV , such that x = xs + xn, xs is semisimple, xn is nilpotent, and
xs, xn commute.

(2) xs, xn are polynomials in x (with coefficients in F ).
(3) If A ⊂ B ⊂ V and x(B) ⊂ A, then xs(B), xn(B) ⊂ A too.

1.2. Nilpotent and solvable Lie algebras.

1.2.1. Theorem (Engel’s theorem). Let L be a Lie algbera whose every element is ad-nilpotent. Then L is
a nilpotent Lie algebra.

In the rest of subsections 1.2, 1.3, and 1.4, let F be an algebraically closed field of characteristic 0.

1.2.2. Theorem (Lie’s theorem). Let L ⊂ gl(V ) be a solvable Lie algebra over F , where V is a finite-
dimensional vector space. Then L stabilizes some flag of V , i.e. there is a basis of V for which every element
in L is upper-triangular.

1.2.3. Proposition (Cartan’s criterion for solvability). Let L be a finite dimensional Lie algebra over F .
Then L is solvable iff the Killing form K(x, y) = Tr((adx) ◦ (ad y)) satisfies that K(x, y) = 0 for x ∈ L,
y ∈ [L,L].

1.3. Semisimple Lie algebras.

1.3.1. Proposition (Cartan’s criterion for semisimplicity). Let L be a finite dimensional Lie algebra over
F . Then L is semisimple iff the Killing form is nondegenerate.

1.3.2. Theorem. Let L be semisimple, then there exist simple ideals (unique up to permutation) L1, . . . , Lt ⊂
L, such that L = L1 ⊕ · · ·⊕ Lt.

1.3.3. Proposition. Let L be semisimple, then adL = DerL.

1.3.4. Theorem (Weyl’s theorem). Let φ : L → gl(V ) be a finite dimensional representation of a semisimple
Lie algebra L. Then φ is completely reducible.

1.3.5. Definition (Abstract Jordan–Chevalley decomposition). Let L be semisimple, so that adL = DerL.
Let x ∈ L. Since DerL contains the semisimple and nilpotent parts of all its elements, there exist s, n ∈ L
such that adx = ad s+ adn, so x = s+ n.

1.3.6. Proposition (Actually useful criterion for semisimplicity). Suppose L is a Lie algebra over an alge-
braically closed field F of characteristic 0, and φ : L ⊂ gl(V ) is a finite-dimensional faithful irrep. Then L
is reductive and dimZ(L) ≤ 1. If L ⊂ sl(V ) then L is semisimple.

Proof. Let S = Rad(L). By Lie’s theorem 1.2.2, there exists a basis of V for which S is upper-
triangular. In particular there is a simultaneous eigenvector v for S, say sv = λ(s)v. Then since S is an
ideal, for any x ∈ L,

(1.3.7) sxv = λ(s)xv + λ([s, x])v.

Now, since V is irreducible, all vectors in V can be written as linear combinations of x1x2 . . . xnv for some
x1, . . . , xn ∈ L. Repeatedly using eq. (1.3.7) shows that sx1 . . . xnv − λ(s)x1 . . . xnv can be written as linear
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combinations of vectors that result from strictly less than n applications of elements of L to v. So, we can
choose a basis of V , such that every s ∈ S is an upper-triangular matrix whose diagonal entries are all λ(s).
However, the elements [s, x] all have trace 0, so their diagonal entries are 0. By eq. (1.3.7) again, s ∈ S acts
as the scalar λ(s) on V , so S ⊂ Z(L), so L is reductive and dimZ(L) ≤ 1. If L ⊂ sl(V ) then S = 0, so L is
semisimple. □
1.3.8. Corollary. The classical Lie algebras sln, sp2n, on are all semisimple.

1.4. Root space decomposition. Let L be a semisimple Lie algebra over F .

1.4.1. Definition. A subalgebra H ⊂ L is toral if all its elements are (ad-)semisimple.

1.4.2. Exercise. Toral subalgebras are abelian.

The following definition is only true when L is semisimple. There is a general notion of Cartan subalge-
bras, defined later.

1.4.3. Definition. A toral subalgebra H ⊂ L is called a Cartan subalgebra if it satisfies any of the following
equivalent conditions:

(1) H is maximal among all toral subalgebras;
(2) H = CL(H).

1.4.4. Definition.

1.5. Root systems and abstract weights.

1.5.1. Definition. Let V = Fn. A root system Φ ⊂ V is a subset satisfying:

(1) Φ is finite, 0 /∈ Φ, and Φ spans V .
(2) For any α ∈ Φ, the only other scalar multiple of α in Φ is −α.

(3) For any α,β ∈ Φ, 〈α,β〉 := 2(α,β)
(β,β) ∈ Z.

(4) For any α,β ∈ Φ, α− 〈α,β〉β ∈ Φ.

1.5.2. Definition. Let Φ ⊂ V be a root system. Let α ∈ Φ be any element, then denote σα ∈ Aut(Φ) by
the automorphism κ %→ κ− 〈κ,α〉α, which is reflection across the hyperplane normal to α. The Weyl group
W is the group generated by these σα’s (for α ∈ Φ).

In fact, the Weyl group of any Φ is a Coxeter group: σασβ is a rotation with angle 2θ, where (α,β) =
|α||β| cos θ. Since θ ∈ {0, 1

6 ,
1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

5
6}π, the order of σασβ must be in {1, 2, 3, 4, 6}.

1.5.3. Definition. For α ∈ Φ, let Pα denote the hyperplane normal to α. The connected components of
V −

"
α Pα are called the Weyl chambers of Φ.

1.5.4. Definition. Let Φ ⊂ V be a root system. A subset ∆ ⊂ Φ is a base if it is a basis of V , and every root
α ∈ Φ is expressed as the linear combination of elements in ∆ with either all non-negative or all non-positive
integer coefficients. Say a root is positive or negative accordingly.

Let γ ∈ V −
"

α Pα. Denote by Φ+(γ) = {α ∈ Φ : (α, γ) > 0}. An element α ∈ Φ+(γ) is indecomposable
if there does not exist x, y ∈ Φ+(γ) with x+ y = α. Denote by ∆(γ) the set of all indecomposable roots in
Φ+(γ).

1.5.5. Proposition. Φ+(γ) is a base, and all bases are of this form. So bases are in 1-to-1 correspondence
with Weyl chambers.

1.5.6. Proposition. Fix a base ∆.

(1) For any positive root α /∈ ∆, α− β is a positive root for some β ∈ ∆.
(2) Let α ∈ ∆, then σα permutes ∆\{α}.

1.5.7. Proposition. The Weyl group W acts simply transitively on bases, and it is generated by σα, α ∈ ∆.

1.5.8. Remark. The Weyl group also naturally acts on Weyl chambers, and these two actions are compatible
via the correspondence between Weyl chambers and bases.

1.5.9. Definition. The length of an element σ ∈ W is the smallest n ∈ Z≥0 such that σ = σα1 . . .σαn for
some α1, . . . ,αn ∈ ∆.
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1.5.10. Proposition. Let σ ∈ W , then its length is equal to the number of positive roots α such that σ(α)
is negative.

1.5.11. Proposition. The closure of the Weyl chamber C(∆) corresponding to ∆ is a fundamental domain
for the action of W on V .

1.5.12. Definition. Let Φ be a root system. A weight λ ∈ V is an element such that 〈λ,α〉 ∈ Z for all
α ∈ Φ. Equivalently, if we fix a base ∆ = {α1, . . . ,αn}, it is an element such that 〈λ,αi〉 ∈ Z for all i.

1.5.13. Definition. A weight λ is dominant (resp. strongly dominant) if λ ∈ C(∆) (resp. λ ∈ C(∆)).
Equivalently, 〈λ,αi〉 ≥ 0 (resp. 〈λ,αi〉 > 0).

1.5.14. Remark. It could very well happen that λ ≺ µ, λ is (strongly) dominant, and µ is not dominant.

1.5.15. Example. Let λi ∈ V such that 〈λi,αj〉 = δij . Then the set of weights Λ is just the lattice
#

i Zλi.
Inside Λ, there is a sublattice Λr, the root lattice, generated by Φ, whose index is equal to the determinant
of the Cartan matrix of Φ. There is an element δ ∈ Λ, δ =

$
i λi =

1
2

$
α∈Φ α.

1.5.16. Definition. A set Π ⊂ Λ is saturated if for any λ ∈ Π, λ− iα ∈ Π for every α ∈ Φ, 0 ≤ i ≤ 〈λ,α〉.

1.5.17. Proposition. Let Π be saturated, and suppose there exists λ ∈ Π such that every µ ∈ Π has µ ≺ λ.
Then for any dominant µ with µ ≺ λ, µ ∈ Π.

1.6. Representations of semisimple Lie algebras. Let L be a semisimple Lie algebra over an
algebraically closed field F of characteristic 0. Fix a Cartan subalgebra H of L, let Φ be the set of roots,
and fix a base ∆. Let B = H

#
α≻0 Lα be a Borel subalgebra.

1.6.1. Theorem (Theorem of the highest weight). There is a bijection

{finite-dimensional irreps of L} ←→ {dominant integral weights of ∆}.

First we develop some theory about maximal vectors and weights.

1.6.2. Definition. Let V be a (possibly infinite-dim) representation of L, and let Vλ be the weight spaces,
λ ∈ H∗. A maximal vector v ∈ Vλ with weight λ is a common eigenvector of H killed by all Lα, α ≻ 0.

1.6.3. Example. For the adjoint representation of a simple Lie algebra, there is a unique maximal root β,
and the maximal vector is the vector in Lβ (and its weight is β). For a finite-dimensional representation, by
Lie’s theorem there exists a common eigenvector v of B, which must be a maximal weight: for any x ∈ Lα,
α ≻ 0, there exists h ∈ H such that α(h) ∕= 0, and we have 0 = hxv − xhv = [h, x]v = α(h)xv so xv = 0.
For infinite-dimensional representations, maximal weights do not necessarily exist.

1.6.4. Definition. If V = U(L)v for some maximal vector v ∈ Vλ, call V a highest weight module (of weight
λ).

1.6.5. Proposition (Structure of highest weight modules). Let V = U(L)v be a highest weight module of
weight λ, where v is a maximal vector. Then:

(1) V is spanned by (
%

yα)v for α ≻ 0. In particular V is the direct sum of weight spaces Vµ.
(2) The possible weights µ which appear are all of the form λ −

$
ciαi, where αi ≻ 0, ci ∈ Z≥0, and

they appear with finite multiplicity, and λ appears with multiplicity one.
(3) Any proper submodule is the direct sum of weight spaces not including Vλ.
(4) V is indecomposable, with a unique maximal submodule, and their quotient is an irreducible highest

weight module of weight λ.

1.6.6. Proposition. Suppose V is an irreducible highest weight module. Then there exists a unique maximal
vector up to scalar multiplication.

1.6.7. Proposition. For any λ ∈ H∗, there exists a unique (up to isomorphism) irreducible highest weight
representation V (λ) of weight λ.

Proof. Existence: One can take the 1-dimensional rep W of B given by λ, and define M(λ) =
U(L) ⊗U(B) W , or equivalently take M(λ) = U(L)/(xα, h − λ(h)1 : α ≻ 0, h ∈ H). (M is called a Verma
module.) Then quotient out the highest weight M(λ) by its unique maximal proper subrepresentation to get
V (λ). □
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Now we are ready to prove the theorem: we now know that in one direction, a irrep V corresponds to
its maximal weight λ, and in the other direction one associates λ with V (λ).

Proof of theorem 1.6.1. One direction is easy: if V (λ) is finite-dimensional, then the sl2-triples
(xα, yα, hα) in L all act on V (λ), and we know that these have integral weights, and the maximal one
is clearly dominant. Conversely, suppose λ is dominant integral. We have to show that V (λ) is finite-
dimensional. Suppose ∆ = {α1, . . . ,αℓ}, and let xi = xαi , yi = yαi , hi = hαi . Denote the sl2-triple

(xi, yi, hi) by sl
(i)
2 .

First, we show that the action of xi, yi need to be locally (pointwise) nilpotent. For the maximal

vector v, one can verify that that y
λ(hi)+1
i v is killed by all xj , hence must be zero, since it has weight

λ− (λ(hi) + 1)αi ≺ λ. So the subspace generated by v, yiv, . . . , y
λ(hi)
i v is a sl

(i)
2 -module. Consider the sum

of all finite-dimensional sl
(i)
2 -submodules of V (λ), then it is nonempty and stable under L (for any finite-

dimensioonal sl
(i)
2 -submodule W , the sum

$
α∈Φ xαW is L-stable), hence must be equal to V (λ). So any

w ∈ V (λ) lies in such a finite-dimensional sl
(i)
2 -submodule, therefore xi, yi are locally nilpotent.

Thus, we can define automorphisms exp(xi), exp(yi) of V (λ). The automorphism si = exp(xi) exp(−yi) exp(xi)
satisfies siVµ = Vσiµ. In particular, the Weyl group permutes the weights that appear. But then the set of
weights that appear must be finite (since they are bounded by λ). So dimV must be finite as well. □
1.6.8. Corollary. The set of weights in V (λ) form a saturated set (definition 1.5.16). In particular, µ
appears iff all W -conjugates of µ are smaller than λ.

1.6.9. Proposition. For a dominant integral λ, so that λ(hi) = mi ∈ Z≥0,

V (λ) ≃ U(L)/(xα, h− λ(h)1, ymi+1
i : α ≻ 0, h ∈ H, 1 ≤ i ≤ ℓ).

1.6.10. Theorem (Freudenthal’s formula). Let V be an irreducible L-module with highest weight λ ∈ Λ+.
Then for any weight µ ∈ Λ, its multiplicity mult(µ) = dimVµ satisfies the recursion

mult(µ) =
2
$

α≻0

$
i≥1 mult(µ+ iα) · (µ+ iα,α)

(λ+ δ,λ+ δ)− (µ+ δ, µ+ δ)
.



CHAPTER 3

Commutative Algebra

These notes contain solutions to selected problems in Atiyah and MacDonald’s Introduction to Commu-
tative Algebra. All mistakes are my own.

1. Rings and ideals

1.2. Problem. iv) For a polynomial f = a0+a1x+ · · ·+anx
n, we use I(f) to denote the ideal (a0, . . . , an).

It suffices to show the more general relation

I(fg) ⊂ I(f)I(g) ⊂ rad(I(fg)).

The first inclusion is obvious. Suppose g = b0 + · · · + bmxm. To prove the second inclusion, we will show
aibj ∈ rad(I(fg)) by induction on i. For the induction basis i = n, we can easily show ar+1

n bm−r ∈ I(fg)
for all r, so obviously anbj ∈ rad(I(fg)). For the induction step from k + 1 to k, since we can assume
aibj ∈ rad(I(fg)) for all i > k, we have then

$
j ajbl−j ∈ rad(I(fg)) for each l ≤ m + k. Repeating the

argument above, we can show that ar+1
k bm−r ∈ rad(I(fg)) for all r, so akbj ∈ rad(I(fg)) for all j, concluding

the induction.

1.7. Problem. Suppose p is a prime ideal, and x /∈ p. Choose n ≥ 2 such that xn = x. Since A/p is an
integral domain, 0 = xn − x = x(xn−1 − 1) implies that xn−1 = 1 modulo p, i.e. x is invertible in A/p.
Therefore, A/p is a field and p is maximal.

1.14. Problem. Clearly Σ has a maximal element a by Zorn’s lemma. Suppose a is not prime, that is,
there exists xy ∈ a such that x, y /∈ a. Then a+ (x) and a+ (y) each contain a non-zero-divisor, say m+ xn
and s+ yt. Then (m+ xn)(s+ yt) ∈ a is a non-zero-divisor, a contradiction.

1.16. Problem. Because Z is a PID, the points of Spec(Z) are just 0 and (p), p prime, and the closed sets
are any set not containing 0, as well as Spec(Z).

Because R is a field, Spec(R) is the trivial 1-point space.
Because C[x] is a PID, the points of Spec(C[x]) are 0 and (x − z), z ∈ C. The closed sets are any set

not containing 0, as well as the whole Spec(C[x]).
Because R[x] is a PID, the points of Spec(C[x]) are 0, (x− r), and (x2 + ax+ b) where a2 − 4b < 0. The

closed sets are any set not containing 0, as well as the whole Spec(R[x]).
Finally, we wish to characterize prime ideals p ⊂ Z[x]. The set p∩Z must be a prime ideal in Z. Case 1:

p∩Z = {0}. Assume p is nonzero. Let f(x) ∈ p such that it has lowest degree and smallest leading coefficient.
Then it is unique and irreducible. For any element g0(x) ∈ p, we can repeat the following modified Euclidean
algorithm: there exists nonzero m0 ∈ Z and a0(x) ∈ Z[x] such that g1(x) = m0g0(x)− f(x)a0(x) has strictly
smaller degree than g0(x), and we substitute g1(x) for g0(x). In the end, deg gk(x) < deg f(x), which means
gk(x) = 0 for some k. Then we see that f(x) | m0m1 . . .mk−1g0(x). Since f is primitive, f(x) | g0(x). This
means p = (f(x)) where f is irreducible.

Case 2: p ∩ Z = (p) for some prime p. Consider the image of p in Z[x]/p = Fp[x], which is a prime ideal
since the map is surjective. Since Fp[x] is a PID, the image is (f(x)) for some monic irreducible f in Fp[x]

(or else it is 0, in which case p = (p)). Pick a monic f̃(x) ∈ Z[x] above f , then it is clear p = (p, f̃(x)).
In conclusion, prime ideals in Z[x] are either 0, (p), (f(x)), or (p, f(x)). Closed sets of Spec(Z[x]) are

characterized by a choice of primes (p), a choice of polynomials f(x), and all (p, f(x)) with either p or f(x)
among the chosen ones (as well as, of course, the whole Spec(Z[x])).

1.20. Problem. iv) Let Y be a irreducible component of X = Spec(A). Since the closure of a irreducible
subspace is again irreducible, we can assume Y is closed. Then Y = V (a) for some radical ideal a. If a is

7
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not prime, then there exists xy ∈ a and x, y /∈ a. Then V (a, x) ∪ V (a, y) = V (a) while neither is equal to
V (a), contradiction. Therefore a is prime. By maximality, a must be a minimal prime, as desired.

1.22. Problem. We will prove ii) =⇒ i) =⇒ iii) =⇒ ii).
ii) =⇒ i): In general, it is easy to show that any prime ideal in A = A1 × · · ·×An must be of the form

A1 × · · ·×Ai−1 × p×Ai+1 × . . . An, where i is some index and p ⊂ Ai is a prime ideal. This easily implies
that SpecA = SpecA1 ⊔ · · · ⊔ SpecAn.

iii) =⇒ ii): Say e2 = e where e ∕= 0, 1. Let A1 = eA and A2 = ker(A ↠ eA) = Ann(e). Then e is a unit
in A1 while 1− e is a unit in A2, so both A1 and A2 are nonzero rings. Furthermore, any element a ∈ A can
be uniquely written as ea+ (1− e)a ∈ A1 ×A2. This shows A ∼= A1 ×A2.

i) =⇒ iii): Suppose SpecA = V (a)⊔V (b). Then any prime ideal either contains a or contains b, but not
both. This means that a+b = (1) and ab ⊂ a∩b ⊂ rad(A). So there exists a ∈ a, b ∈ b where a+ b = 1, and
(ab)n = 0. Let e = (1− an)n. Then e(1− e) is a multiple of (ab)n, so e = e2. If e = 0, then 1− an ∈ rad(A),
which means that an, hence a, is a unit (Problem 1.1), a contradiction. If e = 1, then 1− an is a unit, then
so is b = 1− a, a contradiction. Therefore, e is an idempotent ∕= 0, 1.

1.28. Problem. Injectivity is clear. For surjectivity, fix a homomorphism f : P (Y ) → P (X). Let
φ = (φ1, . . . ,φm) where φi = f(yi) (here yi ∈ P (Y ) is the ith coordinate of km). Then φ induces the
homomorphism f .

2. Modules

For convenience, we also record some important results in each chapter.

2.1. Proposition (Cayley-Hamilton). Let M be a finitely generated A-module, and φ : M → M a homo-
morphism. Suppose a ⊂ A is an ideal such that φ(M) ⊂ aM . Then there exists a polynomial

φn + a1φ
n−1 + · · ·+ an = 0

where ai ∈ a.

Proof. Suppose x1, . . . , xm generate M , and φ(xi) =
$m

j=1 aijxj where aij ∈ a. Let Cij be the matrix

defined by Cij = aij when i ∕= j, and Cii = aii − φ. (In other words, we treat aij as elements of End(M).)
Then C annihilates all of x1, . . . , xm, so detC does as well (multiply by the adjugate matrix). But detC is
a polynomial in φ of the required form. □

2.2. Proposition. Let M be a finitely generated A-module. If aM = M for some ideal a ∈ A, then there
exists a ∈ a with am = m for every m ∈ M .

Proof. Take φ = id in the above proposition. □

2.3. Corollary (Nakayama’s lemma). Let M be a finitely generated A-module. If aM = M for some ideal
a ∈ A, a ⊂ J(A), then M = 0.

First proof. Since any 1− x (x ∈ J(A)) is a unit, this follows from Proposition 2.2. □

Second proof. Suppose x1, . . . , xn is a minimal set of generators of M . We have xn =
$n

i=1 aixi, so

(1− an)xn =
$n−1

i=1 aixi. But 1− an is a unit, so xn is generated by x1, . . . , xn−1, a contradiction. □

2.4. Corollary. Let M be a finitely generated A-module, N ⊂ M a submodule, a ∈ J(A) an ideal. If
M = aM +N , then M = N .

Proof. Apply Corollary 2.3 to M/N . □

2.5. Corollary. Let (A,m, k) be a local ring, M a finitely generated A-module. Let x1, . . . , xn ∈ M whose
images in M/mM form a basis of this vector space. Then x1, . . . , xn is a set of minimal generators of M .

Proof. Let N = (x1, . . . , xn). Then M = N +mM , so M = N by Corollary 2.4. □

◦
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2.11. Problem. Suppose Am ∼= An. Let m be a maximal ideal of A, then (A/m)⊗Am ∼= (A/m)⊗Am, and
both sides are now vector spaces over k = A/m, so m = n.

If φ : Am → An is surjective, then so is the induced map (A/m)m → (A/m)n, hence m ≥ n.
Suppose φ : Am → An is injective, and m > n. We may view φ as an injective map φ : Am → Am

satisfying φ(Am) ⊂ a(Am), where a is the ideal generated by (1, . . . , 1, 0, . . . , 0), with n ones. By (2.4) of the
book, φ satisfies an equation φk +a1φ

k−1+ · · ·+ak = 0, so φk(0, . . . , 0, 1) = 0, a contradiction to injectivity.
Therefore, m ≤ n.

2.13. Problem. Define p : NB → N by b ⊗ n %→ bn. Then p ◦ g is the identity on N , so g is injective. In
addition, the sequence

0 → ker p → NB
p−→ N → 0

splits by the existence of g : N → NB , so NB
∼= N ⊕ ker p.

2.19. Problem (Direct limits are exact). Let µij , νij ,πij be the maps inside the direct systems M,N,P
respectively. Let fi, gi be the individual maps between the direct systems, and let f : M → N , g : N → P
be the induced maps. Suppose n ∈ N such that g(n) = 0, then there exists ni ∈ Ni such that νi(ni) = n
and πi(gi(ni)) = 0, in other words, some gj(νij(ni)) = πij(gi(ni)) = 0. By exactness, there exists mj ∈ Mj

such that fj(mj) = νij(ni). Then if we let m = µj(mj), then f(m) = νj(fj(mj)) = n. Consequently,
ker g ⊂ im f .

Suppose now that n = f(m) for m ∈ M,n ∈ N . Then there is mi ∈ Mi such that µi(mi) = m. Denote
ni = fi(mi), then νi(ni) = n. By exactness, gi(ni) = 0, so g(n) = 0. This means that im f ⊂ ker g, so
M → N → P is exact.

2.25. Problem. For any A-module M , the Tor long exact sequence gives

· · · → Tor2(M,N ′′) → Tor1(M,N ′) → Tor1(M,N) → Tor1(M,N ′′) → . . .

By Problem 2.24, the first and last terms are both zero, so N ′ is flat iff N is flat.

2.26. Problem. This exercise demonstrates the power of direct limits. The nontrivial part is to show that
Tor1(A/a, N) = 0 for all f.g. ideal a implies N flat.

First, let a ⊂ A be any ideal. Let ai be the directed system of finitely generated ideals such that ai ⊂ a,
ordered by inclusion. Taking the direct limit of the exact sequences 0 → ai → A → A/ai → 0 gives the exact
sequence 0 → a → A → lim−→A/ai → 0, so we conclude that A/a ∼= lim−→A/ai. Now, Tor1(A/a, N) is the first
homology of

· · · → P2 ⊗ (A/a) → P1 ⊗ (A/a) → P0 ⊗ (A/a) → 0

for a fixed projective resolution Pi → N . Since this becomes exact when we replace a by each ai, and direct
limits commute with tensor products, we conclude that Tor1(A/a, N) = 0.

Next, let M be any finitely generated A-module. Then there is a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

such that each Mi/Mi−1 is generated by one element, i.e. is isomorphic to A/a for some ideal a. We now
know that Tor1(Mi/Mi−1, N) = 0. Using induction and Problem 2.25, we conclude that Tor1(M,N) = 0.

Finally, let M be any A-module. Then M = lim−→Mi where Mi are finitely generated submodules of M ,

so we conclude that Tor1(M,N) = 0. This implies that N is flat, as desired.

2.27. Problem. i) =⇒ ii): Let (x) ⊂ A be a principal ideal. Then A/(x) is flat, so the map (x)⊗(A/(x)) ↩→
A ⊗ (A/(x)) is injective. In other words, (x) ⊗ (A/(x)) = 0. Let a ⊂ A be the ideal generated by x and
Ann(x). Define a map (x) × (A/(x)) → A/a by (ax, b + (x)) %→ ab + a. This is well-defined and bilinear,
so it induces a well-defined surjective linear map (x) ⊗ (A/(x)) → A/a. Therefore, a = A. So there exists
a, y ∈ A such that ax+ y = 1 and xy = 0, in other words, x(1− ax) = 0. So (x) is idempotent.

ii) =⇒ iii): Every finitely generated ideal is generated by idempotents, so it must be principal (use
(e, f) = (e+ f − ef)). So it is a direct summand of A.

iii) =⇒ i): Since the direct summand of a free module is free, for any finitely generated ideal a ∈ A, A/a

is free. So for any A-module M , TorA1 (A/a,M) = 0, so by the previous problem M is flat.
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3. Rings and modules of fractions

Here’s a brief summary of how the operations we’ve learned so far interact with each other:

• Tensor products are right exact;
• Direct limits are exact;
• Tensor products commute with direct limits;
• Localization is exact;
• S−1A is a flat A-module;
• Localization commutes with tensor products (S−1M ⊗S−1A S−1N ∼= S−1(M ⊗A N));
• Exactness is a local property (in fact it can be checked at maximal ideals);
• Flatness is a local property.

◦

3.7. Problem. i) Suppose S is saturated, and let x ∈ A\S. Then its image in S−1A is non-unit, since
otherwise there exists b ∈ A such that ab ∈ S, which would mean a ∈ S, contradiction. In addition, WLOG
0 /∈ S. So there exists a maximal ideal m ⊂ S−1A containing x

1 . Then m∩A is a prime ideal in A containing
x and disjoint from S. This means that A− S is a union of prime ideals. The converse is obvious.

ii) Since the intersection of a family of saturated sets is again saturated, S exists. Any prime ideal in
A\S is necessarily in A\S, so S is the complement of the union of prime ideals not intersecting S.

Suppose that S = 1 + a. Any prime ideal p not intersecting S corresponds one-to-one with a prime
S−1p ⊂ S−1A. The union of all prime ideals in S−1A is clearly the set of all non-units in S−1A, so the union
of all prime ideals not intersecting S is the set

{x ∈ A : ∄y ∈ A such that xy ∈ S}.

But this is precisely the set of elements x ∈ A whose image in A/a is a nonunit. So S is the set of elements
x ∈ A whose image in A/a is a unit.

3.8. Problem. i) =⇒ ii): Since t/1 is a unit in T−1A, it should be a unit in S−1A too.
ii) =⇒ iii): This is by definition.
iii) =⇒ i): To show injectivity, suppose at = 0 for some t ∈ T . Then there exists x ∈ A with xt ∈ S, so

there exists s = xt, s ∈ S, such that as = 0. To show surjectivity, suppose a/t ∈ T−1A. Take s = xt ∈ S.
Then a/t = ax/xt = ax/s is in φ(S−1A).

iii) ⇐⇒ iv): By the reasoning in the above problem, the saturation S consists of all elements that divide
some element of S.

iv) ⇐⇒ v): Follows from the above problem.

3.10. Problem. ii) If A is absolutely flat, then so is Am, but since it is a local ring it must be a field.
Conversely, suppose Am is a field for all maximal m. It suffices to show that for any A-module M and any
injection of A-modules N → P , M ⊗N → M ⊗ P is injective. Since exactness is a local property, it suffices
to show that Mm ⊗Nm → Mm ⊗ Pm is injective. But since Am is a field, the map is automatically injective.

3.11. Problem. i) =⇒ ii): If A/ radA is absolutely flat, then for any a ∈ A, there exists x ∈ A such that
a(1 − ax) ∈ rad(A), i.e. a(1 − ax) is nilpotent. Let p ⊂ A be a prime ideal, then for any a, either a ∈ p or
1− ax ∈ p. Consequently, A/p is a field, and p is maximal.

ii) ⇐⇒ iii): The closure of {x} ∈ X = SpecA is {x} = V (px) = {x}, iff px is maximal. (Remark: SpecA
is always T0 for any ring A.)

ii) =⇒ iv): Let p1, p2 be distinct points in X = SpecA. Choose f1 /∈ p1, f1 ∈ p2. We wish to find
f2 /∈ p2 such that f1f2 is nilpotent (which guarantees that Xf1 ∩Xf2 = ∅). Consider the image of f1 in Ap2 .
Because every prime ideal in A is maximal, Ap2

is a local ring whose only prime ideal is p2Ap2
. Therefore,

f1 is nilpotent in Ap2
, so there exists f2 ∈ A\p2 such that f1f2 is nilpotent in A. Then Xf1 , Xf2 are disjoint

neighborhoods of p1, p2 respectively.
iv) =⇒ iii) is obvious.
ii), iv) =⇒ i): By the last problem, it suffices to show that (A/ radA)m is a field for any maximal ideal

m ⊂ A/ radA. Because the preimage mc of m is a prime ideal, it is maximal in A. Let (a+radA)/(s+radA) ∈
Am such that a ∈ mc. Copying the proof of ii) =⇒ iv), we can find t ∈ A\mc such that at is nilpotent in A,
i.e. (a+ radA)/(s+ radA) is zero. So (A/ radA)m is indeed a field and we are done.
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Finally, we need to show that X = SpecA is totally disconnected. Because A/ radA is absolutely flat,
for any a ∈ A, there exists x ∈ A such that a(1 − ax) is nilpotent. Therefore, Xa and X1−ax partition X.
As a result, if a subset S ⊂ X is connected, either Xa ⊂ S or Xa ∩ S = ∅. If S contains at least two points,
then since X is Hausdorff, S cannot be connected. So S must be a single point.

3.12. Problem. iv) Because K ⊗A M ∼= S−1M where S = A\{0}, the kernel of the map M → K ⊗A M ∼=
S−1M is precisely T (M) by definition of localization.

3.15. Problem. It suffices to show that if φ : An → An is surjective, then it is bijective. By localizing at
each prime ideal, we can assume WLOG A is local. Let m be its maximal ideal and k be its residue field.
Tensoring the split exact sequence 0 → kerφ → An → An → 0 with k, we obtain that kerφ = m kerφ.
Also kerφ is finitely generated since it is a direct summand of An, so by Nakayama’s lemma kerφ = 0, as
desired. (Aside: If φ is injective, there is no reason for it to be surjective. For example, consider Z → Z with

multiplication by 2. The dual argument breaks down since 0 → Z ×2−−→ Z → Z/2Z → 0 is not split.)

3.19. Problem. viii) Let q ∈ SpecB and p = qc ∈ SpecA. We have

(B ⊗A M)q = Bq ⊗B (B ⊗A M) = (Bq ⊗B B)⊗A M = Bq ⊗A M = Bq ⊗Ap
Mp

using the homomorphisms A → Ap → Bq. Therefore, if Mp = 0, then (MB)q = 0. Conversely, by problem
2.13 the map Mp → Bq ⊗ Mp is an injection, so (MB)q = 0 implies Mp = 0. This is enough to imply
SuppMB = (f∗)−1(SuppM).

3.21. Problem. iv) (Fiber over a point) Let p ∈ Spec(A). We have the following commutative diagram:

A Ap Ap/pAp

B Bp Bp/pBp

f

where Bp = f(A\p)−1B and pBp = (pAp)
e. In terms of the spectra, we then have

SpecBp/pBp SpecBp SpecB

SpecAp/pAp SpecAp SpecA.

f∗

Hence SpecBp/pBp = SpecB ⊗A (Ap/pAp) is canonically homeomorphic to the fiber (f∗)−1(p).
(Aside: we can use this to give a better proof of problem 1.16. To find the prime ideals of Z[x], it is

enough to find the fibers over each p ⊂ Z. The fiber over p = 0 is SpecZ[x] ⊗ Q = SpecQ[x]. These are
the polynomials in Z[x] that are irreducible in Q[x], and by Gauss’s lemma they must be irreducible in Z[x].
The fiber over p = (p) is SpecZ[x]⊗Fp = Fp[x]. These are the polynomials in Z[x] that are irreducible mod
p.)

3.24. Problem. By compactness WLOG suppose Xf1 , . . . , Xfn cover SpecA.
Existence: suppose elements ai/f

ei
i ∈ Afi satisfy that aif

ej
j /fei

i f
ej
j = ajf

ei
i /fei

i f
ej
j in Afifj , that is,

aif
ej
j − ajf

ei
i is killed by some power of fifj .

Let gi = fei
i , and suppose aigj − ajgi is killed by (gigj)

N for some large enough N , for all pairs i, j.
Then XgN+1

1
, . . . , XgN+1

n
cover SpecA, so there exist mi ∈ A such that

1 =
!

i

mig
N+1
i =

!

i

(mig
N
i )gi.

(This is like a “partition of unity” that allows one to go from local to global.)
Let a =

$
i mig

N
i ai. It suffices to show that for any i, agi − ai is killed by a power of gi. We expand

agi − ai = (
!

j

mjg
N
j aj)gi − ai(

!

j

mjg
N+1
j )

=
!

j

mjg
N
j (ajgi − aigj)
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which is killed by gNi .
Uniqueness: it suffices to show that if the image of x ∈ A in each Afi is zero, then x = 0. Suppose x is

killed by fei
i for each i. Since Xf

ei
i

cover X, there are mi ∈ A such that
$

i mif
ei
i = 1. Then 1 kills x, so

x = 0.

3.27. Problem. iv) Suppose X is covered by a collection of open sets defined by fα : A → Bα. Then
Spec(

&
α Bα) = ∅, so

&
α Bα = 0. Since this is a direct limit, one of the terms

&
i Bi in the direct system

must be zero, and this tensor product is over a finite index set.

3.30. Problem. If A/ radA is absolutely flat, then Xa is both open and closed, so X and XC agree.
Conversely, suppose the complement of Xa is Xb, then A = (a)+ (b), so there exist x, y with 1 = xa+ yb. In
addition, ab must belong to all prime ideals, so ab ∈ radA, so a(1−xa) is nilpotent, so A/ radA is absolutely
flat.

4. Primary decomposition

Suppose a ⊂ A is a decomposable ideal.

4.1. Theorem. Let a =
'

i qi be a minimal primary decomposition. Then pi = rad(qi) are precisely prime
ideals of the form rad(a : x) as x ranges over A. In particular, the set of pi’s are only dependent on a (these
are the primes associated with a).

Proof. The proof is surprisingly easy. We expand

rad(a : x) = rad(
(

i

qi : x) =
(

i

rad(qi : x) =
(

x/∈qi

pi.

Picking x /∈ qi, x ∈
'

j ∕=i qj by minimality, we have rad(a : x) = pi. Conversely, if rad(a : x) is prime, then
it must equal one of the pi’s. □

4.2. Proposition. The isolated (mimimal) prime ideals associated with a are precisely the minimal prime
ideals containing a. □

4.3. Proposition.
"

i pi = {x ∈ A : (a : x) ∕= a}.

Proof. Reducing to A/a, it suffices to show that if 0 is decomposable with associated prime ideals pi,
then

"
i pi is precisely the set of zero divisors,

"
x ∕=0 rad(0 : x). If x ∕= 0 then there must exist i such that

x /∈ qi, so rad(0 : x) ⊂ pi by Theorem 4.1. Conversely, for each pi, there exists x such that rad(0 : x) = pi,
also by Theorem 4.1. □

Primary ideals interact nicely with localizations. If q is p-primary, p ∩ S = ∅, then S−1q is a S−1p-
primary ideal that contracts back to q. If p ∩ S ∕= ∅, then S−1q = S−1A.

We say a subset Σ of prime ideals associated to a is isolated if is closed downwards under inclusion.
Then, localizing at A\(

"
p∈Σ p) kills off precisely the associated primes not in Σ.

4.4. Theorem. Let a =
'

i qi be a minimal primary decomposition. Let pi1 , . . . , pim be an isolated set of
associated primes. Then qi1 ∩ · · · ∩ qim is dependent only on a. In particular, if pi is isolated, then qi is
dependent only on a.

Proof. Localize at S = A\(pi1 ∪ · · · ∪ pim). Then S−1a = S−1qi1 ∩ · · · ∩ S−1qim is a minimal primary
decomposition of S−1a, and S−1a ∩ A = qi1 ∩ · · · ∩ qim is a minimal primary decomposition of S−1a ∩ A,
which is only dependent on a since S is only dependent on a. □

Some (counter)examples to keep in mind:

• In k[x, y], (x2, xy) = (x)∩ (x, y)2 = (x)∩ (x2, y). These are both minimal primary decompositions,
and the set of associated primes are (x) and (x, y). Furthermore, the primary ideal corresponding
to isolated primes (x) is the same, whereas the other primary ideal is different.

• A prime power is not necessarily primary (whereas this becomes true if “prime” is replaced by
“maximal”). An example is p2 in k[x, y, z]/(xy − z2), where p = (x, z).

• A p-primary ideal is not necessarily a power of p. An example is (x, y2) in k[x, y].
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Finally, we summarize the theory of primary decomposition for modules. Fix a ring A and an A-module
M . An element x ∈ A is a zero-divisor in M if xm = 0 for some m ∕= 0. It is nilpotent in M if some power
of it kills M .

For a submodule N ⊂ M , define its radical rM (N) = rad(N : M). It is primary in M if N ∕= M
and every zero divisor in M/N is nilpotent. Equivalently, N ⊂ M is primary iff (N : M) = Ann(M/N) is
rM (N)-primary. A minimal primary decomposition of N ⊂ M is

N =

n(

i=1

Qi

where each Qi is primary in M , rM (Qi) are all distinct, and none of Qi is redundant.

4.5. Proposition. The primes pi = rM (Qi) are only dependent on N . They are the prime ideals of the
form rad(N : x) where x ∈ M .

4.6. Proposition. The minimal prime ideals associated with N are precisely the minimal primes containing
rM (N).

4.7. Proposition.
"

i pi = {x ∈ A : (N : x) ∕= N}.

4.8. Proposition. Let pi1 , . . . , pim be an isolated set of associated primes. Then Qi1 ∩ · · ·∩Qim is dependent
only on N . In particular, if pi is isolated, then Qi is dependent only on N .

The proofs of these propositions are completely standard.

◦

4.3. Problem. Suppose A is absolutely flat, and q ⊂ A is primary. Then A/q is absolutely flat (problem
2.28). Suppose a ∈ A/q is a nonunit, then there exists x ∈ A/q such that a(1−ax) = 0, so a is a zero-divisor.
Since q is primary, a is nilpotent. Then an = 0 for some n, so a = xn−1an = 0. In other words, A/q is a
field, so q is maximal.

4.6. Problem. We claim that the zero ideal is not decomposable. Suppose otherwise, then the set of zero
divisors in C(X) is equal to the union of the (finitely many) prime ideals associated with (0). Find maximal
ideals mx1 , . . . ,mxn containing each associated prime ideal (these can only be of the form mx = {f ∈ C(X) :
f(x) = 0}). It suffices to find a zero divisor g that does not vanish at all of x1, . . . , xn.

Since X is compact Hausdorff, X is a normal space. Urysohn’s lemma then says that if A,B ⊂ X are
two disjoint nonempty closed sets, then they are separated by a continuous function.

We choose x ∕= x1, . . . , xn since X is infinite. Since X is Hausdorff, there exist disjoint open sets
U, V ⊂ X such that x ∈ U and x1, . . . , xn ∈ V . Choose a function g ∈ C(X) that equals 1 on x1, . . . , xn and

0 on X\V . Then Supp g = {x ∈ X : g(x) ∕= 0} ⊂ X\U . Then we can find h ∕= 0 that vanishes on Supp g
and equals 1 at x, so that gh = 0.

4.7. Problem. iii) If f(x) is a zero-divisor in (A/q)[x] ∼= A[x]/q[x], then there exists a nonzero element
a ∈ A/q such that af(x) = 0, so every coefficient of f is a zero-divisor in A/q. Because q is primary, this
implies that every coefficient of f is nilpotent, so f is nilpotent. This shows that q[x] is primary, and clearly
it must be p[x]-primary.

4.9. Problem. Suppose p is a minimal prime ideal containing (0 : a) for some element a. Then the image
of p in A/(0 : a) is a minimal prime, so every element inside is a zero-divisor. Therefore, if x ∈ p, then there
exists y ∈ A, y /∈ (0 : a) such that xy ∈ (0 : a). So x ∈ (0 : ay) and ay ∕= 0, as desired.

If 0 is decomposable, then the primes in Ass(0) are precisely primes of the form rad(0 : x), which is a
subset of D(A). Conversely, if q ∈ D(A), then by the above paragraph q ⊂

"
x ∕=0 rad(0 : x) =

"
p∈Ass(0) p, so

by prime avoidance we have q ∈ Ass(0).

4.13. Problem (nth symbolic powers). i) Since pAp is a maximal ideal, pnAp is pAp-primary, so p(n) is
p-primary.

ii) The only isolated prime of pn is p, because rad(pn) = p. The proof of theorem 4.4 then tells us that
p(n) is the p-primary component.

iii) It is easy to show that Sp(p
(m)p(n)) = Sp(p

m+n), so they have the same p-primary components.
iv) This is obvious by ii).
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4.14. Problem. It suffices to show that p = (a : x) is prime. Suppose yz ∈ p, then xyz ∈ a. If y /∈ p, then
xy /∈ a, so (a : xy) ⊃ (a : x) implies (a : xy) = (a : x). Since z ∈ (a : xy), z ∈ p as well.

4.17. Problem. We first show the following claim: let a be an ideal, p a minimal prime ideal containing a,
then q = Sp(a) is p-primary, and if q = (a : x) then a = q ∩ (a, x). The first clause of the claim follows from
problem 4.11 by reducing mod a. For the second clause, suppose bx ∈ q for some b ∈ A, then since x /∈ p,
b ∈ q, so bx ∈ a. This proves the claim.

Now, fix an ideal a0. From the claim, we may choose a0 = q1∩ (a0, x0) for some q1 = Sp1(a0) = (a0 : x0)
and x0 /∈ p1. Choose a1 maximal such that a0 = a1 ∩ q1 and x0 ∈ a1. Repeating the above procedure, we
may choose a1 = q2 ∩ (a1, x1) where q2 = Sp2(a1) = (a1 : x1) and x1 /∈ p2. Choose a2 maximal such that
a2∩q2 = a1 and x1 ∈ a2. Repeating this again, at each stage we have a0 = q1∩ · · ·∩qn∩an, an ∕⊂ q1, . . . , qn,
and an−1 ⊊ an.

Even though this does not necessarily terminate in finitely many steps, we can use transfinite induction.
The successor step is the same as the one described above. For the limit step, we just take aα to be the
union of the aβ ’s where β < α. Then in fact at each stage we have

a0 = pr
(

β≤α

qβ ∩ aα.

Then consider an ordinal α such that α > |A|, where we well-order A a priori. We must then have aα = (1),
at which point a0 is expressed as the intersection of primary ideals qβ , β < α.

4.18. Problem. i) =⇒ ii): Suppose a =
'

i qi, then we know that Sp(a) =
'

pi⊂p qi. Clearly, we may choose

x ∈ A such that x /∈ pi iff pi ⊂ p. Then Sp(a) = (a : xn) for a sufficiently large power of x, by problem 4.15,
so this verifies (L1). Problem 4.12 directly implies (L2) since S1(a) ⊃ S2(a) ⊃ . . . .

ii) =⇒ i): By problem 4.17 we express a =
'

α qα. Let Sn = Sp1 ∩ · · ·∩Spn . Then Sn(a) = Sn(q1 ∩ · · ·∩
qn ∩ an) = Sn(q1) ∩ · · · ∩ Sn(qn) ∩ Sn(an) = q1 ∩ · · · ∩ qn since an /∈

"n
i=1 pi by construction. Since Sn(a)

stabilizes, we can use transfinite induction to show that qα ⊃
'n

i=1 qi for every ordinal α > n, which then
implies a =

'n
i=1 qi.

4.19. Problem. Induct on n where the induction basis is obvious. For the inductive step, suppose WLOG pn
is minimal among pi. By inductive hypothesis there is a minimal primary decomposition a′ = q1∩ · · ·∩qn−1

where each qi is pi-primary. It suffices to find a pn-primary ideal qn such that qn ∕⊃ a′. Suppose otherwise,
then a′ ⊂ Spn(0). In other words,

'n−1
i=1 S−1

pn
(qi) = 0. But for every pi, pi ∕⊂ pn by minimality, so S−1

pn
(qi) =

S−1
pn

(A), which is not the zero ring, so we get a contradiction.

5. Integral dependence and valuations

5.1. Proposition. Let A ⊂ B be a ring extension. The following are equivalent:

(i) x ∈ B is integral over A;
(ii) A[x] is a finitely generated module over A.
(iii) A[x] is contained in a subring C ⊂ B that is f.g. as an A-module.
(iv) There is a faithful A[x]-module M such that M is f.g. over A.

Proof. The nontrivial part is iv) =⇒ i). Consider M as an f.g. A-module, and consider the map
φ : M → M given by m %→ xm. By Cayley-Hamilton, φ satisfies a monic polynomial equation over A. Since
M is faithful as an A[x]-module, x satisfies a monic polynomial equation over A. □
5.2. Corollary. The elements in B integral over A forms a subring of B, called the integral closure of A in
B.

5.3. Corollary. If B is integral over A and C is integral over B, then C is integral over A.

In addition, integral dependence is preserved by passing to quotient rings and localizations. Even
better, if C is the integral closure of A in B, then S−1C is the integral closure of S−1A in S−1B, S being
any multiplicatively closed subset of A.

5.4. Proposition. Let A ⊂ B be an integral extension of integral domains. Then A is a field iff B is a field.

5.5. Corollary. Let A ⊂ B be an integral extension. Let q ⊂ B be a prime ideal, and let p = q ∩ A. Then
q is maximal in B iff p is maximal in A.
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5.6. Corollary. Let A ⊂ B be an integral extension. Then no two distinct prime ideals lying over prime
p ∈ A can have a containment relation.

Proof. Localize at S = A− p, and use corollary 5.5. □
5.7. Theorem (Lying-over). Let A ⊂ B be an integral extension, and p ⊂ A a prime. Then there exists a
prime q ⊂ B such that q ∩A = p.

Proof. Consider the contraction of a maximal ideal in S−1B, S = A− p. □
5.8. Theorem (Going-up). Let A ⊂ B be an integral extension. Suppose p1 ⊂ · · · ⊂ pn is a chain of
prime ideals. Then for any q1 ⊂ · · · ⊂ qm lying over p1, . . . , pm respectively, it can be extended to a chain
q1 ⊂ · · · ⊂ qn, each lying over p1, . . . , pn. □

An integral domain is said to be integrally closed if it is so as a subring of its field of fractions. Clearly,
any UFD is integrally closed. Being integrally closed is a local property.

Define, for a ⊂ A an ideal, the integral closure of a in B to be the set of elements in B satisfying a monic
polynomial equation with coefficients in a.

5.9. Proposition. Let C be the integral closure of A in B, and let a ⊂ A be an ideal. Then its integral
closure in B is rad(ae) where ae is the extension of the ideal in C.

5.10. Corollary. Let A ⊂ B be integral domains, A integrally closed, x ∈ B integral over an ideal a ⊂ A.
Then x is algebraic over the quotient field K of A, and its minimal polynomial tn+a1t

n−1+ · · ·+an satisfies
a1, . . . , an ∈ rad(a).

Proof. The conjugates of x are all integral over a since they all satisfy the same integral equation over
a. Since the ai’s are polynomials in the conjugates of x, they all belong to rad(ae) = rad(a) since A is
integrally closed. □
5.11. Theorem (Going-down). Let A ⊂ B be an integral extension, such that A is integrally closed. Suppose
p1 ⊃ · · · ⊃ pn is a chain of prime ideals. Then for any q1 ⊃ · · · ⊃ qm lying over p1, . . . , pm respectively, it
can be extended to a chain q1 ⊃ · · · ⊃ qn, each lying over p1, . . . , pn.

Proof. It suffices to show that given p1 ⊃ p2, with q1 lying over p1, there exists q2 ⊂ q1 lying over
p2. It then suffices to show that pec2 = p2, where the extension and contraction are through A → B → Bq1

.
To this end, suppose x ∈ A, s ∈ B − q1, y ∈ p2B such that x

1 = y
s . Then yt = xst for some t ∈ B − q1.

Replacing y with yt, and s with st, we may assume WLOG t = 1.
Since y ∈ p2B, y is integral over p2, so it satisfies an equation yr + u1y

r−1 + · · ·+ ur = 0 where ui ∈ p2.
Working in K, the quotient field of A, we have s = yx−1, so

sr +
u1

x
sr−1 +

u2

x2
sr−2 + · · ·+ ur

xr
= 0.

But s ∈ B, so each ui/x
i = vi ∈ A. If x /∈ p2, then vi ∈ p2 for every i, so s ∈ p2B ⊂ p1B ⊂ q1, a

contradiction. Therefore, x ∈ p2 as desired. □
5.12. Proposition. Let A be an integrally closed domain, K its field of fractions, L/K a separable finite
extension, B the integral closure of A in L. Then there exists a basis vi of L/K such that B ⊆

$
Avi.

Proof. Consider an arbitrary basis of L/K, then each basis element can be multiplied by some element
in A such that they lie in B. Call this basis u1, . . . , un. Consider the trace form TrL/K : L×L → K, given by
(x, y) %→ TrL/K(xy). This is nondegenerate by separability. So there exists a dual basis v1, . . . , vn ∈ L such
that Tr(viuj) = δij . We claim this is the desired basis. Indeed, consider x ∈ B, and express x =

$
i xivi,

then because ui ∈ B, xi = Tr(xui) ∈ A. □
For an integral domain B and its field of fractions K, we say B is a valuation ring of K if for any nonzero

x ∈ K, either x ∈ B or x−1 ∈ B. Then B must be a local ring that is integrally closed (in K).
Let K be any field, Ω an algebraically closed field. Consider the set of pairs (A, f) where A ⊂ K is a

ring and f : A → Ω is a homomorphism. Partially order this set so that (A, f) ≤ (A′, f ′) iff A ⊂ A′ and
f = f ′|A. Let (B, g) be a maximal element of this set.

5.13. Proposition. B is a local ring with maximal ideal m = ker g.
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5.14. Proposition. Let x ∈ K, x ∕= 0. Then either m[x] ∕= B[x] or m[x−1] ∕= B[x−1].

5.15. Theorem. B is a valuation ring of K.

Proof. Let nonzero x ∈ K, it suffices to show either x ∈ B or x−1 ∈ B. By proposition 5.14 WLOG
m[x] ∕= B[x]. Then it is contained in some maximal ideal m′ ⊂ B′ = B[x]. We must have m′∩B = m since m
is maximal, so the inclusion B ↩→ B[x] induces a field extension k = B/m to k′ = B′/m′. Because k′ = k[x],
it is a finite extension, so the induced embedding g : k → Ω (recall m = ker g) extends to an embedding
k′ → Ω since Ω is algebraically closed. This extends to a map B′ → Ω, so by maximality, B = B′. Since
x ∈ B′, x ∈ B, as desired. □

5.16. Corollary. Let A be a subring of a field K. Then its integral closure is the intersection of all valuation
rings of K containing A.

5.17. Proposition. Let A ⊂ B be integral domains, B a finitely generated algebra over A. Let v ∈ B
nonzero. Then there exists u ∈ A nonzero such that any map f : A → Ω, where Ω is algebraically closed and
f(u) ∕= 0, can be extended to a map g : B → Ω where g(v) ∕= 0.

Proof. Inducting on the number of generators, we may suppose B is generated over A by one element
x.

If x is transcendental, suppose v = anx
n+ · · ·+a0. Let u = an. Then for any f : A → Ω where f(a) ∕= 0,

there must exist ω ∈ Ω such that f(an)ω
n + · · ·+ f(a0) ∕= 0. Extend f to g : B → Ω by mapping x to ω.

If x is algebraic, then so is v−1 (over K = Frac(A)). So we have equations

a0x
m + · · ·+ am = 0, a′0v

−n + · · ·+ a′n = 0

of least degrees, for ai, a
′
i ∈ A. Let u = a0a

′
0, and consider f : A → Ω such that f(u) ∕= 0. We easily extend

this to f1 : A[u−1] → Ω, and now both x and v−1 are integral over A[u−1]. Extend f1 to h : C → Ω, C being
a valuation ring containing A[u−1], then x, v−1 ∈ C. But since x ∈ C, C contains B, so v ∈ B ⊂ C too. So

h(v) ∕= 0 since v is a unit, and taking g : B ↩→ C
h−→ Ω finishes the proof. □

5.18. Corollary (Hilbert’s nullstellensatz). Let k be a field, B a finitely generated k-algebra that is a field.
Then B is a finite extension of k.

◦

5.1. Problem. Let b ∈ B be an ideal, q ∈ V (b) in SpecB. Then f∗(q) = qc ⊇ bc =: a, so f∗(q) ∈ V (a) in
SpecA. Conversely, suppose p ⊇ a. Because f : A → B is integral, so is f : A/a → B/b. So there exists a
prime q ∈ B/b above p ∈ A/a. Pull q back to q ∈ B, which is a prime ideal lying above p that lies inside
V (b).

5.2. Problem. Zorn’s lemma.

5.8. Problem. ii) Let B1 = B[x0]/fg(x0). Then fg(x1) factors as fg(x1) = (x1 − x0)p1(x1) in B1[x1], and
deg p1 = deg(fg) − 1. Let B2 = B1[x1]/p1(x1), and so on. We end up with a ring B′ ⊃ B such that fg(x)
splits into linear factors in B′[x]. The roots of fg are all integral over C, therefore so are the coefficients
of f and g. But they also lie in B, so they must lie in C since C is integrally closed in B. (Note that this
problem implies that for a ring extension A ⊂ B, for elements a, b ∈ B, if both a+ b and ab are integral over
A, then so are a, b themselves.)

5.13. Problem. Suppose q1, q2 ∈ P . Let x ∈ q2, then
%

g∈G gx ∈ AG ⊂ q1, so there exists g ∈ G such that

gx ∈ q1. Therefore, q2 ⊂
"

g∈G gq1, so there exists g ∈ G such that q2 = gq1.

5.15. Problem. Any finite extension can be split into a separable extension followed by a purely inseparable
one, so it suffices to prove the two cases separately.

If L/K is separable: consider a set of generators of L over K, and take the splitting field M of the
minimal polynomials of these elements. Then M/K is a finite Galois extension since it is the splitting field
of a separable polynomial. By problem 5.14, A = BGal(M/K). By problem 5.13, SpecB → SpecA has finite
fibers.

If L/K is purely inseparable: let p = charK. Then for any x ∈ B, there exists n > 0 such that xpn ∈ K,
so xpn ∈ A since A is integrally closed. Suppose prime ideal q ∈ B such that q ∩ A = p. Then x ∈ q
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implies xpn ∈ A ∩ q = p. Conversely, if xpn ∈ p ⊂ q, then x ∈ q since q is prime. Therefore, q is uniquely
characterized as the set of elements whose some pnth power lies in p.

5.16. Problem (Noether’s normalization lemma). We only show the second part of the problem (geometric
interpretation). Namely, if k[y1, . . . , yr] ↩→ A = k[x1, . . . , xn]/I is injective, the induced map of affine
algebraic varieties X → kr is surjective. A point in kr corresponds to a morphism of algebras k[y1, . . . , yr] →
k. Since k is algebraically closed and A is integral over k[y1, . . . , yr], this can be extended to a morphism
A → k, which corresponds to a point in X.

5.17. Problem (Hilbert’s nullstellensatz). We state several theorems that are associated with the name.
Let k be an algebraically closed field.

A formulation of nullstellensatz: the map kn → Spm k[x1, . . . , xn] given by (a1, . . . , an) %→ (x1 −
a1, . . . , xn − an) is bijective. (Proof: using problem 5.18, suppose m ⊂ k[x1, . . . , xn] is a maximal ideal.
Then k[x1, . . . , xn]/m is a finitely generated algebra over k that is a field, so it is a finite extension of k, so
it is equal to k since k is algebraically closed. Suppose a1, . . . , an are the images of x1, . . . , xn in k, then
m = (x1 − a1, . . . , xn − an).)

Weak nullstellensatz: if a ∕= (1) is an ideal in k[x1, . . . , xn], then its associated variety V (a) is nonempty.
(This is easily equivalent to the above statement.)

(Strong) nullstellensatz: if a ⊆ k[x1, . . . , xn] is an ideal, then I(V (a)) = rad a.

5.18. Problem (Zariski’s lemma). There is an integral extension k[y1, . . . , yr] ↩→ B. Since B is a field, so
is k[y1, . . . , yr]. This implies r = 0.

5.22. Problem. Let v ∕= 0 be an element of B. Since A ⊂ Bv are integral domains and Bv is finitely
generated over A, there exists an s ∕= 0 in A such that, given any map f : A → Ω where f(s) ∕= 0 and Ω is
algebraically closed, f can be extended to a map g : Bv → Ω.

Since J(A) = 0, there is a maximal ideal m ⊂ A not containing s. Taking Ω to be the algebraic
completion of A/m, we obtain a map g : Bv → Ω. In particular, g(v) ∕= 0, so n = ker g ∩B does not contain
v. It suffices then to show that n is maximal in B. Observe that the integral extension A ↩→ B induces a
map A/m → B/n that is also integral. Since the left side is a field, so is the right side.

5.23. Problem. iii) =⇒ i): Suppose for contradiction that p ⊂ A is not the intersection of maximal ideals.
Replacing A with A/p, we have J(A) ∕= 0 and it suffices to find a non-maximal prime q ⊂ A that is not the
intersection of primes strictly containing q. Choose x ∈ J(A), pick q to be the pullback of a maximal ideal
in Ax. Then q is a prime ideal such that x /∈ q. Since x belongs to all maximal ideals in A, q is not maximal.
Furthermore, any prime ideal strictly containing q must contain x, so we are done.

5.24. Problem. (i) If B is integral over A, consider a prime q ⊂ B. Then p = qc is a prime in A. Since A
is Jacobson, p =

'
i mi for maximal ideals mi ⊂ A. By going-up, there exist maximal ni containing q such

that nci = mi. Then (
'

i ni)
c =

'
i n

c
i = ap. Since q ⊆

'
i ni and both pull back to p, q =

'
i ni. Thus B is

Jacobson.
(ii) If B is a finitely generated A-algebra, consider a prime q ⊂ B and its pre-image p = qc ⊂ C. Then

A/p → B/q is an inclusion of integral domains, and J(A/p) = 0 because p is the intersection of maximal
ideals. By 5.22, J(B/q) = 0 as well, so q is the intersection of maximal ideals. Thus B is Jacobson.

In particular, every finitely generated ring and every finitely generated algebra over a field is Jacobson.

6. Chain conditions

Example of a Z-module satisfying dcc but not acc: take G ⊂ Q/Z be elements whose order is a power
of p. Then G0 ⊂ G1 ⊂ G2 ⊂ . . . , where Gi consists of elements x ∈ G such that pix = 0.

For any partially ordered set: acc ⇐⇒ every nonempty subset has a maximal element; dcc ⇐⇒ every
nonempty subset has a minimal element.

6.1. Proposition. Suppose 0 → M ′ → M → M ′′ → 0 is exact. Then M is Noetherian (resp. Artinian) iff
M ′ and M ′′ are both Noetherian (resp. Artinian).

6.2. Proposition. If M is a finitely generated module over a Noetherian (resp. Artinian) ring, then M is
a Noetherian (resp. Artinian) module.
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A composition series for a module M is a chain

M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0

such that Mi/Mi+1 is simple (has no nontrivial proper submodules).

6.3. Proposition. If M has a composition series with finite length n, then every composition series of M
has length n. Furthermore, every chain in M can be extended to a composition series.

Proof. Let l(M) be the least length of a composition series of M of finite length.
Suppose N ⊂ M , N ∕= M . Consider a composition series M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0 of length

n = l(M). Then N = M0 ∩N ⊇ M1 ∩N ⊇ · · · ⊇ Mn ∩N = 0 is a composition series of N , so l(N) ≤ n. If
equality is achieved, then each (Mi ∩N)/(Mi+1 ∩N) is nontrivial. Since it is a submodule of Mi/Mi+1, it
must be equal to Mi/Mi+1. We then see inductively that M = N , a contradiction. Therefore, l(N) < l(M).

Now, consider any composition series M = M0 ⊃ · · · ⊃ Mm = 0. Then l(M) > l(M1) > · · · > l(Mm) =
0, so l(M) ≥ m. But l(M) ≤ m by definition, so l(M) = m. □

6.4. Proposition. M has finite length iff M is both Noetherian and Artinian.

6.5. Theorem (Jordan-Hölder). Any two composition series of M have the same length, and the multiset
of successive quotients Mi/Mi+1 do not depend on the particular composition series chosen.

6.6. Proposition. Suppose 0 → M ′ → M → M ′′ → 0 is exact, then l(M) = l(M ′) + l(M ′′).

6.7. Proposition. Suppose (0) = m1 . . .mn for maximal ideals mi (not necessarily distinct), then A is
Noetherian iff A is Artinian.

Proof. A ⊃ m1 ⊃ m1m2 ⊃ · · · ⊃ m1m2 . . .mn = 0. Each successive quotient is a vector space over a
field, so acc ⇐⇒ dcc for each quotient. By induction, acc ⇐⇒ dcc for A. □

7. Noetherian rings

7.1. Proposition. Suppose A is a Noetherian ring.

• Let B = A/a for some ideal a ⊂ A, then B is a Noetherian ring.
• Let B be a ring, A ⊂ B, such that B is f.g. as A-module. Then B is a Noetherian ring.
• Let S ⊂ A be a multiplicative closed subset, then S−1A is a Noetherian ring.
• (Hilbert Basis Theorem) A[x] is Noetherian. Corollary: let B be an associative algebra over A of
finite type. Then B is Noetherian.

7.2. Proposition. Let A ⊆ B ⊆ C be rings, A Noetherian, C f.g. as A-algebra. If C is either f.g. as
B-module or integral over B (these two equivalent), then B is f.g. as A-algebra.

We say an ideal a is irreducible if a = b ∩ c implies a = b or a = c.

7.3. Proposition. In a Noetherian ring, every ideal is a finite intersection of irreducible ideals.

7.4. Proposition. In a Noetherian ring, every irreducible ideal is primary.

Proof. Passing to the quotient we assume WLOG 0 is irreducible. Suppose xy = 0, x ∕= 0. Consider
the chain Ann(y) ⊆ Ann(y2) ⊆ . . . , then Ann(yn) = Ann(yn+1) for some n. Then if a ∈ (x) ∩ (yn), suppose
a = byn, then byn+1 = ay = 0, so b ∈ Ann(yn+1) = Ann(yn), so a = 0. Therefore (x) ∩ (yn) = 0, so yn = 0.
We have shown that (0) is primary. □

Consequently, all results in section 4 applies to Noetherian rings.

7.5. Proposition. In a Noetherian ring A, any ideal contains a power of its radical. In particular, rad(A)
is nilpotent.

7.6. Proposition. Let a ∕= (1) be an ideal in a Noetherian ring. Then the prime ideals associated with a
are precisely prime ideals of the form (a : x).
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Proof. Passing to the quotient, assume WLOG a = 0. Suppose 0 =
"

j qj is a minimal primary

decomposition, with rad(qj) = pj . Let ai =
'

j ∕=i qj ∕= 0.

Take nonzero x ∈ ai, then (0 : x) =
'

j(qj : x) = (qi : x) ⊆ pi. On the other hand, there exists n such

that pni ⊆ qi, so aip
n
i ⊆ a ∩ qi = 0. Take the smallest such n, then there exists nonzero x ∈ aip

n−1
i , and

pix = 0, so pi ⊆ (0 : x). So (0 : x) = pi.
Conversely, if (0 : x) is prime, then so is rad(0 : x), which is associated with a by Theorem 4.1. □

8. Artin rings

In what follows, the terms “Artin” and “Artinian” are used interchangeably.

8.1. Proposition. Any prime ideal in an Artin ring is maximal.

8.2. Proposition. An Artinian ring has finitely many maximal ideals.

8.3. Proposition. Let A be Artinian, then J(A) = rad(A) is nilpotent.

Proof. Suppose rad(A)n = radAn+1 = · · · = a is nonzero. Look at the minimal ideal b such that
ab ∕= 0. By minimality, b is principal, and its generator x must satisfy xa = (x). Thus there exists nonzero
y ∈ a such that xy = x, so x = xy = · · · = xyN = 0 since y ∈ rad(A) is nilpotent, so b = 0, contradiction! □

8.4. Theorem. A is Artinian if and only if A is both Noetherian and dimA = 0.

8.5. Proposition. Let A be a Noetherian local ring with maximal ideal m. Then exactly one of the following
is true: either mn ∕= mn+1 for all n, or mn = 0 for some n and A is Artinian.

8.6. Theorem. An Artinian ring A is uniquely a finite product of Artin local rings.

8.7. Proposition. Let A be an Artinian local ring. Then the following are equivalent:

• Every ideal is principal;
• The maximal ideal is principal;
• dim(m/m2) ≤ 1.

In fact, if any of the above is true, then any ideal is a power of the maximal ideal.

9. Discrete valuation rings and Dedekind domains

9.1. Proposition. Let A be a Noetherian domain of dimension 1. Then any ideal is uniquely written as a
product of primary idelas whose radicals are all distinct.

Proof. By primary decomposition, any ideal is the intersection of primary ideals. Since their radicals
are all isolated, the primary ideals are unique. Since pi + pj = (1), qi and qj are also pairwise coprime, so'
qi =

%
qi. □

Let K be a field. A discrete valuation v : K∗ → Z is a surjective group homomorphism satisfying
v(x + y) ≥ min(v(x), v(y)). The set A = {x ∈ K : v(x) ≥ 0} is then a valuation ring of K. By results in
chapter 5, A is local and its maximal ideal is m = {x : v(x) > 0}. It is easy to see that m is principal, and if
we pick a generator (x) = m, then every nonzero ideal in A is of the form (xn) for some n ≥ 0. As such, A is
a Noetherian local domain with dimension 1. Conversely, these are also characteristic of discrete valuation
rings:

9.2. Proposition. Let A be a Noetherian local domain of dimension 1. The following are equivalent:

(i) A is a DVR;
(ii) A is integrally closed (in K = field of fractions);
(iii) m is principal;
(iv) dim(m/m2) = 1;
(v) Every nonzero ideal is a power of m;
(vi) There exists x ∈ A such that very nonzero ideal is (xn) for n ≥ 0.
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Proof. (i) =⇒ (ii): suppose x ∈ K satisfies xn + a1x
n−1 + · · · + an = 0 for ai ∈ A, then nv(x) =

v(xn) ≥ v(an) ≥ 0, so v(x) ≥ 0.
(ii) =⇒ (iii): Pick any nonzero a ∈ m, then since A has dimension 1, (a) is m-primary. Since m is finitely

generated, there exists n such that mn ⊆ (a) and mn−1 ∕⊆ (a). Pick b ∈ mn−1 that does not belong in (a),
and consider a−1b. It is clear that a−1b /∈ A, since otherwise b ∈ (a). On the other hand, a−1bm ⊆ A is an
ideal. If a−1bm = A, then m = (ab−1) is principal, which is what we wanted. Otherwise, a−1bm ⊆ m, so
m is a faithful A[a−1b]-module that is finitely generated as an A-module, so a−1b is integral over A, hence
belongs to A, which is a contradiction.

(iii) =⇒ (iv) is clear.
(iv) =⇒ (v): Suppose dim(m/m2) = 1. Consider an ideal a, then there exists n such that mn ⊆ a.

Consider the image a of a in A/mn, which is an Artinian local ring by proposition 8.5. In this ring, the
image of m is nilpotent, so there exists m with a ⊆ mm and a ∕⊆ mm+1. Since dim(m/m2) = 1, m is principal,
say m = (x). Then yxm /∈ (xm+1) for some y ∈ A/mn, so y /∈ (x) = m, so y is a unit, so xm ∈ a, so a = mm,
so a is a power of m.

(v) =⇒ (vi): since A is not Artinian, mn ∕= mn−1 for any n. Pick x ∈ m, x /∈ m2. Suppose (x) = mn,
then n = 1, as desired.

(vi) =⇒ (i): since (xn) ∕= (xn+1) for any n, we see that for any a ∈ A, there is a unique n such that
(a) = (xn). Define v : A → Z by mapping a to n, and extend this to K∗ by v(a/b) = v(a)− v(b). □

A Noetherian domain A with dimension one is a Dedekind domain if it is integrally closed. Equivalently,
each Ap is integrally closed, i.e. Ap is a DVR. By proposition 9.2, this is also equivalent to saying that any
primary ideal is a power of its radical. By proposition 9.1, this is also equivalent to saying that any ideal is
uniquely factorized into the product of prime ideals.

Examples of Dedekind domains: any PID is a Dedekind domain, for A is a Noetherian domain with
dimension one such that every localization Ap is a PID (hence DVR by proposition 9.2). An important class
of examples arise as rings of integers OK of finite extensions K/Q (algebraic number fields). This is because
OK is a submodule of some Zn, and therefore is a Noetherian Z-module and an integrally closed domain
(as the integral closure of Z in K). To show it has dimension 1, consider any nonzero prime p ⊂ OK , then
p ∩ Z ∕= 0, so it is maximal, so p is maximal as well. In particular, in OK , ideals can be uniquely factorized
into prime ideals.

A fractional ideal in an integral domain A is an A-submodule M of K = Frac(A) such that there exists
nonzero x ∈ A satisfying that xM ⊆ A. The set of x ∈ K such that xM ⊆ A is denoted (A : M).

A submodule M of K is said to be invertible if there exists a submodule N of K such that MN = A.
If M is invertible then its inverse N is necessarily equal to (A : M), since N ⊆ (A : M) = (A : M)(MN) ⊆
AN = N . Then M(A : M) = A, so there exist xi ∈ M , yi ∈ (A : M) such that

$
xiyi = 1, which implies

that the xi generate M as an A-module. Since M is finitely generated, it is a fractional ideal. The invertible
ideals form a group with respect to multiplication.

9.3. Proposition. Invertibility is a local property: for a fractional ideal M , the following are equivalent:

(i) M is invertible;
(ii) M is finitely generated and each Mp is invertible;
(iii) M is finitely generated and each Mm is invertible.

Proof. (i) =⇒ (ii): Ap = (M(A : M))p = Mp(A : M)p. Since M is clearly finitely generated,
(A : M)p = (Ap : Mp), so Mp(Ap : Mp) = Ap, so Mp is invertible.

(iii) =⇒ (i): Let a = M(A : M) ⊆ A. The inclusion f : a → A, localized at each m, is bijective, so f is
a bijection too. □

9.4. Proposition. Let A be a local domain, then A is a DVR iff every nonzero fractional ideal is invertible.

Proof. A is clearly Noetherian, so it suffices to show any ideal a is a power of the maximal ideal m.
Suppose mn = 1 for a fractional ideal n. Consider the maximal a that is not a power of m. Then a ⊆ na ⊆ A,
and furthermore a ∕= na, since otherwise a = ma and a = 0 by Nakayama. Therefore, by maximality,
na = mk, so a = mk+1, contradiction! □

The corresponding global result is:
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9.5. Proposition. Let A be an integral domain. Then A is a Dedekind domain iff every nonzero fractional
ideal is invertible.

Therefore, for a Dedekind domain A, the set of nonzero fractional ideals forms a group I, and I is free
abelian with the nonzero prime ideals as generators.

There is an exact sequence of abelian groups

1 → U → K∗ x +→(x)−−−−→ I → H → 1,

where U is the group of units in A, and H = I/P is the ideal class group (fractional ideals quotient principal
fractional ideals). For A = OK rings of integers in algebraic number fields, H is finite and U is finitely
generated. The torsion part of U is the subgroup W of roots of unities in K, and U/W is freely generated by
r1+r2−1 elements, where r1 is the number of real embeddings and 2r2 is the number of complex embeddings
of K.

10. Completions

10.1. Proposition. Suppose G is a topological group, and H is the intersection of all open neighborhoods
of 0. Then H = {0} is a subgroup of G, and H = 0 if and only if G is Hausdorff.

Define the completion )G using Cauchy sequences: a sequence (xn) is Cauchy if for any open neighborhood

U of 0, there exists N (dependent on U) such that xm − xn ∈ U for all m,n ≥ N . Then )G is the set of

Cauchy sequences modulo equivalence. The natural map φ : G → )G has kernel precisely H = {0}. The
construction is functorial: for a continuous homomorphism f : G → H, there is induced a natural continuous

homomorphism )f : )G → )H. ( )G is naturally a group, and it inherits a topology as an inverse limit as described
below.)

Suppose G has a neighborhood basis G = G0 ⊃ G1 ⊃ G2 ⊃ · · · given by subgroups. Then by looking at

cosets, each Gi is both open and closed. Furthermore, )G = lim←−G/Gi since an equivalence class of Cauchy

sequences corresponds exactly to a coherent system of elements of G/Gi. So )G inherits a topology as a
subset of the infinite product of G/Gi as discrete spaces. This is the same topology as the one induced by

the sequence of subgroups )G ⊃ *G1 ⊃ *G2 ⊃ · · · . Under this topology, the image of f : G → )G is dense.

10.2. Proposition. Let 0 → (An) → (Bn) → (Cn) → 0 be an exact sequence of inverse systems, then
0 → lim←−An → lim←−Bn → lim←−Cn is exact. Moreover, if the inverse system An is surjective (the maps

An+1 → An are surjective), then 0 → lim←−An → lim←−Bn → lim←−Cn → 0 is exact.

(In general, 0 → lim←−An → lim←−Bn → lim←−Cn → lim←−
1 An is exact, where lim←−

1 An = coker d, where

d :
%

An →
%

An by an %→ an − θn+1(an+1), where θn : An → An−1.)

10.3. Corollary. Let 0 → G′ f−→ G
g−→ G′′ → 0 be an exact sequence of groups. Let {Gn} be a sequence of

subgroups that define the topology on G. Let G′
n = f−1(Gn), G

′′
n = g(Gn), then 0 → *G′ → )G → *G′′ → 0 is

exact.

10.4. Corollary. *Gn is a subgroup of )G, and )G/*Gn
∼= G/Gn.

Proof. Take G′ = Gn, G
′′ = G/Gn in the above, then *G′′ = G′′ since it has the discrete topology. □

10.5. Corollary.
))G = )G.

We say G is complete if φ : G → )G is an isomorphism; then the completion of G is complete. Complete
implies Hausdorff. Given a commutative ring A and an ideal a, consider the a-adic topology generated by
the neighborhood basis an. This is Hausdorff iff

'
an = 0. Similarly, for an A-module M , define the a-adic

topology as generated by the neighborhood basis anM . Now, the completion *M is a topological )A-module,

and for any A-module homomorphism f : M → N , induced is a continuous homomorphism )f : *M → )N .

Example. Let A = k[x], a = (x). Then )A = k[[x]].

Example. Let A = Z, a = (p). Then )A = Zp, the p-adic integers.
For a filtration M = M0 ⊇ M1 ⊇ M2 ⊇ · · · , it is called an a-filtration if aMi ⊆ Mi+1 for all i. It is

called a stable a-filtration if aMi = Mi+1 for all i large enough.
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10.6. Lemma. For any two stable a-filtrations Mi,M
′
i , there exist N such that Mi+N ⊆ M ′

i and M ′
i+N ⊆ Mi.

10.7. Proposition. Let A =
#

n≥0 An be a graded ring. Then A is Noetherian iff A0 is Noetherian and A
is a f.g. algebra over A0.

Proof. ⇐= follows from Hilbert’s basis theorem.
=⇒: Let A+ =

#
n>0 An, then A+ is an ideal and A/A+ = A0. Therefore, A0 is a Noetherian ring.

Because A+ is finitely generated as an ideal, it is finitely generated as an A0-module, hence Noetherian as
an A0-module. Therefore, the An’s, as A0-submodules, are finitely generated. Line up the generators in
ascending order of n, and consider the ideal (in A) generated by the first k generators. This ascending chain
is eventually constant, which means that the ideal A+ is finitely generated by homogeneous elements. Call
them x1, . . . , xs, with degrees k1, . . . , ks.

Let A′ be the A0-algebra generated by xi. We show by induction that An ⊆ A′. The induction basis is
trivial. Suppose A0, . . . , An ⊆ A′. Let x ∈ An+1 ⊂ A+, so that x =

$
aixi where deg ai = n+ 1− ki. Since

n+ 1− ki ≤ n, ai ∈ A′, so x ∈ A′ as well. This finishes the proof. □

Let A be any ring, a an ideal, then A∗ =
#

n≥0 a
n is a graded ring. Let M be an A-module, Mn be

an a-filtration, then M∗ =
#

n≥0 Mn is a graded A∗-module. If A is Noetherian, then so is A∗, by the
proposition above.

10.8. Proposition. Let A be a Noetherian ring, a ⊂ A, M f.g. A-module, and (Mn) an a-filtration of M .
Then M∗ is f.g. as A∗-module iff (Mn) is stable.

Proof. Let M∗
n = M0 ⊕ M1 ⊕ · · · ⊕ Mn ⊕ aMn ⊕ a2Mn ⊕ · · · be the A∗-submodule generated by#n

i=0 Mi. Since M is f.g. over a Noetherian ring, it is Noetherian, so each Mi is a finitely generated
A-module. Therefore, M∗

n is a finitely generated A∗-module.
If M∗ is finitely generated, then it is a Noetherian A∗-module, so the M∗

n is eventually constant, i.e. Mn

is a stable filtration. Conversely, if M∗
n is eventually constant, since M∗ =

"
n M

∗
n, it is finitely generated as

an A∗-module. □

10.9. Corollary. Let A be Noetherian, a ⊂ A, M f.g. A-module, (Mn) a-stable filtration. Suppose M ′ ⊆ M
is a submodule, then (M ′ ∩Mn) is a a-stable filtration of M ′.

10.10. Corollary (Artin-Rees). Let A be Noetherian, M f.g. A-module, M ′ submodule, then there exists k
such that for all n ≥ k, anM ∩M ′ = an−k(akM ∩M ′).

10.11. Corollary. Let A be Noetherian, M f.g. A-module, M ′ submodule, then the a-stable filtrations anM ′

and anM ∩M ′ have bounded difference, and therefore determine the same a-adic topology on M ′.

10.12. Proposition (Completion is exact for finitely generated over Noetherian). Let 0 → M ′ → M →
M ′′ → 0 be an exact sequence of f.g. modules over an Noetherian ring A. Let a ⊂ A be an ideal, then the

sequence of a-adic completions 0 → *M ′ → *M → +M ′′ → 0 is exact.

Proof. This follows from corollary 10.3 and 10.11. □

10.13. Proposition. Let A be a ring, M a finitely generated A-module, then the natural linear map φ :
)A⊗A M → *M is surjective. Furthermore, if A is Noetherian, then φ is bijective.

Proof. First, clearly *An ∼= )An, so we take an exact sequence 0 → N → F → M → 0 where F is a f.g.

free A-module. Then )A ⊗A N → )A ⊗A F → )A ⊗A M → 0 is exact. Furthermore we get a (not necessarily

exact) sequence 0 → )N → )F → *M → 0. Since )F → *M is surjective and )F ∼= )A⊗A F , we conclude that φ is
surjective.

If A is Noetherian, then 0 → )N → )F → *M → 0 is exact, and in addition N is finitely generated, so
)A⊗A N → )N is surjective. This is enough to show that φ is injective. □

Recall that to show an A-module K is flat, it is enough to have K ⊗A M → K ⊗A N for injective maps

M → N for finitely generated M,N . Consequently, if A is Noetherian, )A is a flat A-algebra.

10.14. Proposition. Let A be a Noetherian ring, )A its a-adic completion, then:

(i) )a = )Aa = )A⊗A a. ( )Aa is the ideal in )A generated by the image of a.)
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(ii) )an = *an.
(iii) an/an+1 ∼= )an/)an+1.

(iv) )a ⊆ J( )A).

Proof. (i) )A⊗A a → )a is an isomorphism, and its image is )Aa.

(ii) )an = ( )Aa)n = )Aan = *an.
(iii) Take the completion of the exact sequence 0 → an+1 → an → an/an+1 → 0.

(iv) Since )an = *an, )A is complete under the )a-adic topology. Therefore, for any x ∈ )a, (1 − x)−1 =

1 + x+ x2 + . . . converges in )A. □

10.15. Corollary. Let A be a Noetherian local ring, m its maximal ideal. Then )A is a local ring with )m its
maximal ideal.

Proof. Because )A/)m ∼= A/m is a field, )m is a maximal ideal. Because it is contained in J( )A), it is the
unique maximal ideal. □

10.16. Theorem (Krull’s intersection theorem). Let A be a Noetherian ring, a an ideal, M a finitely
generated A-module. Then

E =
(

n≥1

anM = {x ∈ M : ∃y ∈ a, x(1− y) = 0}.

Proof. We know E is finitely generated. By Artin-Rees lemma, there exists k such that E = ak+1M ∩
E = a(akM ∩ E) = aE, so by Nakayama there exists a ∈ a such that 1 − a annihilates all elements of E.
The converse is trivial. □

This means that A → )A and A → S−1A have the same kernel, where S = 1+a. Furthermore, φ : A → )A
maps every element of S to a unit (proposition 10.14). Therefore, there is a uniquely induced injective map

S−1A → )A.

10.17. Corollary. Let A be a Noetherian domain, a ∕= (1) an ideal, then
'

n≥1 a
n = 0.

Counterexample for A not Noetherian: let A be the ring of C∞ functions on R, a the maximal ideal of
functions vanishing at 0. Then

'
n≥1 a

n consists of f ∈ A such that f(0), f ′(0), f ′′(0), . . . all equal 0. On
the other hand, x is annihilated by an element in 1+ a iff x = 0 in some open neighborhood of 0. These two

sets are clearly not the same (e−1/x2

).

10.18. Corollary. Let A be a Noetherian ring, a ⊆ J(A), and M finitely generated A-module. Then the
a-adic topology on M is Hausdorff.

10.19. Corollary. Let A be a Noetherian ring, p a prime ideal of A, then the intersection of all p-primary
ideals of A is ker(A → Ap).

Given a ring A and an ideal a, define its associated graded ring

gra(A) = G(A) =
,

n≥0

an/an+1.

Given an A-module M and a a-filtration Mn, define

gr(M) = G(M) =
,

n≥0

Mn/Mn+1.

It is a graded G(A)-ring.

10.20. Proposition. Let A be a Noetherian ring, a ⊂ A an ideal. Then

(i) Ga(A) is Noetherian.

(ii) G!a( )A) ∼= Ga(A) as graded rings.
(iii) If (Mn) is a stable a-filtration of a finitely generated A-module M , then G(M) is a finitely generated

graded Ga(A)-module.

We work towards proving that the a-adic completion of a Noetherian ring is Noetherian.
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10.21. Proposition. Let φ : (An) → (Bn) be a homomorphism of filtered groups. Let G(φ) : G(A) → G(B),
)φ : )A → )B be the induced maps. Then if G(φ) is injective (resp. surjective), so is )φ.

Proof. Consider the commutative diagram

0 An/An+1 A/An+1 A/An 0

0 Bn/Bn+1 B/Bn+1 B/Bn 0

α β γ

Because the rows are exact, we can apply snake lemma to obtain an exact sequence

0 → kerα → kerβ → ker γ → cokerα → cokerβ → coker γ → 0.

If G(φ) is injective, then by injection so is β for all n, so since inverse limits preserve injectivity, )φ is injective
as well. Similarly for surjectivity. □

10.22. Proposition. Let A be a complete ring in the a-adic topology, M an A-module, (Mn) an a-filtration
such that

'
n Mn = 0. If G(M) is a finitely generated G(A)-module, then M is a finitely generated A-module.

Proof. Pick a finite set of (WLOG homogeneous) generators of G(M) over G(A), say xi ∈ Mni/Mni+1.
For each i, construct a filtered A-module A = A0 ⊇ A1 ⊇ A2 ⊇ . . . where A0 = · · · = Ani = A and
Ani+k = ak. Direct sum these together, we obtain a map of filtered A-modules φ : F → M where F is
free. This induces G(φ) : G(F ) → G(M), which is surjective by construction. By the above proposition,
)φ : )F → *M is surjective as well. Consider the diagram

F M

)F *M
The bottom map is surjective, the vertical map on the right is injective, and the vertical map on the left is
an isomorphism. Therefore, F → M is surjective, and M is finitely generated as an A-module. □

10.23. Corollary. Let A be a complete ring in the a-adic topology, M an A-module, (Mn) an a-filtration
such that

'
n Mn = 0. If G(M) is a Noetherian G(A)-module, then M is a Noetherian A-module.

Proof. Let M ′ ⊂ M be a submodule. Then (M ′ ∩Mn) is an a-filtration such that
'

n(M
′ ∩Mn) = 0.

Since G(M ′) ⊂ G(M) is a submodule of a Noetherian module, it is finitely generated, so M ′ is a finitely
generated A-module. □

10.24. Theorem. Let A be a Noetherian ring, a ⊂ A an ideal, then the a-adic completion )A is Noetherian.

Proof. Since A is Noetherian, so is Ga(A) = G!a( )A). Viewing )A as a module over itself, and applying

the above corollary ( )A is complete), implies that )A is Noetherian. □

For example, A[[x1, . . . , xn]] is Noetherian whenever A is Noetherian.

11. Dimension theory

Our first notion of dimension applies to finitely generated graded modules M =
#

n Mn over Noetherian
graded rings A =

#
n An. We know A can be viewed as a finitely generated algebra over A0, say generated

by homogeneous elements x1, . . . , xs of degrees k1, . . . , ks. In addition, it is clear that each Mn is finitely
generated as an A0-module.

Let λ be a Z-valued additive function on the class of all finitely generated A0-modules. Define the
Poincaré series

P (M, t) =
!

n≥0

λ(Mn)t
n ∈ Z[[t]].

11.1. Theorem. There exists f(t) ∈ Z[t] such that

P (M, t) =
f(t)

(1− tk1)(1− tk2) . . . (1− tks)
.
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Proof. Induct on s by considering the “multiplication by xs” map on M . □
Denote by d(M) the order of the pole of P (M, t) at 1. In particular, taking M = A, we arrive at the

first notion of “dimension” of A.

11.2. Corollary. If all ki = 1, then λ(Mn) is a polynomial in n of degree d(M)− 1 for all n large enough.
(This is the Hilbert polynomial of M .)

11.3. Proposition. If x ∈ A is not a zero divisor in M , then d(M/xM) = d(M)− 1.

When A0 is Artinian, any f.g. module M over A0 has finite length, so we could take λ to be ℓ, the length
function. For example, when A = k[x1, . . . , xs], ℓ(An) =

-
n+s−1
s−1

.
, so P (A, t) = (1 − t)−s, so d(A) = s (as

expected).
Using this, we may define the dimension of a Noetherian local ring.

11.4. Proposition. Let A be a Noetherian local ring, m its maximal ideal. Let q be an m-primary ideal, M
a finitely generated A-module, and (Mn) a stable q-filtration of M . Then:

(i) M/Mn is of finite length;
(ii) For all sufficiently large n, ℓ(M/Mn) is a polynomial g(n) in n of degree at most the number of

generators of q;
(iii) The degree and leading coefficient of g depends only on M and q and not on the filtration chosen.

Proof. □
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Homological Algebra
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CHAPTER 5

Algebraic Number Theory

These notes loosely follow what was covered in the one-year graduate number theory sequence at MIT.
18.785 was taught in fall 2022 by Bjorn Poonen; 18.786 in spring 2023 by Andrew Sutherland. I have included
additional topics in the canon, such as Tate’s thesis and modular forms. All mistakes are the author’s own.

1. Algebra preliminaries

1.1. Absolute values.

1.1.1. Definition. A (real-valued) absolute value on a field k is a map | | : k → R≥0 such that:

• |x| = 0 ⇐⇒ x = 0;
• |xy| = |x||y|;
• |x+ y| ≤ |x|+ |y| (triangle inequality).

If the stronger condition that |x+ y| ≤ max(|x|, |y|) is satisfied, the absolute value is called nonarchimedean;
otherwise it is archimedean. Note the spelling of the word archimedean.

1.1.2. Example. Examples of absolute values:

• The usual absolute value | | on C, and the inherited absolute values on R, Q.
• The trivial absolute value on any field: |x| = 1 for x ∕= 0. This is often implicitly excluded from
consideration, to little detriment.

• The p-adic absolute value on Q: |x|p = p−vp(x).

An absolute value induces a metric on k by d(x, y) = |x− y|, which then induces a topology (generated
by the open balls). Under this topology, it is easy to verify that k is a topological field.

1.1.3. Definition. Two absolute values on k are equivalent if they induce the same topology.

1.1.4. Proposition. Two absolute values | |1 and | |2 are equivalent if and only if | |2 = | |s1 for some real
s > 0.

Proof. Consider the image of the homomorphism f : k∗ → R2 by x %→ (log |x|1, log |x|2).
Case 1: the image does not intersect the second quadrant. Then it must be a subset of a line with

positive slope, and therefore | |2 = | |s1 for some positive s. Since these induce the same open balls, they have
the same topology as well. So in this case both statements are true.

Case 2: the image intersects the second quadrant. Then there exists x ∈ k such that |x|1 < 1 and |x|2 > 1
(without loss of generality, both absolute values are nontrivial). In this case, the sequence x, x2, x3, . . . con-
verges in the first topology but diverges in the second, so the two absolute values induce different topologies.
So in this case both statements are false. □

1.1.5. Corollary. If two absolute values | |1 and | |2 on k are inequivalent, then there exists x ∈ k such that
|x|1 < 1 and |x|2 > 1.

1.1.6. Proposition. An absolute value | | is nonarchimedean iff there exists a constant C such that |n| ≤ C
for all positive integers n. In fact, this C is then easily seen to be 1.

Proof. (=⇒) is easy. (⇐=): say x, y ∈ k, |x| ≤ |y|. Then

|x+ y|n = |(x+ y)n| =

/////
!

i

0
n

i

1
xiyn−i

///// ≤ C(|x|n + |x|n−1|y|+ · · ·+ |y|n) ≤ Cn|y|n.

Taking n → ∞, we obtain |x+ y| ≤ |y| = max(|x|, |y|). □
27
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1.1.7. Corollary. In a field of positive characteristic, every absolute value is nonarchimedian.

1.1.8. Theorem (weak approximation theorem). Let k be a field, and let | |1 , . . . , | |n be pairwise inequiv-
alent nontrivial absolute values on k. Let a1, . . . , an ∈ k, and ε > 0. Then there exists x ∈ k such that
|x− ai|i < ε for each i = 1, . . . , n.

Proof. First, we find z such that |z|1 > 1 and |z|2, . . . , |z|n < 1. The induction basis n = 2 follows from
[1.1.5]. Suppose we have found z such that |z|1 > 1 and |z|2, . . . , |z|n < 1. If |z|n+1 ≤ 1 we are already done,

so suppose |z|n+1 > 1. Then as m → ∞,
/// zm

1+zm

///
1
,
/// zm

1+zm

///
n+1

→ 1, whereas
/// zm

1+zm

///
2
, . . . ,

/// zm

1+zm

///
n
→ 0. Take

y such that |y|1 > 1 and |y|n+1 < 1, then yzm

1+zm satisfies the induction step for sufficiently large m.

Next, we solve the case a1 ∕= 0, a2, . . . , an = 0. This amounts to finding y such that |y−1|1, |y|2, . . . , |y|n
are all arbitrarily small. Take z as above, and consider y = zm

1+zm once again.
Finally, we find yi replacing a1 with each nonzero ai, and add them all together. This element satisfies

the desired approximation. □
1.1.9. Theorem (Ostrowski). The only nontrivial absolute values on Q are either | |e∞ for 0 < e ≤ 1, or
| |ep for some prime p and e > 0.

Proof. Divide into the archimedean and nonarchimedean cases.
Case 1: there exists a positive integer b with |b| > 1. Say |b| = bα. For any positive integer n, write

n = akb
k + ak−1b

k−1 + · · · + a0, where a0, . . . , ak ∈ {0, . . . , b − 1}. Let C = max1≤m≤b−1 |m|/mα. Then

|n| ≤ |ak|bαk + |ak−1|bα(k−1) + · · · + |a0| ≤ C(aαk b
αk + · · · + aα0 ) ≤ C(akb

k + · · · + a0)
α = Cnα. Then

|n|m = |nm| ≤ Cnmα, so taking m → ∞ we obtain |n| ≤ nα. On the other hand, for any positive integer n,
take k such that bk ≤ n ≤ bk+1. Then |n| ≥ bα(k+1) − (bk+1 − n)α ≥ bαk(bα − (b − 1)α) = Cnα for a fixed
C not depending on n, so similar to above we obtain |n| ≥ nα. This means |n| = nα, so |x| = xα for all
x ∈ Q×, so the absolute value is equivalent to | |∞. In order for the triangle inequality to hold, it must be
| |e∞ for 0 < e ≤ 1.

Case 2: |n| ≤ 1 for all integers n. Then by [1.1.6], | | is nonarchimedean. Consider

p = {n ∈ Z : |n| < 1}.
Then x, y ∈ p =⇒ |x + y| ≤ max(|x|, |y|) < 1, so p is an ideal. Furthermore it is a prime ideal, since
|xy| < 1 =⇒ either |x| < 1 or |y| < 1, and 1 /∈ p. Therefore, there exists a prime p such that |n| = 1 for any
integer n coprime to p, and |p| = p−e < 1 for some e > 0. Since | | is multiplicative, it has to be | |ep. □

1.1.10. Theorem (Ostrowski’s theorem for function fields). Let k be any field. The only nontrivial absolute
values on k(t) that restrict to the trivial absolute value on k are either | |∞,c or | |π,c, where π is a monic

irreducible polynomial in k[t].

Here, as usual, |f |∞,c = c− deg f and |f |π,c = cvπ(f).

Proof. (TODO) □
1.2. Valuations.

1.2.1. Definition. A (real-valued) valuation on a field k is a homomorphism v : k∗ → R such that

v(x+ y) ≥ min(v(x), v(y)).

We usually extend this to a map on the whole k by the convention v(0) = ∞.

If v is a valuation, c ∈ (0, 1), then |x| = cv(x) is a nonarchimedean absolute value. The image of v is
called the value group. Let A = {x ∈ k : v(x) ≥ 0}, then A is called a valuation ring. If the valuation group
is discrete (which can then be scaled to Z), then v is called a discrete valuation and A is a discrete valuation
ring. Note that by definition, a discrete valuation will surject onto Z.

More generally, in the same way, one could define a valuation with values in any totally ordered abelian
group (Γ,+,≤), and extend this to Γ ∪ {∞} with the usual addition and size convention for ∞.

1.2.2. Definition. Let A be an integral domain, and K its field of fractions. It is a valuation ring (of K)
if any of the following equivalent conditions hold:

(1) For any x ∈ K, either x ∈ A or x−1 ∈ A (or both).
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(2) There exists a totally ordered abelian group (Γ,+,≤), and a Γ-valued valuation v : K× → Γ, such
that A = {x ∈ K : v(x) ≥ 0}.

Proof. (1) =⇒ (2): Let Γ = K×/A×. Consider the projection v : K× → Γ. Multiplicatively, Γ is a
totally ordered abelian group under the relation v(x) ≥ v(y) ⇐⇒ xy−1 ∈ A. Then v is a valuation, and
A = {x ∈ K : v(x) ≥ v(1)}.

The converse is easy. □

1.2.3. Proposition. Let A be a valuation ring of K = Frac(A). Then:

• A is a local ring, with the set of nonunits as its maximal ideal;
• A is an integrally closed domain.

Proof. Atiyah–MacDonald, Proposition 5.18. □

1.2.4. Proposition. Let A be a subring of a field K. Then its integral closure in K is the intersubsection
of all valuation rings of K containing A.

Proof. Atiyah–MacDonald, Corollary 5.22. □

1.2.5. Proposition. Let v : K → R ∪ {∞} be a valuation, and let A be its valuation ring. Suppose
x1, . . . , xn ∈ K and v(x1) < v(xi) for all i ≥ 2. Then v(x1 + · · ·+ xn) = v(x1).

Proof. v(x1+· · ·+xn) ≥ min(v(x1), . . . , v(xn)) = v(x1), and v(x1) ≥ min(v(x1+· · ·+xn), v(x2), . . . , v(xn)).
Since v(x1) is strictly the smallest, this minimum must be equal to v(x1 + · · · + xn). So we conclude
v(x1 + · · ·+ xn) = v(x1). □

1.3. Discrete valuation rings.

1.3.1. Definition. Let A be an integral domain. It is a discrete valuation ring (or DVR for short) if any of
the following equivalent conditions hold:

(1) A is the valuation ring of a (unique) discrete valuation of K = FracA;
(2) A is a local, dimension-1 PID;
(3) A is a local, dimension-1, Noetherian, integrally closed domain.

Proof. (1) =⇒ (2): For any ideal a ⊂ A, consider n = v(a) := infx∈a v(x). Let π ∈ A be an element
such that v(π) = 1, and suppose x ∈ a satisfies v(x) = n. Then x/πn ∈ K has valuation 0, hence is a unit
in A. So πn ∈ a. Similarly, we can show a ⊂ (πn), so a = (πn). So any ideal is principal, and the only prime
ideal is (π).

(2) =⇒ (3): Every PID is noetherian and UFD, hence integrally closed.
(3) =⇒ (1): We first claim that for any fractional ideal I of A, the fractional ideal A(I) := {x ∈ K :

xI ⊂ I} is equal to A. Clearly A(I) is a subring of K containing A, so for any x ∈ A(I), A[x] ⊂ A(I). Since
A(I) is a fractional ideal of a Noetherian ring A, it is finitely generated over A. By [1.4.1], x is integral over
A, hence inside A. This shows A(I) = A.

Now, let p be maximal among the nonzero ideals I ⊂ A with I−1 = {x ∈ K : xI ⊂ A} ⊋ A. (Such
an ideal clearly exists, because any principal ideal generated by a non-unit satisfies this.) We claim that
p is prime (hence is the unique nonzero prime ideal). Let x, y ∈ A, xy ∈ p, x /∈ p, and take z ∈ p−1\A.
Then zy(p + (x)) ⊂ A, and since x /∈ p, p ⊊ p + (x), so by maximality, we conclude zy ∈ A. Therefore,
z(p+ (y)) ⊂ A, and so we conclude that y ∈ p.

So we have A ⊃ pp−1 ⊃ p. If pp−1 = p, then p−1 ⊂ A(p) = A, a contradiction. So since p is a maximal
ideal, pp−1 = A. In addition, since p−1 ⊂ A(

'
pn), we must have

'
pn = 0. So we can choose some element

π ∈ p\p2, then πp−1 ⊂ A but πp−1 ∕⊂ p, so πp−1 = A, i.e. (π) = p. Then for any element x ∈ A, there exists
a unique n ≥ 0 such that x ∈ pn\pn+1, so that x/πn ∈ A\p, i.e. x/πn is a unit. This then defines a unique
discrete valuation on K, whose valuation ring is A. □

1.3.2. Proposition. Let (A,m, k) be a DVR, n ≥ 0.

(i) mn/mn+1 ∼= k non-canonically (as k-vector spaces);
(ii) Let Un = 1 +mn be subgroups of A× for n ≥ 1, and define U0 = A×. Then Un/Un+1

∼= mn/mn+1

for n ≥ 1, and U0/U1
∼= k×, both canonically.
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Proof. (i) mn/mn+1 is an (A/m)-module, i.e. a k-vector space. Since mn = (πn) is a principal ideal,
the image of πn in mn/mn+1 is nonzero and generates the vector space. So dimk m

n/mn+1 = 1.
(ii) It is clear that v( 1

1+aπn − 1) ≥ n, so inverses exist in Un, i.e. is a subgroup of A×. Map Un/Un+1 →
mn/mn+1 by 1 + u %→ u. It is easy to check that this is a group isomorphism. Also, the map A → k induces
U0/U1

∼= k×. □
1.3.3. Proposition. Let A be a DVR with fraction field K and residue field k. Let n ≥ 1.

(i) If k has characteristic p > 0, then Up
n ⊂ Un+1;

(ii) If K is complete and char k does not divide m, then u %→ um is an automorphism on Un.

Proof. (i) follows from the previous proposition.
(ii) Injectivity is because u %→ um is an isomorphism on each Uq/Uq+1, for q ≥ n. To show surjectivity, let

vn ∈ Un. Then some un ∈ Un satisfies um
n vn+1 = vn where vn+1 ∈ Un+1. Similarly, we can find un+1 ∈ Un+1

such that um
n+1vn+2 = vn+1 where vn+2 ∈ Un+2. Keep going like this, then unun+1un+2 . . . converges to an

element u ∈ Un by completeness, and um = vn. □
1.3.4. Example. Examples of DVRs:

• Consider vp : Q → Z ∪ {∞}, then its valuation ring is A = Z(p) (Z localized at (p)).
• Consider v : k((t)) → Z ∪ {∞} mapping each formal Laurent series to the lowest degree whose
coefficient is nonzero. Then A = k[[t]].

• For a connected open U ⊆ C, let M (U) be the field of meromorphic functions on U . For V ⊂ U
open, there is a restriction map M (U) → M (V ) that is injective (because of analytic continuation).
Let

M = lim−→
U∋0

M (U).

This is the field of germs of meromorphic functions at 0. Consider v : M → Z ∪ {∞} mapping f
to the order of vanishing of f at 0. Then A is the ring of germs of holomorphic functions at 0.

1.3.5. Remark. DVRs are the simplest commutative rings after fields. There is the following tower of
inclusions:

Noetherian, dim 1 integrally closed

Dedekind UFD local

PID regular local ring

field, DVR

Furthermore, the following reverse implications hold:

• Noetherian, dim 1 + integrally closed =⇒ Dedekind;
• Dedekind + UFD =⇒ PID;
• Dedekind + local =⇒ field or DVR.

DVRs are an example of what’s regular local rings.

1.3.6. Definition. For a Noetherian local ring A with maximal ideal m and residue field k, it is called a
regular local ring if dimk m/m2 = dimA (in general dimk m/m2 ≥ dimA).

Geometrically, a regular local ring corresponds to a curve being nonsingular at a point.

1.3.7. Example. Consider the Noetherian local ring A = C[[x, y]]/(y2 − x3). The curve y2 − x3 has a
singularity at the origin. Correspondingly, A is not a regular local ring for any of the following reasons:

• m = (x, y) is not principal;
• dimC m/m2 = 2, while dimA = 1;
• A is not integrally closed: consider the injection A ↩→ C[[t]] by x %→ t2, y %→ t3. Then A maps
isomorphically to the subring of C[[t]] consisting of power series in which the coefficient of t is 0.
This ring is not integrally closed since t = t3/t2 ∈ Frac(A) is integral over A but not in A.
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1.4. Integral extensions.

1.4.1. Proposition. Let A ⊂ B be a ring extension. The following are equivalent:

(i) x ∈ B is integral over A;
(ii) A[x] is a finitely generated module over A.
(iii) A[x] is contained in a subring C ⊂ B that is f.g. as an A-module.
(iv) There is a faithful A[x]-module M such that M is f.g. over A.

1.4.2. Proposition. Let A be an integrally closed domain, K = Frac(A), L/K a finite extension. Then
α ∈ L is integral over A if and only if its minimal polynomial in K has coefficients in A.

Proof. Suppose α ∈ L is integral over A. Let g ∈ A[x] be monic such that g(α) = 0, and let f ∈ K[x]
be the minimal polynomial of α in K. Consider an algebraic closure K ⊃ L ⊃ K, then in K[x], f factors
into linear factors f(x) =

%
(x − αi). Then each αi is also a root of g, hence integral over A. Therefore,

the coefficients of f , being symmetric polynomials in αi, are elements in K integral over A, so they are in A
themselves. □

1.4.3. Example (Integral closure resolves codimension-1 singularities). Let A = k[x, y]/(y2 − x3). We saw
in the previous subsection that A is not integrally closed by embedding A ∼= k[t2, t3] ↩→ k[t]. The integral
closure of A (in its fraction field) is k[t]. The map A ↩→ k[t] corresponds to the map between varieties from
the affine line to the curve y2 − x3 = 0.

1.5. Localization. The following properties are preserved by localization (by a set not containing 0):

• Noetherian
• Integrally closed
• Integral domain
• PID
• UFD
• Exactness.

1.5.1. Proposition. dimA = sup{dimAp : p ∈ SpecA}. (easy)

1.5.2. Proposition. Let A ⊂ K where K is a field, let M be an A-module such that M injects into the
vector space V = M ⊗A K. Then

M =
(

p⊂A prime

Mp =
(

m⊂A maximal

Mm.

Proof. It suffices to show that if x ∈ Mm for every m, then x ∈ M . Define the ideal

I = {a ∈ A : ax ∈ M}.

Since x ∈ Mm, there exists s /∈ m such that s ∈ I. Therefore, I is not contained in any maximal ideal, so
I = A, so x ∈ M . □

Remarks: 1) We require M ↩→ V to be injective because otherwise we cannot view M as a submodule
of Mm. 2) This proposition allows us to go from local to global.

1.6. Dedekind domains.

1.6.1. Definition. Let A be an integral domain, K = Frac(A). A fractional ideal of A is an A-submodule
I of K, such that aI ⊂ A for some a ∈ K. When A is Noetherian, this is equivalent to imposing that I is
finitely generated as an A-module. A fractional ideal is invertible if II−1 = A, where I−1 is the fractional
ideal {x ∈ K : xI ⊂ A}.

1.6.2. Definition. Let A be an integral domain. It is a Dedekind domain if it satisfies any of the following
equivalent conditions:

(i) A is Noetherian, and each Ap (p ∕= 0) is a DVR;
(ii) A is Noetherian, dimA ≤ 1, and A is integrally closed;
(iii) All fractional ideals of A are invertible.
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Proof. (i) =⇒ (ii): If p ∕= 0, then Ap is a DVR. If p = 0 then Ap = Frac(A) is a field. Therefore by
Proposition 5.1, dimA ≤ 1. Also, each Ap is integrally closed, so by Proposition 5.2, A =

'
Ap, so it is

integrally closed as well.
(ii) =⇒ (i): easy. □

1.6.3. Example. Examples of Dedekind domains:

• Every PID is a Dedekind domain. In particular, Z and k[x] are Dedekind domains.
• The ring of integers OK of any algebraic number field is a Dedekind domain.
• The coordinate ring of a nonsingular affine algebraic curve C is a Dedekind domain.

The set of invertible fractional ideals forms an abelian group under multiplication. It is the ideal group
Div(A) of A. The set of principal fractional ideals forms a subgroup, and the quotient is called the class
group Cl(A).

Invertibility is a local property:

1.6.4. Proposition. For a fractional ideal M , the following are equivalent:

(i) M is invertible;
(ii) Each Mp is invertible;
(iii) Each Mm is invertible.

1.6.5. Corollary. In a Dedekind domain A, every nonzero fractional ideal is invertible.

(Reduce to the local case, where everything is easy because it’s DVR.)

1.6.6. Proposition. Let A be a Dedekind domain, then every nonzero x ∈ A belongs to finitely many prime
ideals.

Proof. The map I %→ (x)I−1 gives an order-reversing involution on the set of ideals between (x) and
A. Therefore, A/(x) is an Artinian ring, so it has dimension 0 and has finitely many maximal ideals. Since
every prime is maximal, it has finitely many prime ideals. □

In what follows, assume A is a Dedekind domain, and K its field of fractions. We study prime factor-
ization in Dedekind domains.

Let I be a fractional ideal of A, then Ip is a fractional ideal of Ap, so it is equal to (pAp)
n for some

unique n ∈ Z. Define then vp(I) = n.

1.6.7. Proposition. (i) The map vp : Div(A) → Z mapping I %→ vp(I) is a group homomorphism. (ii)
Suppose I is generated by x1, . . . , xm, thn vp(I) = min vp(xi).

1.6.8. Corollary. For each x ∈ K×, there only exist finitely many p ≤ 0 such that vp(x) ∕= 0.

Proof. For any x ∈ A, it belongs to only finitely many primes, so for all other primes p, x is invertible
in Ap, so vp(x) = 0. In general r/s ∈ K×, where r, s ∈ A. □
1.6.9. Corollary. For any fractional ideal I of A, there only exist finitely many p ≤ 0 such that vp(I) ∕= 0.

1.6.10. Theorem. There is an isomorphism of abelian groups:

Div(A) ∼=
,

primes p∕=0

Z

I %→ (. . . , vp(I), . . . )
2

p

pep ← ! (ep)p

1.6.11. Proposition. Let I =
%

p p
ep , J =

%
p p

fp . Then

• I ⊃ J ⇐⇒ ep ≤ fp (to contain is to divide)

• I + J =
%

p p
min(ep,fp)

• I ∩ J =
%

p p
max(ep,fp)

• IJ =
%

p p
ep+fp

• (I : J) =
%

p p
ep−fp
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1.6.12. Theorem. For a Dedekind domain A, the following are all equivalent:

• Cl(A) is trivial.
• A is a PID;
• A is a UFD;

Proof. (iii) =⇒ (i): Let I be any fractional ideal. Because it factors into the product of prime powers,
it suffices to show that any nonzero prime ideal p is principal. Pick a ∕= 0 in p, then we can uniquely factorize
a =

%
p p where each p is irreducible. Since p ⊇ (a), p | (a), so p |

%
p(p). Since p is prime, p must divide

some (p), but since (p) is a prime ideal, p = (p) is principal. □
More concepts: Let A be the coordinate ring of a regular affine curve X over an algebraically closed

field k. (Then X = SpecA, and A is a Dedekind domain.)

algebra geometry
K = Frac(A) function field on X

nonzero primes p ⊂ A closed points P of X
nonzero fractional ideal I =

%
p p

ep of A divisor
$

P epP on X

integral ideal I ⊆ A effective divisor on X
principal fractional ideal (f) principal divisor (f) on X

1.6.13. Theorem (Strong approximation theorem). Let A be a Dedekind domain, K = Frac(A). Suppose
we have distinct nonzero prime ideals p1, . . . , pn ⊂ A, integers e1, . . . , en, and elements a1, . . . , an ∈ K. Then
there exists x ∈ K, such that:

• vpi(x− ai) ≥ ei (this is the “weak” part);
• vq(x) ≥ 0 for all prime ideals q ∕= 0, q /∈ {p1, . . . , pn}.

Proof. Without loss of generality, assume all ei ≥ 0.
Case I: Suppose a1 ∈ A, a2, . . . , an = 0. Because pe11 +pe22 · · · penn = A, there exists y ∈ pe11 , x ∈ pe22 · · · penn

such that x + y = a1. Then vp1
(x − a1) = vp1

(−y) = vp1
(y) ≥ e1, and vpi

(x − ai) = vpi
(x) ≥ ei for every

i ∕= 1. Also, since x ∈ A, vq(x) ≥ 0 for all q.
Case II: Suppose a1, . . . , an ∈ A. Then using Case I, we can choose xi satisfying that vpi(xi − ai) ≥ ei

and vpj
(xi) ≥ 0 for i ∕= j. Let x = x1 + · · ·+ xn, then vpi

(x− ai) ≥ vpi
(xi − ai) ≥ ei, and vq(x) ≥ 0.

Case III: Suppose a1, . . . , an ∈ K in general. Take nonzero t ∈ A such that ta1, . . . , tan ∈ A. Then by
Case II, there exists x ∈ A such that vpi(x − tai) ≥ ei + vpi(t), vq(x) ≥ vq(t) for those q with vq(t)≥0, and
vq(x) ≥ 0 for all others. Then x/t ∈ K satisfies the conditions. □

Remark: we can in fact force vpi
(x) = fi for any collection of fi: just take ai such that vpi

(ai) = fi and
ei > fi, then any x such that vpi(x− ai) ≥ ei satisfies vpi(x) = fi.

1.6.14. Corollary. A semilocal Dedekind ring A must be a PID.

Proof. Let p1, . . . , pn be the nonzero primes. Any ideal I is pe11 · · · penn . By SA, there exists x ∈ K =
Frac(A) such that vpi(x) = ei, so in fact I = (x). □

1.7. Separability. Next, we review some field theory related to separability. Let K be a field and K
be an algebraic closure of K.

1.7.1. Lemma. Let α ∈ K, L = K(α). Then [L : K] ≥ |HomK(L,K)| with equality iff α is separable, iff
L/K is separable.

Proof. We have L ∼= K[x]/(f(x)) for some irreducible f(x) ∈ K[x]. Any homomorphism σ : L → K
fixing K must send x to another root of f in K, so there are at most deg f choices, and there are exactly
deg f choices if and only if all roots of f are distinct.

Let β ∈ L be any element, then K(β) ⊂ K(α). Since α is separable over both K and K(β), we then

have [K(β) : K] = [K(α):K]
[K(α):K(β)] =

HomK(K(α),K)

HomK(β)(K(α),K)
= HomK(K(β),K), which shows that β is separable over

K as well. Therefore L/K is separable. □
1.7.2. Proposition. For a finite extension L/K, the following are equivalent:

• L is separable over K;
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• L = K(α1, . . . ,αn) for some αi separable over K;
• L = K(α) for some α separable over K;
• [L : K] = |HomK(L,K)|.

1.7.3. Corollary. Let M/L, L/K be finite separable extensions, then M/K is separable as well.

1.7.4. Lemma. Let L/K be a field extension, and let F be the set of elements in L separable over K. Then
F is a field between L and K.

Proof. It suffces to show that if α,β ∈ L are separable over K, then so are α + β,αβ. Consider the
tower of extensions K(α,β) ⊃ K(α) ⊃ K. By the above lemma, [K(α) : K] = |HomK(K(α),K)| and
[K(α,β) : K(α)] = |HomK(α)(K(α,β),K)|. So

[K(α,β) : K] = |HomK(K(α),K)| · |HomK(α)(K(α,β),K)| = |HomK(K(α,β),K)|.

By the primitive element theorem, there exists γ ∈ K(α,β) with K(γ) = K(α,β), then we conclude that γ
is separable over K. Thus α+ β,αβ ∈ L are both separable. □

Then we call [F : K] = [L : K]s the separable degree of L/K, and call [L : F ] = [L : K]i the inseparable
degree of L/K. Call L/K separable if F = L, and purely inseparable if F = K.

1.7.5. Theorem (Primitive element theorem). Let L/K be a finite separable extension. Then L = K(α)
for some element α ∈ L.

1.7.6. Theorem (Normal basis theorem). Let L/K be a finite Galois extension, with G its Galois group.
Then there exists β ∈ L, such that {σβ : σ ∈ G} forms a K-basis of L.

1.7.7. Theorem (Purely inseparable extensions). Let K be a field of characteristic p.

• A extension L/K of degree p is purely inseparable iff L = K(α1/p) where α ∈ K is not a p-th
power.

• Any purely inseparable extension is a tower of purely inseparable degree-p extensions.

1.7.8. Proposition. The separable degree [L : K]s is equal to |HomK(L,K)|.

Proof. By definition, [L : K]s = |HomK(F,K)| where F is the separable closure of K in L. But
HomK(F,K) corresponds one-to-one with |HomK(L,K)| (use the above theorem and the fact that pth roots
are unique in characteristic p). □

So the separable degree is multiplicative: for field extensions M/L/K, [M : L]s[L : K]s = [M : K]s, and
so does the inseparable degree.

1.7.9. Definition. A field K is called perfect if any finite extension of K is separable. Equivalently, either
charK = 0, or charK = p and the Frobenius endomorphism x %→ xp is an automorphism.

For example, any finite field Fq is perfect, but Fq(t) is not.

1.7.10. Definition. A field K is called separably closed if its only separable extension is K itself.

1.8. Étale algebras.

1.8.1. Definition. Let K be a field. An étale algebra L over K is a finite product of finite separable
extensions of K.

Apparently, a K-algebra A is étale if and only if the map SpecA → SpecK is an étale morphism.

1.8.2. Proposition. Let L be a commutative K-algebra with finite dimension, such that dimK L < |K|.
TFAE:

• L is a fintie étale K-algebra;
• Every element of L is separable over K;
• L⊗K K ′ is reduced for every extension K ′/K;
• L⊗K K ′ is semisimple for every extension K ′/K;
• L = K[x]/(f) for some separable f ∈ K[x].
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The advantage of working with étale algebras instead of separable field extensions is that they are
preserved by extension of coefficients. In other words, let K ′/K be a field extension, and L/K a finite
separable extension, then L⊗K K ′ is not necessarily a field. However:

1.8.3. Proposition. Let K ′/K be a field extension, L is an étale K-algebra, then L ⊗K K ′ is an étale
K ′-algebra.

Proof. Because tensor products commute with finite products, WLOG assume L/K is a finite separable
extension. By the primitive element theorem, L = K[x]/(f(x)) for some irreducible separable polynomial f .
Then L⊗K K ′ = K ′[x]/(f(x)).

In K ′[x], f(x) factors into the product of irreducible separable polynomials f1(x) · · · fn(x). By the
Chinese Remainder Theorem, K ′[x]/(f(x)) ∼=

%n
i=1 K

′[x]/(fi(x)) is a product of finite separable extensions
over K ′. □
1.8.4. Proposition. Let L/K be an étale algebra, Ω a separably closed field containing K. Then

L⊗K Ω →
2

σ∈HomK(L,Ω)

Ω

ℓ⊗ 1 %→ (. . . ,σ(ℓ), . . . )

is an isomorphism.

Proof. Because HomK(
%

Li,Ω) =
3

HomK(Li,Ω), we may again assume L/K is a finite separable
extension, i.e. L ∼= K[x]/(f(x)) for an irreducible separable polynomial f . Then f(x) = (x − α1)(x −
α2) . . . (x− αn) in Ω[x], so any σ ∈ HomK(L,Ω) must send x to one of αi. The map is therefore given by

L
ℓ +→ℓ⊗1−−−−→ L⊗K Ω =

Ω[x]

(f(x))
=

n2

i=1

Ω[x]

x− αi

∼=
2

σ∈HomK(L,Ω)

Ω.

□
1.9. Norm and trace.

1.9.1. Definition. Let A ⊂ B be commutative rings, such that B is a free A-module of rank n. For b ∈ B,

the map B
×b−−→ B is an A-linear map, so we may define

NB/A(b) = det(B
×b−−→ B),

TrB/A(b) = tr(B
×b−−→ B).

1.9.2. Proposition. Let A → A′ be any ring homomorphism, A ⊂ B such that B is a free A-module of
rank n, and let B′ = B ⊗A A′ be a ring that is a free A′-module of rank n. Then

NB/A(b) = NB′/A′(b⊗ 1),

TrB/A(b) = TrB′/A′(b⊗ 1).

1.9.3. Theorem. Let L be an étale K-algebra, Ω/K separably closed, and Σ = HomK(L,Ω). Then

NL/K(b) =
2

σ∈Σ

σ(b),

TrL/K(b) =
!

σ∈Σ

σ(b).

Proof. We have NL/K(b) = NL⊗KΩ/Ω(b ⊗ 1) = NΩ×···×Ω/Ω(. . . ,σ(b), . . . ), by propositions 1.8.4 and
1.9.2. But this is just the diagonal matrix with entries σ(b), so the norm is

%
σ∈Σ σ(b). The situation is

identical for the trace. □
1.9.4. Proposition (Norm and trace for finite extensions). Let L/K be a finite extension, and fix an
embedding L ⊂ K. Let α ∈ L× have minimal polynomial f(x) ∈ K[x]. Suppose f(x) =

%
i(x− αi) in K[x],

and let e = [L : K(α)]. Then

NL/K(α) =
2

i

αe
i , TrL/K(α) = e

!

i

αi.
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1.9.5. Theorem. Suppose A ⊆ B ⊆ C are rings, such that B is a free A-module of rank n, and C is a free
B-module of rank m. Then

NC/A(c) = NB/A(NC/B(c)),

TrC/A(c) = TrB/A(TrC/B(c)).

Proof. We refer to https://stacks.math.columbia.edu/tag/0BIJ. □
1.10. Bilinear pairings. Let k be a field, V a finite dimensional k-vector space. Let 〈−,−〉 : V ×V → k

be a symmetric bilinear pairing. This induces a map V → V ∗ by

v %−→ (w %→ 〈v, w〉).
The left kernel (which is equal to the right kernel since the form is symmetric) is the set of v ∈ V such that
〈v, w〉 = 0 for all w ∈ V .

Fixing a basis e1, . . . , en of V allows the definition of the discriminant

disc(〈−,−〉, e1, . . . , en) = det(〈ei, ej〉).
Applying a change-of-basis matrix T multiplies the discriminant by a factor of (detT )2.

The symmetric bilinear form is called nondegenerate (or a perfect pairing) if the following equivalent
conditions are met:

• the induced V → V ∗ is an isomorphism;
• the left kernel is 0;
• the discriminant under any basis is nonzero.

Given a basis e1, . . . , en of V , there is a dual basis f1, . . . , fn of V ∗ defined by fi(ej) = δij . If the pairing is
perfect, then fi correspond to a dual basis e′i of V , satisfying 〈ei, ej〉 = δij .

2. The AKLB setup

2.1. Dedekind extensions. We work in the following setup. Let A be a Dedekind domain, K =
Frac(A), L/K a finite separable extension, and B the integral closure of A in L. The main goal of this
subsection is to show that B is also a Dedekind domain.

2.1.1. Proposition. For any element ℓ ∈ L, there exists s ∈ A such that sℓ ∈ B.

Consequently, L = Frac(B).

2.1.2. Proposition. If b ∈ B, then TrL/K(b) ∈ A.

We define the trace pairing :

L× L → K

(x, y) %→ TrL/K(xy).

2.1.3. Proposition. The trace pairing is nondegenerate.

Proof. Let Σ = HomK(L,Ω) = {σ1, . . . ,σm} where Ω is some separably closed extension of K. Pick a
basis β1, . . . ,βm of L/K. Then the discriminant is equal to

det(Tr(βiβj)) = det pr
!

σk

σk(βi)σk(βj) = det(σk(βi)) det(σk(βj)) = det(σk(βi))
2.

So it suffices to show that σk(βi) are linearly independent over Ω. But this is just the linear independence
of characters (on the group L×). □

Given an A-module M ⊆ L, define its dual M∗ = {x ∈ L : Tr(xm) ∈ A ∀m ∈ M}. This is order-
reversing.

2.1.4. Proposition. B is a finitely generated module over A.

Proof. Consider an arbitrary basis of L/K, then each basis element can be multiplied by some element
in A such that they lie in B. Call this basis u1, . . . , un and let M ⊆ B be the A-module generated by these
elements. Consider its dual, M∗, which is freely generated by the dual basis vi of ui, Tr(viuj) = δij . So
B ⊆ B∗ ⊆ M∗, and B is finitely generated (since A is Noetherian). □

https://stacks.math.columbia.edu/tag/0BIJ
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2.1.5. Theorem. B is also a Dedekind domain.

Proof. Because B is a Noetherian A-module, it is a Noetherian ring. By definition, B is integrally
closed. Because B/A is integral, dimB = dimA ≤ 1. So B is a integrally closed Noetherian domain with
dimension at most 1, hence a Dedekind domain. □

2.1.6. Corollary. OK is Dedekind.

Actually we don’t need L/K to be separable.

2.1.7. Theorem (Krull-Akizuki theorem). Let A be a Noetherian integral domain with dimension 1, with
K = FracA. Let L/K be a finite extension, and B a ring with A ⊂ B ⊂ L. Then B is Noetherian with
dimension at most 1, and for any nonzero ideal J ⊂ B, B/J is an A-module of finite length.

2.1.8. Corollary. Let A be a Dedekind domain, K = FracA, L/K finite, and B the integral closure of A
in L. Then B is a Dedekind domain.

Finally, we mention the following notations:

• q | p (lying over) for primes q ⊂ B, p ⊂ A means that q ∩A = p;
• Given nonzero prime p ⊂ A, we can uniquely factor

pB =
2

i

qeii .

Call ei the ramification index of qi over p;
• For q | p, fq = [B/q : A/p] is called the residue field degree.

2.2. Prime factorization in Dedekind extensions. We continue to work in the AKLB setup. Let
p ⊂ A be a prime ideal, then pB =

%
qeq factors as a product of primes in B. For a prime q ∈ B,

q | p ⇐⇒ q ∩A = p ⇐⇒ q ⊇ pB ⇐⇒ q appears in the factorization of pB.

2.2.1. Proposition. [B/pB : A/p] = [L : K] =: n.

Proof. Let S = A− p. Because A/p ∼= S−1A/p(S−1A) and B/pB ∼= S−1B/p(S−1B), we may WLOG
replace A with S−1A and B by S−1B. (Here we implicitly use the fact that localization commutes with
integral closure.) But now since S−1A = Ap is a DVR, it is a PID, so B is free over A with the same rank
as [L : K]. Consequenly, [B/pB : A/p] = [L : K]. □

2.2.2. Proposition. Given p ⊂ A,
$

q|p eqfq = n.

Proof. We count the dimension of B/pB as a A/p-vector space. By the above proposition, this dimen-
sion is equal to n. On the other hand, by CRT, B/pB =

%
q|p B/qeq . Consider the filtration of B/q-vector

spaces:

B/qeq ⊃ q/qeq ⊃ · · · ⊃ qeq−1/qeq ⊃ 0.

Every step is equal to qi/qi+1, which is a 1-dimensional B/q-vector space, so B/qeq is eq-dimensional over
B/q, which is in turn fq-dimensional over A/p. So dimA/p B/qeq = epfp, and we’re done. □

2.2.3. Corollary. There are at most n primes lying over p.

2.2.4. Definition. The extension L/K is called:

• totally ramified at q if eq = n, fq = 1, and q is the only prime lying over p.
• unramified at q if eq = 1 and B/q is separable over A/p.
• unramified above p if it is unramified at every prime above p. Equivalently, iff B/pB is an étale
A/p-algebra.

2.2.5. Definition. A prime p ⊂ A:

• is inert if q = pB is prime in B.
• splits completely if all eq = fq = 1.

2.2.6. Definition. A discrete valuation w on L is said to extend the discrete valuation v on K if w|K = e ·v
for some e ∈ Z+.
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2.2.7. Proposition. Fix p ⊂ A. Then there is a bijection

{primes q | p} ⇐⇒ {discrete valuations w extending vp}
given by q %→ vq.

Proof. First, we show that vq indeed extends vp. Because for distinct primes in A, the sets of primes
q lying above them are disjoint, it is clear that vq(x) = eqvp(x). The hard part is to show that all discrete
valuations extending vp are of this form. Let w be such a discrete valuation, and let W = {x ∈ L : w(x) ≥ 0},
which is a DVR. Let m be the maximal ideal of W , and q = m ∩ B. Since q = m ∩ B ⊇ m ∩ A = p, q | p.
Because L ∕= W ⊇ Bq, W = Bq (since Bq is a DVR), and w = vq. □

2.3. Dedekind-Kummer theorem. We wish to give some intuition of the eq and fq’s. We continue
to work in the AKLB setup.

2.3.1. Theorem (Dedekind-Kummer). Suppose B = A[α] for some α ∈ L. Let f(x) ∈ A[x] be the minimal
polynomial of α in K, and suppose that f(x) mod p =

%
(gi(x) mod p)ei . Then pB =

%
qeii , where

qi = (p, gi(α)) ⊂ B, ei = eqi , and fi = fqi = [B/qi : A/p] = deg gi(x).

Proof. We have B = A[x]/(f(x)), so

B/pB = (A/p)[x]/(f(x) mod p)

=
2

(A/p)[x]/(gi(x) mod p)ei

=
2

A[x]/(p, gi(x))
ei

=
2

B/(p, gi(α))
ei .

By the uniqueness of factorizing an étale algebra into separable extensions, we conclude pB =
%
(p, gi(α))

ei =%
qeii . Furthermore, fi = [B/qi : A/p] = [A[x]/(p, gi(x)) : A/p] = [(A/p)[x]/gi(x) : A/p] = deg gi. □

From this, counting the degree of f , we get a more intuitive epxlanation of n =
$

q|p eqfq.

Geometric example:

algebra geometry
Dedekind domain A Z C[z]
Field of fractions K Q C(z)

Degree two separable extension L Q(
√
−5) C(

√
z)

Integral closure B Z[
√
−5] C[

√
z]

Totally ramified ideal (2) (z)
Ideal that split completely (3) (z − z0), z0 ∕= 0

2.4. Index of A-lattices. We now change gears to the topic of A-lattices.

2.4.1. Definition. Let V be an r-dimensional vector space over K. An A-lattice in V is a finitely generated
A-submodule of V such that V = MK.

Our goal in this subsection is to define the “index” of an A-lattice, which will be an ideal in A. This
allows us to define the ideal norm.

First, consider a torsion module M over A of finite type. Since A is a Dedekind domain, the simple
torsion modules over A are of the form A/p for some prime ideal p. Then given any composition series

M = Mn ⊃ Mn−1 ⊃ · · · ⊃ M1 ⊃ M0,

with Mi/Mi−1
∼= A/pi, we define

χ(M) = p1 . . . pn.

By Jordan-Hölder theorem, χ(M) only depends on M , and not on the composition series chosen.

2.4.2. Proposition. For fractional ideals I ⊆ J , χ(J/I) = IJ−1.

Proof. Localize at each prime to assume A is a DVR, where everything is easy. □

2.4.3. Corollary. If I ⊂ A is an integral ideal, then χ(A/I) = I.
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2.4.4. Definition. Let M,N ⊂ V be A-lattices.

• If M ⊇ N , then M/N is torsion. Define (M : N)A = χ(M/N), which is an integral ideal in A.
• In general, for any two A-lattices M,N , there exists an A-lattice P contained in M and N , so we

can define (M : N)A = (M :P )A
(N :P )A

.

In particular, when V = K, for I, J fractional ideals, (J : I)A = IJ−1.
It is important that everything we do here commutes with localization: for example, ((M : N)A)p =

(χ(M/N))p = χ((M/N)p) = χ(Mp/Np) = (Mp : Np)Ap
. Many arguments we have for the general AKLB

setup start by immediately reducing to the DVR case using localization.

2.4.5. Proposition. Given X ∈ GLn(K), (An : X(An))A = (detX).

Proof. Assume WLOG A is a DVR, hence a PID, so X has a Smith normal form, which is diagonal,
so we just reduce to the case n = 1. But (A : xA)A = χ(A/(x)) = (x). □

2.5. Inclusion and ideal norm. We continue to work in the AKLB setup.

2.5.1. Definition. Let IA, IB be the ideal groups of A and B. Define

• i : IA → IB by I %→ IB, the inclusion homomorphism.
• N : IB → IA by J %→ (B : J)A, the ideal norm.

2.5.2. Proposition. The following two diagrams commute:

L× IB

K× IA,

x +→(x)

x +→(x)

i

L× IB

K× IA.

x +→(x)

NL/K N

x +→(x)

Proof. The first one is trivial. For the second one, consider an element x ∈ L×, then N((x)) = (B :
(x))A. If A is a DVR, then it is a PID, so B is a free A-module, and by proposition 2.4.5, (B : (x))A =

(det(L
x−→ L)) = (NL/K(x)). In general, localize at each prime p, and because ((B : (x))A)p = (Bp :

(x)p)Ap
= (NL/K(x))p at each p, (B : (x))A = (NL/K(x)). □

2.5.3. Proposition. i and N are group homomorphisms.

Proof. This is clear for i. If A is a DVR, hence a PID, B must be a semilocal Dedekind domain, so it
is a PID (corollary 1.6.14). This means that the map L× → IB is surjective, so N is a homomorphism. In
general, localize A at each prime p. Then because localization commutes with (:)A, the diagrams

IB IBp

IA IAp

N Np

commute. Because the Np’s on the right are group homomorphisms for every p, we conclude that N : IB →
IA is a homomorphism as well. □
2.5.4. Proposition. Let p ⊂ A satisfy that pB =

%
qeq . Then:

• i(p) =
%

qeq ;
• For q | p, N(q) = pfq .

Proof. For the second one, N(q) = (B : q)A = χ(B/q) = χ((A/p)⊕fq) = pfq . □
The geometric picture:

algebra geometry
Ring A Affine scheme SpecA

Dedekind domain Nonsingular curve
Inclusion of Dedekind domains A ↩→ B (possibly) Ramified cover SpecB ↠ SpecA

Ideal group I Divisor group Div
Inclusion homomorphism i : IA → IB Inverse image/pullback f∗ : DivX → Div Y

Ideal norm N : IB → IA Image/pushforward f∗ : Div Y → DivX
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2.6. DVR extensions. We now consider the following setup. Let A be a DVR with maximal ideal
p = (π), K = FracA, B = A[x]/(f(x)) for some monic f(x) ∈ A[x]. In general, B need not even be integrally
closed.

2.6.1. Lemma. Any maximal ideal of B contains p.

Proof. Let m ⊂ B be maximal. Then if p ∕⊆ m, m + pB = B, so the image of m generates B/pB.
Applying Nakayama’s lemma to the local ring A and finitely generated A-module B, we see that m generates
B, a contradiction. □
2.6.2. Corollary. Maximal ideals of B are in bijection with maximal ideals of B/pB = (A/p)[x]/(f), which
are in bijection with irreducible factors of f(x) mod p.

Armed with this information, we consider two conditions on f that would make B not only Dedekind,
but actually a DVR.

Case 1: Suppose f is irreducible mod p. Then the only maximal ideal of B is pB = (π)B, which is
principal. So B is a local Noetherian domain whose maximal ideal is principal, so B is a DVR. Here, the
ramification index e = 1, f = n, p ⊂ A is inert, and unramified if f mod p is separable.

Case 2: Suppose f is Eisenstein; this means that f = xn + an−1x
n−1 + · · ·+ a1x+ a0, where ai ∈ p but

a0 /∈ p2. (This actually implies f is irreducible too.) In this case f = xn mod p, so there is also only one
maximal ideal in B, corresponding to (p, x) = (a0, x). But since a0 = −(xn + · · · + a1x), a0 ∈ (x). So the
unique maximal ideal is just (x), so B is also a DVR. Also, we check that B/(x) = A/p, so f = 1, e = n,
and p is totally ramified.

We now study the converse of the above. Suppose in the AKLB setup, [L : K] = n, and we assume in
addition that A is a DVR. Then the following are true:

2.6.3. Proposition. If B is a DVR, with maximal ideal m, such that [B/m : A/p] = n, then B ∼= A[x]/(f(x))
for some monic f ∈ A[x] irreducible mod p.

Proof. By the primitive element theorem, there exists b ∈ B/m that generates it over A/p, which is
represented by b ∈ B. Let f(x) ∈ A[x] be the characteristic polynomial of b over K. We have f(b) = 0, so
the image f of f in (A/p)[x] has b as a root. Since b is of degree n over A/p, f is irreducible of degree n. So
by the discussion above: A[x]/(f(x)) is a DVR, and there is an inclusion A[x]/(f(x)) ↩→ B mapping x %→ b.
Since L = K(b), L = FracA[x]/(f(x)) as well, and because B is an intermediate ring between a DVR and
its field of fractions, and B ∕= L, it must be that B = A[x]/(f(x)). □
2.6.4. Proposition. If B is a DVR, with the discrete valuation w : L× → Z, and w extends the valuation
v on A with index n, then B ∼= A[x]/(f(x)) for some Eisenstein polynomial f ∈ A[x].

Proof. Pick β ∈ B such that w(β) = 1. Let f ∈ A[x] be the characteristic polynomial of β in K.
We wish to show that it is Eisenstein. Write f(x) = xn + an−1x

n−1 + · · · + a1x + a0 (the fact that it has
degree n follows from the same argument as follows). Then βn + an−1β

n−1 + · · ·+ a1β + a0 = 0 in B. Since
w(aiβ

i) ≡ i (mod n), and the two terms with smallest w have to have the same valuation, we conclude that
w(a0) = w(βn) = n, so v(a0) = 1 and v(ai) ≥ 1 for i = 1, . . . , n− 1. Also, A[x]/(f(x)) is a DVR that injects
into B, so A[x]/(f(x)) = B. □

3. Galois extensions

3.1. Galois extensions. We now consider the following “AKLBG” setup: in addition to having the
original AKLB, we require L/K to be a finite Galois extension with G = Gal(L/K).

3.1.1. Proposition. Fix a nonzero prime p ⊂ A. Then the G-action on L induces a transitive G-action on
{q ⊂ B : q | p}.

Proof. Fix on q above p. If q′ above p is not in the orbit of q, then by prime avoidance, we may
find b ∈ q′, such that b /∈ gq for all g ∈ G. This means that gb /∈ q for all g ∈ G. Consider the norm
NL/K(b) =

%
g∈G gb ∈ A, then NL/K(b) ∈ q′ but NL/K(b) /∈ q. This is a contradiction to q∩A = q′ ∩A. □

Because of this, the eq and fq are the same for all q | p, for any fixed p, so we can just call them ep and
fp. Also, let gp denote the number of primes above p. Then:

3.1.2. Proposition. epfpgp = n.
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3.2. Decomposition group. Fix q a prime upstairs. Define the decomposition group D = Dq ≤ G as
the stabilizer of q in G. Then (G : D) = gq by the orbit-stabilizer theorem, so |D| = epfp.

The reason we define D is that while G preserves B and permutes the primes {q : q | p}, D preserves
both B and q, which means that it acts on B/q.

3.2.1. Proposition. Suppose B/q is separable over A/p. Then:

• B/q is Galois over A/p;
• The natural map D → Gal(Fq/Fp) is surjective. (Here, Fq = B/q, Fp = A/p.)

Proof. For the first bullet point, it suffices to show that B/q is normal over A/p. Given b ∈ B/q,
represented by b ∈ B, we let P (x) =

%
g∈G(x− gb). This polynomial is G-invariant, hence is in K[x], hence

in A[x]. Reducing modulo q, we get P (x) =
%

g∈G(x − gb) ∈ (A/p)[x]. This shows that b is the root of a

polynomial in (A/p)[x] that splits completely, so the extension is indeed normal.
For the second bullet point, by primitive element theorem, Fq = Fp(b) for some nonzero b ∈ Fq. Strong

approximation gives us b ∈ B such that b = b mod q and b ∈ q′ for all other q′ | p. Then gb ∈ q for all
g ∈ G\D. Let P (x) =

%
g∈G(x − gb) ∈ A[x], then reducing mod q, we get P (x) =

%
g∈G(x − gb) ∈ Fp[x].

But since gb = 0 in Fp, P (x) =
%

g∈D(x − gb)x|G|−|D|. Since P (b) = 0, every conjugate of b is a nonzero

root of P (x), hence equals gb for some g ∈ D. This shows that D → Gal(Fq/Fp) is surjective. □

3.3. Inertia group.

3.3.1. Definition. The inertia group Iq satisfies the short exact sequence

1 → Iq → Dq → Gal(Fq/Fp) → 1.

In other words, Iq consists of the elements of G that preserve B and q, and act as the identity on
B/q = Fq.

Because |D| = ef , |Gal(Fq/Fp)| = [Fq : Fp] = f , we see that |I| = e. So the inertia group “detects”
ramification in some sense.

By Galois theory, the sequence of subgroups 1 ≤ I ≤ D ≤ G corresponds to a tower of fields L ⊇ LI ⊇
LD ⊃ K, where LI is the inertia field and LD is the decomposition field. Computing the group indices, we
get [L : LI ] = e, [LI : LD] = f , [LD : K] = g.

In addition, I and D behave well under sub- and quotient groups, as follows: fix AKLBG, and let H be
a subgroup of G. Let LH ⊂ L be the fixed field of H. The corresponding BH ⊂ LH is the integral closure of
A in LH , then B is the integral closure of LH in K by transitivity of integrality. Fixing q ⊂ B, it pulls back
to qH ⊂ BH and p ⊂ A, and similarly we have a tower of fields Fq ⊃ FqH ⊃ Fp. For the Galois extension

L/LH , we can similarly define the inertia and composition groups IH ≤ DH ≤ H.

3.3.2. Proposition. DH = D ∩H, IH = I ∩H. □

If, in addition, H is a normal subgroup, then LH/K is Galois as well, with Galois group G/H. Then:

3.3.3. Proposition. The following diagram commutes and has exact rows and columns:

1 1 1

1 IH DH Gal(Fq/FqH ) 1

1 I D Gal(Fq/Fp) 1

1 IG/H DG/H Gal(FqH/Fp) 1

1 1 1
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3.4. Frobenius class. Now, we consider the case where Fp is a finite field. Then it is a well-known
result that finite extensions of finite fields are always cyclic and generated by the Frobenius element

Frobq : x %→ x|Fp|.

Suppose L/K is unramified at q, then D ∼= Gal(Fq/Fp) is a cyclic group, and we can view Frobq as an
element in D with order f .

For q′ | p, q′ = σq for some σ ∈ G, so Dq′ = σDσ−1 are conjugate subgroups of G, and Frobq′ =
σ Frobq σ

−1. Therefore, p determines a conjugacy class in G, called the Frobenius class. (So if G is abelian,
the Frobenius class is actually an element in G.)

3.4.1. Definition. Assume AKLBG with finite residue fields. For q unramified, define the Artin symbol

pr
L/K

q
:= Frobq .

When G is abelian, this only depends on p, so we may instead write pr L/K
p .

3.4.2. Definition (Artin map). Let A be Dedekind, K = FracA, L/K abelian extension. There is a
homomorphism from the subgroup of the ideal group IA generated by unramified primes to G, given by

2
peii %→

2
pr

L/K

pi

ei

.

3.4.3. Remark. Here’s how to determine the splitting type of a prime in a separable but not necessarily
Galois field extension. Assume AKLB, and let M be the Galois closure of L/K. (So M is the splitting field
of the minimal polynomial of α, where L = K(α)).

Let G = Gal(M/K), then G naturally embeds into Sn by permuting the n maps HomK(L,M). The
subgroup of G corresponding to L is H = G ∩ Sn−1, where Sn−1 is the subgroup of all permutations fixing
the identity embedding L ↩→ M . Because the G-action on HomK(L,M) is transitive, this action is exactly
the G-action on H\G, the right cosets of H.

Fix a prime p ⊂ A that we want to study. Suppose C is the integral closure of B in M , and fix an
arbitrary prime P ⊂ C above p. Let I ⊆ D ⊆ G be the inertia and decomposition groups of P. Then the
transitive G-action on H\G induces a D-action on H\G.

The main claim here is that the orbits of this D-action corresponds precisely to the primes q ⊂ B above
p, and the size of the orbit corresponding to q is eqfq. Proof of this claim: given some orbit [Hg] of H\G
under D, we map this to gP ∩ L.

• Injectivity: suppose g1P ∩ L = g2P ∩ L = q, then g1g
−1
2 maps g2P to some prime that is also

above q. Because L/M is Galois, there is an element h ∈ H ⊂ G mapping g1P back to g2P. Then
hg1g

−1
2 ∈ D, so [Hg1] = [Hg1(g

−1
2 g2)] = [H(hg1g

−1
2 )g2] = [Hg2].

• Surjectivity: follows because G is transitive on the primes in C above p.

• Size of the orbit: by orbit-stabilizer theorem, this is equal to
|DP/p|
|DP/q| =

eP/pfP/p

eP/qfP/q
= eq/pfq/p.

Even better, we have that I ⊴ D is normal, so every I-orbit in a D-orbit corresponding to q (of size eqfq)

has the same size. By orbit-stabilizer theorem, this size is
|IP/p|
|IP/q| = eq/p. Notice that:

• When L/K is already Galois, H = {1}, and every orbit of the D-action on G (i.e. the D-cosets)
have the same size.

• When p is unramified and residue fields are finite (e.g. K,L are local fields), D is generated by the
Frobenius element, so D-orbits are the same as the orbits of Frobenius.

Reference: Melanie Wood.

4. Completeness and local fields

4.1. Local fields.

4.1.1. Definition. A local field is a field K with a nontrivial absolute value that is locally compact.

Recall that

• An absolute value induces a metric, which induces a topology on K, under which K is a topological
field;

https://people.math.harvard.edu/~mmwood/Splitting.pdf
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• A locally compact space is one where each point x has a compact neighborhood, i.e. x ∈ U ⊂ K
where U is open and K is compact.

4.1.2. Proposition. Suppose the absolute value on K is induced by a discrete valuation v : K → Z ∪ {∞}.
Then K is locally compact, iff K is complete and the residue field is finite.

Proof. (=⇒) It is clear that K is Hausdorff. If K is locally compact, then each point of K has a
local base of closed compact neighborhoods. Given any Cauchy sequence, we can find a descending, nested
sequence of closed compact sets, so by Cantor intersubsection theorem there is a unique point inside all of
them whence the sequence converges. Let A be the valuation ring and π a uniformizer. Also, since some πnA
is compact, multiplying by π−n shows that A is compact, so A/πA is compact and discrete, hence finite.

(⇐=) IfA/πA is finite, thenA/πnA is also finite. Then )A = lim←−A/πnA is a closed subset of
%

n≥0 A/πnA,

which is compact by Tychonoff. So )A = A is compact, so πnA is compact, and they form a basis of compact
open neighborhoods of K. □

4.1.3. Proposition. Let F be a global field, with a nontrivial absolute value | |v. Then its completion Fv

with respect to this absolute value is a local field.

Proof. If the absolute value is archimedean, then F must be a finite extension of K = Q, and the
absolute value must restrict to the usual Euclidean one on Q. So Fv is a finite extension of R, which is either
R or C. These are local fields.

If the absolute value is nonarchimedean, I claim that it is induced by a discrete valuation. Let C = B≤1(0)
and m = B<1(0), which are nonempty because | |v is nontrivial. Consider the absolute value | |v restricted
to K = Q or Fp(t). By Ostrowski’s theorem, this is induced by some discrete valuation v on A = Z or
Fp[t]. Then A ⊂ C, and since C is integrally closed, it contains B, the integral closure of A in F . Let
q = m ∩ B, then Bq ⊂ C. But since there are no intermediate rings between a DVR and its fraction field,
Bp = C. Therefore, the absolute values | |v and the one induced by vq have the same valuation rings, hence
equivalent.

Now, Fv evidently has finite residue field, so it is a local field. □

4.1.4. Lemma. A locally compact topological vector space over a nondiscrete locally compact field has finite
dimension.

4.1.5. Theorem. Any local field is either R,C, or a finite extension of Qp or Fq((t)).

4.2. Hensel’s lemma.

4.2.1. Lemma (Hensel’s lemma). Let A be a complete DVR with residue field k, F ∈ A[x], and f ∈ k[x] be
the image of F . Suppose α ∈ k is a simple root of f , then there exists a unique a ∈ A lifting α, such that
F (a) = 0.

4.2.2. Lemma (Hensel’s lemma, stronger). Let A, k, F, f as before. If f(x) = g(x)h(x), where g, h are
coprime monic polynomials in k[x], then F (x) = G(x)H(x), with G,H ∈ A[x] lifting g, h.

4.3. Extensions of complete DVRs.

4.3.1. Theorem. In the AKLB setup, assume A is a complete DVR with prime ideal p. Then B is a DVR,
i.e. there is only 1 prime above p.

(In fact, this holds even when L/K is finite and not necessarily separable — see Serre’s book.)

First proof. Suppose there are at least two primes q1, q2 above p. Pick b ∈ q1, b /∈ q2, then q1 ∩ A[b]
and q2∩A[b] are distinct primes in A[b], both containing p. So A[b]/pA[b] has at least 2 primes as well. Now,
let F (x) ∈ A[x] be the minimal polynomial of b in K, so that

A[b]

pA[b]
∼=

A[x]

(F (x), p)
∼=

k[x]

(f(x))

where f is the reduction of F mod p. Because k[x]/(f(x)) has at least 2 primes, f factors into coprime monic
g, h ∈ k[x], which we lift into a factorization of F by Hensel’s lemma. But this contradicts the irreducibility
of F . □
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4.3.2. Lemma. If (K, | · |) is complete and V is a f.d. vector space over K, then any two norms are
equivalent.

Second proof. Each prime q | p defines an norm on L (as a f.d. K-vector space) extending the absolute
value on K. It suffices then to find a way to characterize q in terms of the topology it induces. In fact, for
x ∈ L, x is in the valuation ring of q iff the sequence x−1, x−2, . . . does not converge to 0, so the topology
uniquely characterizes the valuation ring of q, which uniquely characterizes q as its maximal ideal. □

Some corollaries of the above theorem:

• B is a DVR and a free A-module of rank n.
• There exists a unique discrete valuation w on L extending v on K, with index e.
• B and L are complete with respect to w. (since it is equivalent to the sup norm, which is complete)
• If x, y ∈ L are conjugate over K, then w(x) = w(y). (suppose y = σx, then w and w ◦ σ are two
discrete valuations extending v, so they are the same)

• For x ∈ L, w(x) = 1
f v(NL/K(x)). (use the ideal norm interpretation)

4.3.3. Corollary. The valuation v : K → Z ∪ {∞} is the restriction of a unique valuation K ↠ Q ∪ {∞}.

Proof. For each finite algebraic extension L/K, v can be uniquely extended to L. The map K →
Q ∪ {∞} is surjective because K contains all nth roots. □

However, by taking the algebraic closure, K is no longer complete! For example, Qp has a valuation

with value group Q and residue field Fp, but it is not complete anymore. So we can define Cp = *Qp, which
is complete, but it is not obvious that it is still algebraically closed. Fortunately:

4.3.4. Theorem. Let K be a field complete with respect to a nontrivial non-archimedean absolute value.
Then the completion of K is algebraically closed.

Proof. See Brian Conrad’s handout here. □

4.4. Newton polygons. LetK be a field with a valuation v : K → R∪{∞} (not necessarily surjective).
For a polynomial f(x) = anx

n + · · ·+ a0 ∈ K[x], we may construct its Newton polygon as the lower convex
hull of the points (i, v(ai)). The main theorem is the follows:

4.4.1. Theorem. The width of the slope s segment of the Newton polygon is at least the number of zeros of
f with valuation −s, with equality when f splits completely into linear factors.

Note that this provides additional motivation for Eisenstein’s criterion.

Proof. WLOG pass to the case K = K. First, notice that changing f(x) to f(ax) or af(x) by any
constant a ∈ K× does not alter the content of the theorem. As such we can reduce to the case s = 0 and
suppose f factors as

f(x) =

a2

i=1

(x− ri)

b2

j=1

(x− tj)

c2

k=1

(1− x/uk) ∈ A[x]

where v(ri) > 0, v(tj) = 0, and v(uk) < 0. Reducing modulo the maximal ideal of A, we get

f(x) = xa
b2

j=1

(x− tj).

This means that the Newton polygon of f has a segment from (a, 0) to (a + b, 0), which has width b equal
to the number of zeros of f with valuation 0. □

4.5. p-adic analysis. Let K be complete with respect to a nonarchimedean aboslute value, i.e. coming
from some valuation. Because we have a notion of size, we can do “p-adic analysis” much like how we do real
or complex analysis. But here, lots of small errors cannot add up to a big error because of the nonarchimedean
triangle inequality, so very nice things hold.

For example, for a sequence a0, a1, · · · ∈ K, the series
$

an converges if and only if an → 0.

http://math.stanford.edu/~conrad/248APage/handouts/algclosurecomp.pdf
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For another example, we have the Cauchy-Hadamard formula for the radius of convergence: given
f(x) =

$
anx

n ∈ K[[x]], its radius of convergence

R =
1

lim supn→∞ |an|1/n
.

4.5.1. Theorem (Strassmann’s theorem). Let A be the valuation ring of K, f(x) =
$

anx
n ∈ A[[x]] a

nonzero formal power series such that an → 0. Then the number of zeros of f(x) in A is at most N , where
N is the largest such that |aN | = max |an|.

We now specialize to the case K = Cp. Here, we have the p-adic exponential function

exp(x) =
!

n≥0

xn

n
∈ Qp[[x]].

Its radius of convergence is R = p−
1

p−1 . Using the Newton polygon, we see that the truncated exp has no
roots with valuation at least 1

p−1 .

Conversely, we may wish to find a p-adic logarithm. There is a natural one, called the Iwasawa logarithm.

4.5.2. Proposition. There exists a unique homomorphism

log : C×
p → (Cp,+)

satisfying:

(1) For |x| < 1, log(1 + x) = x− x2

2 + x3

3 − . . . ;
(2) log p = 0.

Proof. Let m be the maximal ideal of the valuation ring of Cp. Construct the logarithm in stages:

• First, for x ∈ m, define log(1 + x) according to the infinite series. Then

log(1 + x) + log(1 + y) = log((1 + x)(1 + y))

holds as an identity on power series, so it holds as numbers in Cp.
• Second, for x ∈ G = pZ(1 +m), define log(pn(1 + x)) = log(1 + x).
• Third, we claim that C×

p /G is in fact torsion. This would allow us to uniquely extend log to the

entire C×
p . To show this is torsion, let O = {x ∈ Cp : v(x) = 0} be the group of units in the

valuation ring, and notice that

O×/(1 +m) → C×
p /G

vp−→ Q/Z

is exact. The left side is isomorphic to Fp
×
, which is torsion; the right side is also torsion. So the

middle term must be torsion as well, which finishes the proof.

□

4.6. Completing a Dedekind extension. Let us start with an example. We wish to compute field
extensions of Qp such as Q(i)⊗Q Qp. This is clearly an étale algebra over Qp, and depending on how x2 +1
factors in Qp[x] (read: in Fp[x], because of Hensel’s lemma), it is either

• Qp×Qp, in the case that x2+1 factors into two distinct factors (e.g. p = 5). There are two primes
above pZp.

• a totally ramified extension over Qp, in the case that x2 + 1 factors into the same factors (e.g.
p = 2). There is one prime above pZp with e = 2, f = 1.

• an unramified extension over Qp, in the case that x2 + 1 does not factor (e.g. p = 7). There is one
prime above pZp with e = 1, f = 2.

The following theorem generalizes the previous example.

4.6.1. Theorem. Assume AKLB, and fix a prime p ⊂ A and the valuation v = vp on K. Let wi be

the distinct discrete valuations on L extending v, which are in bijection with primes q | p. Let )K be the

completion of K wrt v, and let )Li be the completions of L wrt wi. Then:

(1) )Li/ )K is a field extension;

(2) The induced *wi on )Li is the unique extension of )v on )K.
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(3) e(*wi/)v) = ei, and f(*wi/)v) = fi.

(4) [)Li : )K] = eifi.

(5) L⊗K
)K →

%
i
)Li is an isomorphism.

Proof. (1) through (4) are easy. For (5), there is a natural K-bilinear L × )K →
%

i
)Li given by

(ℓ,α) %→ ℓα, which induces a linear map L ⊗K
)K →

%
i
)Li. To show this is an isomorphism, it suffices to

show this is surjective, since both sides have the same )K-dimension (n =
$

i eifi).

Choose a )K-basis αi (i = 1, 2, . . . , n) for
%

i
)Li. For each αi, using weak approximation, we could find

ℓi ∈ L such that its diagonal embedding into
%

i Li is close to αi. Then these ℓi still forms a basis (because
the change-of-basis matrix is close enough to id). This shows surjection, as desired. □

4.6.2. Proposition. If, in addition, L/K is Galois, then each )Li/ )K is Galois as well, with Galois group
Di.

Proof. Each σ ∈ Di acts on L respecting wi, so it acts on )Li fixing )K. This gives a homomorphism

φ : Di → Aut()Li/ )K). Conversely, there is a map ψ : Aut()Li/ )K) → Di by restricting to L. Since ψ ◦ φ = id,
φ is injective. But

eifi = |Di| ≤ |Aut()Li/ )K)| ≤ [)Li : )K] = eifi,

so all inequalities must be equal, and )Li/ )K is Galois. □

4.6.3. Proposition. Let Bi be the valuation of vi on L. Then B ⊗A
)A ∼=

%
i
*Bi.

Proof. Both sides are free )A-modules of rank n. So it suffices to check isomorphism after reducing
mod )p. The LHS reduces to B/pB, and the RHS reduces to

%
i B/qeii B, and the two are equal by CRT. □

5. Ramification

5.1. The different. Setup: AKLB. Recall that an A-lattice M is a finitely generated A-submodule of
L, such that MK = L. Then we can define its dual as

M∗ = {x ∈ L : Tr(xm) ∈ A, ∀m ∈ M}.
If M is free, then so is M∗ (with the dual basis). If M is a B-module (i.e. a fractional B-ideal), then so is
M∗.

5.1.1. Definition. The different ideal DB/A is defined as the inverse of the dual of B as an A-lattice:

DB/A := (B∗)−1.

This is in fact an actual ideal inside B, since B ⊆ B∗ =⇒ (B∗)−1 ⊆ B.

5.1.2. Proposition. For any prime p ⊂ A, (DB/A)p = DBp/Ap
.

5.1.3. Proposition. For primes q | p, DB/A · *Bq = D"Bq/"Ap
. (Both sides are ideals in *Bq.)

Proof. Assume WLOG A is a DVR with maximal ideal p, by localizing. Let )L = L⊗K
)K =

%
q|p

*Lq,

and )B = B ⊗A
)A =

%
q|p

*Bq (cf. previous subsection). Even though )L may not be a field, it is still an étale

)K-algebra, so the trace pairing is still nondegenerate. Consequently, we can form )B∗ = B∗⊗A
)A =

%
q|p

*Bq

∗
.

This shows that B∗ generates each *Bq

∗
over )A, so DB/A generates D"Bq/"Ap

as desired. □

5.2. The discriminant. The different DB/A is an ideal in B. We will define another ideal, the dis-
criminant DB/A, which is an ideal in A.

5.2.1. Definition. Given elements e1, . . . , en ∈ L, their discriminant

disc(e1, . . . , en) = det(Tr(eiej))i,j .

This has the following properties:

• If e1, . . . , en ∈ B, disc(e1, . . . , en) ∈ A.
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• Suppose φ ∈ EndK(L) mapping e1, . . . , en to e′1, . . . , e
′
n, then

disc(e′1, . . . , e
′
n) = (detφ)2 disc(e1, . . . , en).

• Let M be a free A-lattice. For two bases of M , their discriminants must differ by the square of a
unit in A (which must be 1 when A = Z!)

5.2.2. Definition. Assuming AKLB and given an A-lattice M :

• When A = Z, M is necessarily free, and discM ∈ Z is an integer (given by the discriminant of any
set of A-basis of M).

• When A is general and M is a free A-module, the discriminant D(M) is the principal (fractional)
ideal generated by the discriminant of any basis of M .

• When A,M are both general: the discriminantD(M) is the A-module generated by disc(x1, . . . , xn)
for any n elements x1, . . . , xn ∈ M .

5.2.3. Proposition. The discriminant D(M) is finitely generated over A, and therefore it is a fractional
A-ideal.

Proof. Choose independent elements e1, . . . , en ∈ M generating L/K, and let N be the free A-lattice
generated by them. Then M ⊆ a−1N for some a ∈ A, so D(M) ⊆ D(a−1N). The latter is generated by 1
element, so it is a Noetherian A-module, so D(M) is finitely generated. □

5.2.4. Proposition. For any prime p ⊂ A, (DB/A)p = DBp/Ap
.

5.2.5. Proposition. Let L/K be a finite separable extension with degree n, and suppose σi : L → Ω are n
distinct elements in HomK(L,Ω). Then given e1, . . . , en ∈ L,

disc(e1, . . . , en) = det(σi(ej))
2
i,j .

Proof. Tr(eiej)ij = (
$

k σk(ei)σk(ej))ij = (σk(ei))ik(σj(ek))jk. □

5.2.6. Proposition. For x ∈ L,

disc(1, x, x2, . . . , xn−1) =
2

i<j

(σi(x)− σj(x))
2.

Proof. This is the Vandermonde determinant. □

5.2.7. Definition. If f =
%
(x− αi), then the discriminant of this polynomial

disc f =
2

i<j

(αi − αj)
2.

5.2.8. Proposition. If A is a Dedekind domain, f ∈ A[x] a monic separable polynomial, then disc(f) =
disc(1, x, x2, . . . , xn−1).

5.2.9. Definition. The discriminant ideal DB/A = D(B) ⊆ A, which is an actual ideal in A.

5.2.10. Example. DZ[i]/Z = (−4) = (4).

5.3. Detecting ramification.

5.3.1. Theorem. Assume AKLB, then DB/A = N(DB/A), where N is the ideal norm.

Proof. Since everything is compatible with localization, WLOG A is a DVR, so B is free, say with
basis e1, . . . , en. Then B∗ is free also, with the dual basis e′1, . . . , e

′
n.

In general, if m1, . . . ,mn is an A-basis for another free lattice M , then (Tr(miej)) is the change-of-basis
matrix sending e′1, . . . , e

′
n to m1, . . . ,mn. Setting mi = ei, we see that (Tr(eiej)) is the change-of-basis

matrix sending e′1, . . . , e
′
n to e1, . . . , en. Taking the ideal generated by the determinant on both sides, we see

that DB/A is equal to the index (B∗ : B)A = (B : (B∗)−1)A = N(DB/A). □

5.3.2. Theorem. Assume AKLB, p ∈ A, q | p. Then L/K is unramified at q iff q ∤ DB/A.
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Proof. In the general case, first localize, then complete with respect to the unique discrete valuation
to reduce to the case where A is a complete DVR. Then B is a DVR as well, with pB = qe. The different is
a power of q, DB/A = qm, for some m ≥ 0. Then DB/A = N(DB/A) = pfm. Pick an A-basis b1, . . . , bn of

B, and let b1, . . . , bn be their images in B/pB. Then L/K is unramified at q if and only if B/qe = B/pB

is a separable field extension of A/p, iff det(Tr(bibj))i,j ∕= 0, iff det(Tr(bibj)i,j) ∕= 0 mod p, iff p ∤ DB/A, iff
q ∤ DB/A. □

5.3.3. Corollary. Assume AKLB, p ∈ A, then L/K is unramified at p (i.e. unramified at all primes above
p) iff p ∤ DB/A.

5.3.4. Corollary. Only finitely many pimes of B ramify.

5.3.5. Example. Take A = Z, K = Q, L = Q(α) where α is a root of x3 − x − 1. We wish to compute
the ring of integers OK . Clearly, Z[α] ⊆ OK . Suppose m is the index of Z[α] in OK . The discriminant
D(Z[α]) = disc(1,α,α2) = disc(x3 − x − 1) = −23. But discOK = −23/m2 is necessarily an integer, so
m = 1 and OK = Z[α]. Moreover, Dedekind-Kummer theorem tells us that the factorization of a prime (p)
in Z[α] corresponds to factorization of x3 − x − 1 modulo p. In the case p = 23, the fact that (23) | DL/K

corresponds to the fact that x3 − x− 1 = (x− 10)2(x− 3) is ramified.

5.4. More on the different. There is a neat formula for the different in the case where B is monogenic:

5.4.1. Proposition. If B = A[α], and f is the minimal polynomial of α, then DB/A = (f ′(α)).

5.4.2. Lemma. Under the hypotheses above,

Tr(αi/f ′(α)) =

4
0, for i = 0, 1, . . . , n− 2

1, for i = n− 1

and for all i, Tr(αi/f ′(α)) ∈ A.

Proof. Expand both sides of

1

f(x)
=

!

f(β)=0

1

(x− β)f ′(β)

at infinity, and compare the coefficients. □

Proof of 5.4.1. Let I = (1/f ′(α)) ⊆ B∗ be the fractional B-ideal, i.e. the A-span of αi/f ′(α) for
i = 0, . . . , n− 1. We compute

(B∗ : I) = (det(Tr(αi+j/f ′(α))i,j)) = (1)

by the lemma, so B∗ = I, and DA/B = (B∗)−1 = (f ′(α)). □

5.4.3. Lemma. Assume AKLB. Let a be a fractional ideal of A, b a fractional ideal of B. Then Tr(b) ⊆ a
iff b ⊆ aB∗.

Proof. Assume WLOG a ∕= 0. Then Tr(b) ⊆ a ⇐⇒ a−1 Tr(b) ⊆ (1) ⇐⇒ Tr(a−1b) ⊆ (1) ⇐⇒ a−1b ⊆
B∗ ⇐⇒ b ⊆ aB∗. □

5.4.4. Proposition. For a tower AKBLCM, we have that

DC/A = DC/BDB/A

as ideals of C, and

DC/A = NL/K(DC/B) ·D
[M :L]
B/A

as ideals of A.
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Proof. For a fractional ideal c of C, we have the following equivalence:

c ⊆ D−1
C/B ⇐⇒ TrM/L(c) ⊆ B

⇐⇒ D−1
B/A TrM/L(c) ⊆ D−1

B/A

⇐⇒ TrL/K(D−1
B/A TrM/L(c)) ⊆ A

⇐⇒ TrL/K(TrM/L(D−1
B/Ac)) ⊆ A

⇐⇒ TrM/K(D−1
B/Ac)) ⊆ A

⇐⇒ D−1
B/Ac ⊆ D−1

C/A

⇐⇒ c ⊆ DB/AD−1
C/A.

This implies D−1
C/B = DB/AD−1

C/A, i.e. DC/A = DC/BDB/A. Taking the ideal norm NM/K of both sides, we

get the formula for the discriminant. □

Geometrically, the different ideal corresponds to the ramification divisor. Fix an algebraically closed k,
and let K be a finite type k-algebra of transcendental degree 1. Then K is a finite extension of k(t), and
there is an unique regular projective curve X over k whose function field K(X) = K. Here, X serves as the
analog of Dedekind rings — the stalk at each non-generic point is a DVR. Moreover, any nonempty proper
open subset of X is SpecA for some Dedekind A.

Now, suppose L/K is a finite separable extension of degree n, and L is the function field of another
curve Y . Then there is a dominant morphism π : Y → X, and for any nonempty proper open SpecA ⊂ X,
its preimage is SpecB ⊂ Y . In this case, we return to our familiar AKLB setup, where an ideal of B
corresponds to an effective divisor on SpecB. In the case of the different, because the different is compatible
with localization, the corresponding divisors on SpecB’s glue together to give a divisor on Y . This is called
the ramification divisor R if π : Y → X, and the points that appear are exactly primes that ramify.

The ramification divisor appears in the Riemann-Hurwitz formula: 2gY − 2 = n(2gX − 2) + degR.

5.5. Unramified extensions of complete DVRs.

5.5.1. Theorem. Let A be a complete DVR with residue field k. Let K = FracA. Then there is an
equivalence of categories between the category of finite unramified extensions L/K and the category of finite
separable extensions k′/k, given by the functor F mapping L to its residue field k′.

Proof. It suffices to show the functor F is essentially surjective and fully faithful.
Essentially surjective: consider a finite separable k′/k, say k′ = k[x]/(f(x)) with f(x) monic irreducible

separable of degree n. Lift f to f(x) ∈ K[x] (monic, irreducible and separable), and let L = K[x]/(f(x)).
This is a finite separable extension of K, and suppose its Dedekind ring is B with maximal ideal q. Then
because f is irreducible mod q, L/K is unramified, with residue field B ∼= A[x]/(f(x)), so that B/q =
A[x]/(f(x), q) = k[x]/(f(x)) = k′.

Fully faithful: The map of Homs is given by

HomK(L1, L2) → HomA(B1, B2) → Homk(k
′
1, k

′
2).

The first map is bijective, with inverse given by tensoring a map B1 → B2 with K. So we focus on the
second map. Write k′1 = k[x]/(g(x)) = k(α), and lift α to α ∈ B. Then L1 = K(α), because [L1 : K] = [k′1 :
k] = deg g(x) is at most the degree of the (monic) minimal polynomial g(x) ∈ A[x] of α. Then B1 = A[α]
as well, and HomA(B1, B2) then corresponds bijectively to the roots of g in B2. Similarly, Homk(k

′
1, k

′
2)

corresponds to the roots of g in k′2. But every root of g in k′2 lifts uniquely to a root of g in B2, by Hensel’s
lemma. This finishes the proof. (In fact, here only the fact that L1/K is unramified is used, so L2/K does
not need to be unramified for this to hold.) □

5.6. Totally ramified extensions of complete DVRs. SupposeK is a local field, and fix a separable
closure Ksep/K. The maximal unramified extension of K can be defined as

Kunr =
5

K′⊆Ksep:K′/K f. unram.

K ′.
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5.6.1. Example. Consider the case K = Qp. Because k = Fp, the only finite separable extensions of k are
Fpn , one for each n. As such, there is one unramified extension of Qp of degree n for each n. Therefore,
Qunr

p /Qp is an infinite Galois extension, with Galois group the profinite integers

Gal(Qunr
p /Qp) = Gal(Fp/Fp) = lim←−Gal(Fpn/Fp) = lim←−Z/nZ = )Z =

2

ℓ prime

Zℓ.

Note that Qunr
p has value group Z and residue field Fp.

Now, we show that any finite extension can be broken down into an unramified part and a totally ramified
part. Let A be a complete DVR, K = FracA with residue field k, L/K f. sep. and with residue field ℓ.
Assuming that ℓ/k is separable (which is true e.g. for number fields), each unramified subextension of L/K
corresponds to a separable subextension of ℓ/k, which is contained in ℓ. So the unramified subextension
K ′/K corresponding to ℓ/k contains all unramified subextensions of L/K. We have [K ′ : K] = [ℓ : k] = f ,
so [L : K ′] = e. Also, f = 1 for the extension L/K ′, so in fact it is totally ramified. Furthermore, if L/K is
Galois, then Gal(L/K ′) = IL/K′ = IL/K since everything has size e.

Next, we study totally ramified extensions. Assume AKLB with A,B complete DVRs, L/K totally
ramified with residue field k, and let p = char k.

5.6.2. Definition. Say L/K is tamely ramified if p ∤ e (which is automatically true when k has characteristic
0). Otherwise, say L/K is wildly ramified.

For example, L = K(π1/e) = K[x]/(xe − π) is a totally ramified extension of degree e (here π is a
uniformizer in K). It turns out that all tamely ramified extensions must be of this form:

5.6.3. Theorem. Assume AKLB as above, L/K totally tamely ramified of degree e. Then L = K(π1/e) for
some uniformizer π.

Proof. Choose uniformizers πK of K, πL of L. Then [L : K] ≥ [K(πL) : K] ≥ e = [L : K], so
L = K(πL). We have πe

L = u · πK for some unit u of B. We wish to get rid of that unit to conclude

L = K(π
1/e
K ). This requires us to use the tamely ramified condition.

Because A and B have the same residue field, we may assume WLOG u ≡ 1 (mod q) by adjusting πK

by a unit in A. Now, the polynomial xe − u = 0 has a simple root of 1 in k (since e ∕= 0), so by Hensel’s
lemma it has a root in B. In other words, u has an e-th root in B, so we’re done. □

5.7. Continuity of roots.

5.7.1. Lemma (Krasner’s lemma). Let K be a field complete with respect to a nontrivial non-archimedean
absolute value, and K a separable closure of K. Given an element α ∈ K, let its Galois conjugates be αi. If
an element β ∈ K is such that |α− β| < |α− αi| for all i, then K(α) ⊆ K(β).

Proof. Suppose for contradiction that α /∈ K(β). Then there exists σ ∈ Aut(K/K(β)) sending α to
σα ∕= α. Then |α− β| = |σ(α− β)| = |σα− β| > |α− β|, which is a contradiction. □

We use Krasner’s lemma to derive a result known as “continuity of roots”.

5.7.2. Proposition (Continuity of roots). Let K be a field complete wrt a nontrivial nonarchimedean
absolute value. Then we can uniquely extend the absolute value to K. Let f ∈ K[x] be a separable monic
irreducible degree n polynomial. If g ∈ K[x] of degree n has all coefficients sufficiently close to f ’s, then the
following holds:

• Each root β of g belongs to a root α of f ;
• K(β) = K(α);
• g is separable and irreducible.

Proof. To start with, it is clear that when f and g are close enough, the roots of g have absolutely
bounded size. This is because if g(β) = 0 where g(x) = bnx

n + · · ·+ b0, then

|bn||β|n = |bn−1β
n−1 + · · ·+ b0| ≤ max(|bn−1||β|n−1, . . . , |b0|).

Now, since |β| is bounded by an absolute constant, we have for f, g close enough, if g(β) = 0,
n2

i=1

(β − αi) = f(β) ≈ g(β) = 0.
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So one of the factors |β − αi| must be small. When f, g are sufficiently close, we can force it to be smaller
than all |αi − αj | for i ∕= j, so β belongs to some αi. Then Krasner’s lemma implies K(β) ⊇ K(αi), but the
former is of degree at most n over K and the latter is of degree n, so K(β) = K(αi) and g is irreducible and
separable. □
5.7.3. Corollary. Let K be a degree n extension of Qp. Then there exists a degree n number field F
contained in K, such that FQp = K.

Proof. Let K = Qp(α) = Qp[x]/(f(x)) where f is the min. poly of α. Since Q is dense in Qp, we may
approximate f arbitrarily well by some g ∈ Q[x]. By the continuity of roots, g is separable, irreducible, and
has a root β ∈ K such that Qp(β) = Qp(α) = K. Let F = Q(β), then F is a degree n number field such
that FQp = Qp(β) = K. □

5.7.4. Corollary. Choose an algebraic closure Qp of Qp. Let Q be the algebraic closure of Q inside Qp.

Then QQp = Qp.

5.7.5. Corollary. The map Gal(Qp/Qp) → Gal(Q/Q) given by σ %→ σ|Q is injective. (The image is called

the decomposition subgroup.)

Remark: Gal(Qp/Qp) is a pro-solvable group, while Gal(Q/Q) is very poorly understood.

6. Lattice methods

6.1. Lattices in Rn. We move on to lattice methods in studying number fields (finite extensions of Q).

6.1.1. Definition. Let V be a n-dimensinoal R-vector space. A lattice in V is a subgroup

Λ = Ze1 + · · ·+ Zem
for some linearly independent e1, . . . , em. It is full if m = n.

6.1.2. Proposition. Let Λ ⊂ V be a subgroup, then Λ is discrete iff Λ is a lattice.

Equip V with the dot product in Rn so that we pin down the unit length. Then we get a unique Haar
measure on V , such that V together with the measure is isomorphic to Rn.

6.1.3. Definition. For a set X and a σ-algebra Σ on X, a map µ : Σ → R ∪ {±∞} is a measure if:

• µ(∅) = 0;
• µ(E) ≥ 0 for all E ∈ Σ;
• For a countable family of pairwise disjoint sets Ei ∈ Σ, µ(

"
i Ei) =

$
i µ(Ei).

6.1.4. Theorem (Haar’s theorem). Let G be a locally compact Hausdorff topological group. A Borel set is
an element in the Borel algebra, i.e. the σ-algebra generated by open sets of G. There is a unique (up to
scaling) nontrivial measure µ on the Borel algebra such that:

• µ(gS) = µ(S) (left translation-invariant);
• µ(K) < ∞ for K compact;
• µ(S) = inf{µ(U) : S ⊆ U,U open};
• µ(U) = sup{µ(K) : K ⊆ U,K compact} for U open.

For a full lattice Λ = Ze1 + · · ·+ Zen, let
F = {a1e1 + · · ·+ anen : 0 ≤ ai < 1}.

Then Rn =
3

λ∈Λ(F + λ). Also, vol(F ) = | det(e1, . . . , en)| =
6
det(〈ei, ej〉)i,j .

More generally:

6.1.5. Definition. A fundamental domain for Λ ⊂ V is a measurable F ⊂ V such that V =
3

λ∈Λ(F + λ).

6.1.6. Proposition. If F,G are two fundamental domains then they have the same volume.

Proof. For each λ ∈ Λ, (F +λ)∩G is a translate of F ∩ (G−λ), so they have the same volume. Taking
the sum over λ ∈ Λ, we get vol(G) = vol(F ). □
6.1.7. Definition. The covolume covol(Λ) of a full lattice Λ is defined to be the volume of any fundamental
domain of Λ.
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6.1.8. Proposition. Suppose Λ ⊇ Λ′ are full lattices, then

covol(Λ′) = (Λ : Λ′) covol(Λ).

6.2. Minkowski’s lattice point theorem.

6.2.1. Lemma. Let S ⊂ Rn, vol(S) > 1. Then there exist distinct s, s′ ∈ S, such that s− s′ ∈ Zn.

Proof. Cut up Rn into unit cubes, and translate pieces of S into [0, 1)n. They must overlap. □
6.2.2. Theorem (Minkowski’s lattice point theorem for Zn). Let S ⊂ Rn be a symmetric convex region
such that vol(S) > 2n. Then S contains a nonzero lattice point.

Proof. The dilation 1
2S must contain two distinct points 1

2s,
1
2s

′ where 1
2 (s − s′) ∈ Zn, which is the

point we want. □
6.2.3. Theorem (Minkowski’s lattice point theorem, full version). Let V be a finite dimensional R-vector
space, Λ a full lattice, S ⊂ V a symmetric convex region with vol(S) > 2n covol(Λ), then it contains a
nonzero lattice point.

As an application, we prove the following classical result:

6.2.4. Theorem. If p ≡ 1 (mod 4) is a prime, then p = x2 + y2 for x, y ∈ Z.

Proof. Because (−1
p ) = 1, there exists i ∈ Fp with i2 + 1 ≡ 0 (mod p). Let Λ ⊂ Z2 be the lattice

consisting of points λ (mod p) that is a multiple of (1, i) mod p. Clearly, Λ has index p in Z2, so covol(Λ) = p.
Let S = {x ∈ R2 : |x| <

√
2p}. Then |S| = 2pπ > 4p = 22 covol(Λ), so S contains a lattice point in Λ, which

is necessarily a solution to x2 + y2 = p. □

7. Global fields

7.1. Global fields.

7.1.1. Definition. A global field is a finite extension of Q or Fq(t).

7.2. Places. We transition to a discussion of places, which are like primes but generalizes to the
archimedean case as well.

7.2.1. Theorem. The category of global function fields with field inclusions is equivalent to the category of
smooth projective curves with dominant rational maps, via X %→ K(X).

Let K be a number field.

7.2.2. Definition. A place of K is an equivalence class of nontrivial absolute values on K. The set of all
places is commonly denoted by MK .

By Ostrowski’s theorem, MQ corresponds set-theoretically with SpecZ. Every place v ∈ MK is an
extension of | |p for some p ≤ ∞ (we write v | p for this). We already know that places v | p for finite p
correspond bijectively to primes q | (p).

7.2.3. Proposition. v is archimedean if v | ∞, and nonarchimedean otherwise.

Proof. Complete wrt v to get an extension Kv/Qp, and use theorem 15.1.4. □
7.2.4. Lemma. Suppose K = Q(α). If v | p for p ≤ ∞, then Kv = Qp(α).

Proof. Consider Qp(α), which must be contained in Kv. The absolute value on Qp then extends
uniquely to an absolute value on Qp(α), under which Qp(α) is complete. Since this absolute value concides
with that of Kv and K ⊂ Qp(α), we have Kv = Qp(α). □

The minimal polynomial of α in Kv is then an irreducible factor of the min. poly of α in K. Conversely,
any irreducible factor gives a finite extension F/Qp, which is equipped with a complete absolute value, and
there is a unique extension K ↩→ F , which is the completion of K wrt that absolute value. Therefore we
have

7.2.5. Theorem. K ⊗Q Qp
∼=

%
v|p Kv, for p ≤ ∞.
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7.2.6. Example. If v | ∞, then Kv is a finite extension of R, so either R or C. Suppose K = Q[x]/f(x),
then f(x) in R[x] factors as the product of r1 linear factors and r2 quadratic factors. The linear factors
(x− a) correspond to embeddings K ↩→ R mapping x %→ a (these are the “real places”), and the quadratic
factors (x−z)(x−z) correspond to pairs of embeddings K ↩→ C mapping x %→ z or z (these are the “complex
places”). Then r1 + 2r2 = [K : Q] by counting degrees.

7.2.7. Corollary. The places v | p correspond bijectively to HomQ(K,Qp)/Gal(Qp/Qp).

7.2.8. Definition. If v | p, the normalized absolute value on Kv is |x|v = |NKv/Qp
(x)|p.

7.2.9. Proposition. Suppose p is finite, v | p, and let Ov be the DVR in Kv. If x ∈ Ov, then

|x|v := (#Ov/xOv)
−1.

Proof. We have (NKv/Qp
(x)) = N(xOv) = (Ov : xOv)Zp = χ(Ov/xOv) = (#Ov/xOv). Taking | |p on

both sides gives us the formula. □

7.2.10. Example. If v is complex, then |x|v = |x|2, which is actually not an absolute value! In general,

|x|v = |x|[Kv :Qp]
p for x ∈ Q. This normalization is “intrinsic”, because given x ∈ OK , multiplication by x

scales the Haar measure on Kv by a factor of |x|v.

7.2.11. Theorem (Product formula). If x ∈ K×, then
%

v∈MK
|x|v makes sense and is equal to 1.

Proof. NK/Q(x) = NK⊗QQp/Qp
(x) =

%
v|p NKv/Qp

(x), so taking | |p on both sides gives us

|NK/Q(x)|p =
2

v|p

|x|v.

Taking the product over all p an using the product formula for Q, we get the desired formula. □

7.3. Orders. We are on our way to apply Minkowski’s lattice point formula to say something nontrivial
about the ideal class group.

7.3.1. Definition. An order in a number field K is a subring O of finite index in OK .

Equivalently, O is a Z-lattice in K that is also a ring.
For an order O, we have the following inclusions:

O ↩→ K ↩→ KR := K ⊗Q R ↩→ KC := KR ⊗R C.

Thus, O is a lattice in the R-vector space KR. The canonical Hermitian inner product on Cn restricts to
an inner product on KR ∼= Rn (note that this inner product is not equal to the canonical one on Rn: for
example, (x, y) = x + yi ∈ C is embedded as (x + yi, x − yi) ∈ C2, so (x + yi, x − yi) · (z + wi, z − wi) =
2(xy+ zw) = 2(x, y) · (z, w). Consequently, the volume under this inner product is scaled by a factor of 2r2).
For x, y ∈ K, we then get an inner product

〈x, y〉 =
!

σ:K↩→C
σx · σy.

7.3.2. Proposition. covol(O) =
6
| discO|.

Proof. Let e1, . . . , en be a Z-basis of O. Let A = (σ(ej))σ,j ∈ Mn×n(C). Then | discO| = (detA)2.

But covol(O)2 = det〈ei, ej〉 = det(
$

σ σei · σej) = | detA|2. So covol(O) =
6
| discO|. □

7.3.3. Corollary. Suppose I is an invertible fractional O-ideal, then covol(I) =
√
discO ·N(I).

7.4. Finiteness of the class group, and other applications. Now we are ready to apply Minkowski’s
lattice point theorem to show that every fractional ideal contains a relatively short vector. Use (r, s) to denote
(r1, r2).

7.4.1. Theorem. Let K be a number field, O an order. Let m = n!
nn (

4
π )

s
6
| discO|, then for any invertible

fractional O-ideal I, there exists a nonzero a ∈ I, such that |N(a)| ≤ m · |N(I)|.
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Proof. Let S = {z = (zσ)σ∈HomQ(K,C) ∈ KR :
$

|zσ| < t}, where t is a constant we fix later. Then it

is not hard to show that vol(S) = 2rπs tn

n! . Choose t such that vol(S) > 2n covol(I). By Minkowski’s lattice

point theorem, there exists nonzero a ∈ I lying in S, such that t >
$

σ |σa| ≥ n n
6%

σ |σa| = n n
6
|NK,Q(a)|.

We know that t can be chosen to be arbitrarily close to n

7
( 4π )

sn!
√
discO · |N(I)| from above, so we see that

|N(a)| = |NK,Q(a)| ≤
n!

nn
pr

4

π

s6
| discO| · |N(I)| = m · |N(I)|,

as desired. □

7.4.2. Corollary. Every ideal class contains an integral ideal of norm at most m.

Proof. Let [I] be the inverse of the target ideal class, then there exists a ∈ I, such that |N(a)| ≤
m · |N(I)|. This means that (a)I−1 is an integral ideal in the target ideal class, whose norm is at most
m. □

7.4.3. Lemma. There are finitely many ideals of norm at most m.

Proof. It suffices to show that Zn has finitely many subgroups of a given index. This is because any
subgroup of index q contains (qZ)n, so there can only be finitely many. □

7.4.4. Theorem. The class group of a number field is finite.

7.4.5. Proposition.
√
discOK ≥ nn

n! (
π
4 )

s ≥ nn

n! (
π
4 )

n/2.

Proof. Take I to be the unit ideal, so that its norm is 1. Because the norm of any nonzero element is
at least 1, m ≥ 1. □

7.4.6. Corollary. If K ∕= Q, then | discOK | > 1. In other words, there are no everywhere unramified
nontrivial extensions of Q.

7.4.7. Proposition. There are finitely many number fields K with | discOK | < B, for any real B.

Proof. By proposition 7.4.5, it suffices to show that there are finitely many such number fields of any
fixed degree n.

Case 1: K is totally real. Let S := {(x1, . . . , xn) ∈ Rn : |x1| ≤ 2B1/2, |xi| < 1 for all i ∕= 1}. Then
vol(S) ≈ 2n+1B1/2 > 2n| discOK |1/2 = 2n covol(OK). By Minkowski, there exists a nonzero α ∈ OK ⊂ Rn

in S. Then
%

|αi| = |N(α)| ≥ 1 while |α2|, . . . , |αn| < 1, which forces |α1| > 1. If Q(α) ∕= K, then each αi

will be repeated [K : Q(α)] times (by the norm formula), which is not the case because α1 is the only one with
absolute value larger than 1. The minimal polynomial of α, which is in Z[x], has finitely many possibilities,
since its coefficients, as symmetric functions in its roots which have bounded sizes, have bounded sizes. So
there are only finitely many possibilities for K also.

Case 2: The signature of K is (r, s), then KR ∼= Rr × Cs. Let S := {(x1, . . . , xr, z1, . . . , zs) ∈ Rr × Cs :
|z1|2 ≤ cB1/2, |xi|, |zj | < 1 for all i and for all j ∕= 1}, where c is large enough that vol(S) > 2n covol(OK).
The argument in Case 1 continues verbatim. □

7.4.8. Lemma. Let K be a number field of degree n, then for any prime p, vp(DK) ≤ n
8
logp n

9
+ n− 1.

Proof. We have vp(DK) = vp(N(DK)) =
$

q|p fqvq(DK) ≤
$

q|p fq(eq−1+vp(eq)) ≤ n−1+n
8
logp n

9

by trivial bounding. □

7.4.9. Theorem (Hermite). Let S be a finite set of places of Q, and let n be an integer. Then there are
finitely many number fields K of degree n that are unramified outside S.

Proof. Each valuation vp(DK) is bounded, so DK is bounded, so there are finitely many K’s. □
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7.5. Adèle ring. Let K be a global field, v a place, Ov the valuation ring of Kv (defined to be equal
to Kv when v is archimedean). The normalized absolute value induces a topology on Kv, under which it is
locally compact. Furthermore, if v is nonarchimedean, Ov is compact.

We now define the adèle ring of K, which will be a topological ring:

7.5.1. Definition. The adèle ring AK of a global field K is the restricted product
2′

v
(Kv,Ov),

which as a set is equal to

{(av) ∈
2

Kv : all but finitely many av ∈ Ov}.
It is easy to verify that this forms a ring. The topology on this is finer than the subset topology of the
product topology; instead, a base is given by open sets of the form

%
v Uv, where Uv ⊆ Kv are open and all

but finitely many Uv = Ov. (In particular,
%

v Ov is a locally compact open.)

7.5.2. Proposition. A = AK is locally compact.

Proof.
%

v Ov is a locally compact neighborhood of 0. □

Because any element of K has only finitely many absolute values where it is 1, K embeds into AK

naturally.

7.5.3. Proposition. If L/K is a finite separable extension of global fields, AL
∼= L ⊗K AK as topological

rings.

In fact, K ↩→ A is very much like the embedding Z ↩→ R:

7.5.4. Theorem. K is a discrete subgroup of A, and A/K is compact.

Proof. We only prove this for K = Q, and the number field case then follows from proposition 7.5.3.
The function field case follows from a similar argument, so we focus on Q form here.

Discreteness of Q: U = (−1, 1)×
%

p Zp is an open neighborhood of 0 that contains no points of Q.

Compactness of A/Q: we claim that A = Q+ [0, 1]×
%

p Zp. Given x = (xp)p≤∞, expand xp in powers

of p, and let yp be the decimal part of xp (i.e. xp − yp ∈ Zp and the denominator of yp is a power of p).
Almost all yp are zero, so it makes sense to talk about x −

$
p yp, which belongs to every Zp. Now adjust

by an integer to get in [0, 1]. □

7.6. Idèle group.

7.6.1. Definition. The idèle group is A× =
%′

v(K
×
v ,O×

v ), with the restricted product topology.

Remark: This is finer than the topology inherited as a subspace of A! For example,
%

O×
v is open in

A× but not in A. But the topology is induced from A via the map A× ↩→ A× A, x %→ (x, x−1).

7.6.2. Proposition. K× is discrete in A×.

Proof. K× = A× ∩ (K ×K) inside A× A, so it is discrete. □

7.6.3. Definition. For an idèle a = (av)v ∈ A×, define |a| =
%

v |av|v.

This is also the correct notion of “size” in terms of scaling the Haar measure.

7.6.4. Definition. The group A×
1 = ker(A× | |−→ R×

>0).

7.6.5. Proposition. K× embeds into A×
1 .

Let K be a number field for now. We also have a natural map A× → I assembled from each K×
p

vp−→ Z.
This is surjective (in contrast to the case where A× is replaced with the group of principal fractional ideals,
when there is a problem with the class group). Also, it is clear that ker(A× → I) =

%
v O×

v .
The ideal class group Cl(OK) can be recast in adelic language:

Cl(OK) = I/K× =
A×

K× ·
%

O×
v
.
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7.6.6. Definition. The idèle class group is A×/K×.

7.6.7. Theorem. A×
1 /K

× is compact.

This is a hard theorem and directly implies finiteness of the class group.

7.6.8. Definition. For d = (dv)v ∈ A×, define the adelic parallelotope (box)

L(d) := {(xv) ∈ A : |xv|v ≤ |dv|v for all v},
and

L(d) = L(d) ∩K

is the set of lattice points in the box.

Clearly L(d) is a compact neighborhood of 0. In the function field case, L(d) is like “functions with
prescribed orders of poles and zeroes”, cf. Riemann-Roch. Since K is discrete in A, L(d) is discrete and
compact, hence finite.

7.6.9. Theorem (Adelic Minkowski). There exists a constant c (depending on K), such that if |d| > c, then
L(d) contains a nonzero element.

Proof. We only prove this for number fields. Then d maps to some ideal I. For x ∈ K, unwrapping
the condition |x|v ≤ |dv|v for archimedean and nonarchimedean v, we need x ∈ I (which is a lattice in KR)
and x belongs to a product of intervals and disks, a symmetric convex set in KR. When |d| is big enough,
Minkowski’s theorem applies and we get a nonzero point in L(d). □

7.7. Strong approximation. Let K be a global field. For any finite set of places S containing all
archimedean places, the S-integral adèles are elements of the ring

AS :=
2

v∈S

Kv ×
2

v/∈S

Ov.

This is equipped with the actual product topology. For S ⊆ T , there is a natrual AS ↩→ AT . Then

A = lim−→
S

AS .

Here is a corollary of the adelic Minkowski theorem, about scaling a box by elements of K× to fit in
another box.

7.7.1. Corollary. If a, b ∈ A× such that |b| > c|a| (where) c is as in theorem 7.6.9. Then there exists
u ∈ K×, such that uL(a) ⊆ L(b).

Proof. By adelic Minkowski, there exists u ∈ K× such that u ∈ L(b/a). This is the same as uL(a) ⊆
L(b). □

7.7.2. Lemma. There exists a ∈ A×, such that A = K + L(a).

Proof. Just for this problem, let L(d)′ be the same as L(d), except it is open for archimedean v. These
are open neighborhoods of 0 that cover A, so their images in A/K cover A/K. The image is open because
its preimage is the union of all translations of L(d)′ by elements of K. Since A/K is compact, we need only
finitely many L(d)′s whose images cover A/K. So we can choose a big enough such that L(a) contains each
of the finitely many L(d)′s. □

7.7.3. Lemma. If b ∈ A×, |b| sufficiently large, then A = K + L(b).

Proof. Combine the previous two claims. □

7.7.4. Theorem (Strong approximation). Let K be a global field, and suppose that the set of places of K
are partitioned into S ⊔ T ⊔ {w}, where S is finite. For each v ∈ S, fix av ∈ Kv and a real εv > 0. Then
there exists x ∈ K such that:

• |x− av|v ≤ εv for all v ∈ S;
• |x|v ≤ 1 for all v ∈ T .

Note that |x|w may behave wildly.
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Proof. Define av = 0 for all v /∈ S to make an adèle a = (av)v. For v ∈ S: we may shrink εv so that
εv = |bv|v for some bv ∈ Kv. For v ∈ T : let bv = 1. Let bw ∈ Kw be large enough that |b| =

%
v |bv|v is large

enough, as in the previous lemma. Then there exists x ∈ K, x− a ∈ L(b), which is what we wanted. □

7.8. Compactness of A×
1 /K

×.

7.8.1. Lemma. A×
1 is a closed subset of A and of A×, and the two subspace topologies coincide.

Proof. First of all, we remark that A×
1 is closed because it is cut out by an equation. So it suffices to

show that the two subspace topologies coincide.
We claim that for any idèle a = (av)v, A×

1 ∩ L(a) ⊆ A×
S for some finite S. To show this claim, let S

contain the places v such that |av|v ∕= 1 and the nonarchimedean places whose residue field has size at most
|a|, as well as the archimedean ones. If (xv)v ∈ A×

1 ∩L(a), then at all w /∈ S, |xw|w ≤ |aw|w = 1, so xw ∈ Ow.
If |xw|w < 1, then |xw|w ≤ 1

q where q is the size of the residue field at w. Then |x| ≤ |a|/q < 1, which is a

contradiction to x ∈ A×
1 . So x ∈ A×

S and the lemma is proved.

Now, because the topology of A×
S is just the product topology, it is the same in both A and A×. Because

A×
1 is covered by A×

1 ∩ L(a)’s, we are done. □

7.8.2. Theorem. A×
1 /K

× is compact.

Proof. Choose d ∈ A× large enough for the adelic Minkowski. By the above lemma, A×
1 ∩ L(d) is

closed inside L(d), which is compact. So A×
1 ∩ L(d) is compact.

It remains to show that A×
1 ∩ L(d) surjects onto A×

1 /K
×. Given any u ∈ A×

1 , we have |d/u| = |d|, so
there exists a nonzero element x ∈ K× in L(d/u) by adelic Minkowski. This is equivalent to ux ∈ L(d), but
ux ∈ A×

1 also. So the above map is indeed a surjection, which tells us that A×
1 /K

× is compact. □

7.9. Finiteness of the class group, second proof. We will use the compactness of A×
1 /K

× to show:

7.9.1. Theorem (finiteness of class group). We have:

(1) If K is a number field, then Cl(OK) is finite.
(2) If K is a global function field, and X is the associated smooth projective curve, then Pic0(X) =

Div0(X)/ im(K×) is finite.

Proof. (1) Consider the natural surjective map A× ↠ I. The induced A×
1 → I is still surjective because

we can always normalize at archimedean places. So we get a surjection A×
1 /K

× ↠ I/ im(K×) = Cl(OK).
The kernel of this map is open, so the LHS quotient the kernel is compact and discrete, hence finite.

(2) Consider the natural surjective map A× ↠ Div(X), which induces A×
1 ↠ Div0(X). So we get a

surjection A×
1 /K

× ↠ Pic0(X), and we can argue as in (1). □

7.10. Dirichlet’s unit theorem.

7.10.1. Definition. Let S be a set of places containing all archimedean ones. Let

OS = {x ∈ K : |xv|v ≤ 1 for all v /∈ S}.
Then OS = AS ∩K, and O×

S = A×
S ∩K×. Let µ = (O×

S )tors = (K×)tors be the group of roots of unities.

Define a continuous homomorphism

Log : A×
S → RS

(av) %→ (log |av|v)v∈S .

7.10.2. Lemma. Let S be the set of archimedean places. Then the induced map Log : A×
S,1 → RS

0 is
surjective. □
7.10.3. Lemma. The induced Log : O×

S → RS has finite kernel and discrete image.

Proof. Let B be a compact neighborhood of 0. Then Log−1(B) is contained in some L(d), so
Log−1(B) ∩ K× is finite. In particular, Log has finite kernel, and 0 is an isolated point in the image,
i.e. the image is discrete. □

7.10.4. Corollary. ker(Log : O×
S → RS) = µ, and Log(O×

S ) is a free abelian group of finite rank.
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Proof. Clearly, µ is in the kernel. Because the kernel is finite, it must be torsion. □
7.10.5. Theorem (Dirichlet’s S-unit theorem). Let K be a number field, then O×

S is finitely genrated with
rank |S|− 1 = r1 + r2 − 1.

Proof. We only prove this in the case where S is the set of archimedean places. By the previous
corollary, O×

S is finitely generated (µ is contained in some adelic parallelotope intersect K×, hence finite).

Consider the open and closed inclusion A×
S,q ↩→ A×

1 , which induces a map A×
S,1/O

×
S → A×

1 /K
×. This

is open and closed, and the RHS is compact, so the LHS is compact also. Under the log map, A×
S /O

×
S →

RS
0 / log(O×

S ) is surjective, so the RHS is compact as well. This means that the lattice is a full lattice, i.e. is
of full rank |S|− 1. □

8. Cyclotomic fields

8.1. Cyclotomic fields. We transition to the next topic, cyclotomic fields. Let n be a natural number,
K be a field whose characteristic does not divide n, and let L be the splitting field of the separable polynomial
xn − 1 in K, i.e. L = K(ζn). We get an injection Gal(L/K) ↩→ (Z/nZ)×, which is not always surjective.
However, this is surjective when K = Q. This amounts to showing that Φn(x) is irreducible in Q[x]. Consider
the discriminant disc(xn − 1) = ±nn. Let f(x) be a factor of xn − 1, and ζ a root of f . Let p be a prime
coprime to n. Suppose ζp is not a root of f , then f(ζp) ∕= 0 is a product of differences of roots of unity, hence
an algebraic integer dividing nn. But f(ζp) ≡ f(ζ)p = 0 mod p, so p | f(ζp), so p | nn, a contradiction. So
ζp is a root of f . By induction, ζm is a root of f for any m coprime to n, as desired.

Another way to write the proof is as follows:

8.1.1. Proposition. If a prime p is coprime to n, then Q(ζn)/Q is unramified above p, and Frobp acts by
ζn %→ ζpn.

So all primes coprime to n lie in the image of Gal(Q(ζn)/Q) → (Z/nZ)×, so it must be surjective.

8.1.2. Corollary. If p ∤ n, then fp = [Fq : Fp] is equal to the order of Frobp in G, which is equal to the
order of p in (Z/nZ)×.
8.1.3. Proposition. The ring of integers in Q(ζn) is Z[ζn].

Proof. Induct on the number of primes dividing n. Suppose n = mpr, p ∤ m. We have a tower of
extensions K = Q(ζm)/Q, and K(ζpr )/K. By induction we know that OK = Z[ζm].

We claim that OK [ζpr ] is integrally closed. This can be checked after localizing at each prime p in K,
i.e. (OK)p[ζpr ] is integrally closed. Consider

Φpr (x) =
xpr − 1

xpr−1 − 1
= 1 + xpr−1

+ x2pr−1

+ · · ·+ x(p−1)pr−1

.

If p lies above p, then Φpr (x + 1) is Eisenstein at p (this uses that p ∤ m, which implies p is unramified),
so (OK)p[ζpr ] is a DVR (see §2.6). But there can be no nontrivial rings between a DVR and its field of
fractions, so (OK)p[ζpr ] is integrally closed.

If p | ℓ ∕= p, then xpr − 1 is separable mod ℓ, and so is Φpr (x) mod p. So (Ok)p[ζpr ] is a DVR (?), and
therefore integrally closed. □

9. Analytic number theory

9.1. Zeta functions. We transition to yet another topic: analytic number theory. A good reference is
Davenport’s Multiplicative Number Theory.

9.1.1. Definition (Riemann zeta function). For Re(s) > 1,

ζ(s) :=
2

p

1

1− p−s
=

!

n≥1

n−s.

9.1.2. Definition (Dedekind zeta function). Let K be a number field,

ζK(s) :=
2

nonzero p

1

1−N(p)−s
=

2

nonzero a

N(a)−s.

where N(p) is the absolute norm, i.e. N(p) = p[Fp:Fp] = |OK/p|.
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9.1.3. Proposition. There are infinitely many primes. Even better,
$

1
p diverges.

Proof. Clearly, lims→1+ ζ(s) = ∞, so log ζ(s) =
$

p − log(1 − p−s) also tends to ∞. Expanding as a

Taylor series, the main part is
$

1
ps and the rest is obviously bounded. □

9.1.4. Proposition. ζ(s) = 1
s−1 + φ(s), where φ(s) extends to a holomorphic function on Re(s) > 0.

Proof. For Re(s) > 1,

ζ(s) =
!

n≥1

n−s

=
!

n≥1

n(n−s − (n+ 1)−s)

=
!

n≥1

prn

: n+1

n

sx−s−1dx

= s

: ∞

1

⌊x⌋x−s−1dx

=
1

s− 1
+ pr 1− s

: ∞

1

{x}x−s−1dx,

where the latter term (which we call φ(s)) converges absolutely for Re(s) > 0, and uniformly so on Re(s) ≥ ε
for any ε > 0. □

9.1.5. Proposition. The following are true about ζ(s):

(1) memoromorphic on C; has a simple pole at 1, and no other poles
(2) functional equation
(3) trivial zeros at negative even numbers
(4) (infinitely many) all other zeros lie in the critical strip 0 < Re(s) < 1, conjectured to all lie on

Re(s) = 1/2.

9.2. Character theory of finite abelian groups.

9.2.1. Theorem (Dirichlet). If gcd(a,m) = 1, then there exist infinitely many primes congruent to a mod
m.

9.2.2. Definition. A mod m Dirichlet character is a character on (Z/mZ)×, i.e. a homomorphism

χ : (Z/mZ)× → C×.

Extend to χ : Z≥0 → C by mapping to zero the numbers a not coprime to n.

We review some character theory of finite abelian groups.

9.2.3. Proposition. For a character χ ∈ )G,

!

g∈G

χ(g) =

4
|G| if χ is trivial,

0 otherwise.

Proof. When χ is nontrivial, there exists a ∈ G, with χ(a) ∕= 1. Let s be the sum. Then

χ(a)s =
!

g

χ(ag) =
!

g

χ(g) = s,

so s = 0. □

9.2.4. Proposition. For an element g ∈ G,

!

χ∈ !G

χ(g) =

4
| )G| = |G| if g = 1,

0 otherwise.

The proof is similar.
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9.2.5. Theorem (Fourier transform on finite abelian groups). Any function f : G → C× is a linear
combination of characters:

f =
!

χ

)f(χ)χ

where
)f(χ) = 1

|G|
!

g

χ(g−1)f(g).

Proof. By linearity, it suffices to prove this for a basis of functions G → C×. Take f to be the indicator
function for a ∈ G. Then

)f(χ) = 1

|G|χ(a
−1).

So
$

χ
)f(χ)χ(g) = 1

|G|χ(a
−1g), which is 1 when a−1g = 1G and 0 otherwise, i.e. the same as f . □

9.3. Proof of Dirichlet’s theorem, minus two theorems.

9.3.1. Definition. Let χ be a Dirichlet character mod m. Define the Dirichlet L-series

L(s,χ) =
2

p

1

1− χ(p)p−s
=

!

n≥1

χ(n)n−s.

This a priori converges absolutely for Re(s) > 1.

9.3.2. Proposition. If χ ∕= 1 (the trivial character), then L(s,χ) extends to a holomorphic function for
Re(s) > 0.

Proof. Let T (x) :=
$

1≤n<x χ(n) for x ∈ R. This is periodic with period m, hence bounded. So

L(s,χ) =
!

n≥1

χ(n)n−s

=

: ∞

1

x−sdT (x)

= x−sT (x)|∞1 −
: ∞

1

−T (x)sx−s−1dx

= s

: ∞

1

T (x)x−s−1dx

where we’ve used the Riemann-Stieltjes integral. (Here it is just a fancy way to justify summation by parts.)
This integral converges as long as Re(s) > 0. Furthermore, it converges uniformly on Re(s) ≥ ε for every ε,
so L can be extended holomorphically to Re(s) > 0. □

Proof of theorem 9.2.1, Dirichlet’s theorem on arithmetic progressions. Writing the in-
dicator function as the sum of characters,

!

p≡a

p−s =
!

p

p−s pr
1

φ(m)

!

χ

χ(a−1)χ(p)

=
1

φ(m)

!

χ

χ(a−1) pr
!

p

χ(p)p−s

=
1

φ(m)

!

χ

χ(a−1) pr logL(s,χ) +O(1)

=
1

φ(m)
logL(s,1) +

1

φ(m)

!

χ ∕=1

χ(a−1) logL(s,χ) +O(1).

We have
logL(s,1) = log ζ(1) +O(1) → ∞

as s → 1+. The goal now is to show that the other terms are in fact O(1) as s → 1+. It is then sufficient to
show that if χ ∕= 1, L(1,χ) ∕= 0. This would follow from the following two theorems, by analyzing the order
of vanishing at s = 1. □
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9.3.3. Theorem. Up to Euler factors at primes dividing m,

ζQ(ζm)(s) =
2

χ:(Z/mZ)×→C×

L(s,χ).

9.3.4. Theorem. For any number field K, ζK(s) has a simple pole at s = 1.

We first remark that the proof above in fact shows that δ({p ≡ a (mod m)}) = 1
φ(m) .

Proof of theorem 9.3.3. We compare the two sides. Consider a prime p ∤ m (so unramified), and
consider primes p | p. So ep = 1, fp is the order of p in (Z/mZ)×, and gp = φ(m)/fp. The corresponding
term on the LHS is 2

p|p

(1−N(p)−s)−1 = (1− (p−s)fp)−gp .

So it suffices to show that 2

χ

(1− χ(p)p−s) = (1− (p−s)fp)gp .

Among the characters χ of (Z/mZ)×, the values of χ(p) are 1, µf , µ
2
f , . . . , µ

fp−1, where µf is a primitive f -th
root of unity, each with multiplicity gp. This completes the proof. □

9.3.5. Theorem (analytic class number formula). Let K be a number field, then ζK(s) extends to a mero-
morphic function in a neighborhood of s = 1 with a simple pole at 1. Moreover,

lim
s→1

(s− 1)ζK(s) =
vol(A×

1 /K
×)

vol(A/K)
=

2r1(2π)r2hKRK/wk6
|DK |

,

where hK = #ClK , wK = #µK .

We will prove the latter equality and, in particular, define the volumes, so we will do a bit of review of
measure theory. The former equality will be proven next semester in 18.786, using methods in Tate’s thesis.

10. Analysis preliminaries

10.1. Measure theory.

10.1.1. Definition. Let X be a set, M a collection of subsets of X. If M is closed under countable unions
and complements, call M a σ-algebra.

10.1.2. Example. Let X be a topological space. The set of Borel sets B is the σ-algebra generated by the
open sets.

The sets in M are called measurable sets.

10.1.3. Definition. A function f : X → C is called measurable if the inverse image of measurable subsets
are measurable. (It suffices to check the inverse images of open disks.)

10.1.4. Definition. A measure on (X,M ) is a function µ : M → [0,∞] such that µ(
"
Ai) =

$
µ(Ai) for

any countable collections of disjoint measurable sets. Call µ the Borel measure if M = B. A null set is a
subset N ⊆ X contained in a measure-0 set. It is easy to enlarge M so that all null sets are measurable. A
function f : X → C is a null function if {x ∈ X : f(x) = 0} is a null set.

We now define in stages a notion of integrals. Fix (X,M , µ).

• Given S ∈ M with µ(S) < ∞, let 1S be the function that is 1 on S and 0 on X − S. Then define;
1S = µ(S).

• A step function f is a finite C-linear combination of 1S ’s. Define
;
f linearly.

• Define the L1 norm of f , ‖f‖1 :=
;
|f | ∈ R≥0. Call a function f : X → C integrable if outside a

null set, it is equal to the pointwise limit of some L1-Cauchy sequence (fi) of step functions. Then
define

;
X
fdµ =

;
f = limi

;
fi ∈ C. (The pointwise limit of measurable functions is measurable,

so in particular integrable functions are measurable.)
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10.2. Radon measures and integrals. There is an alternative definition of integration for all mea-
surable functions f : X → [0,∞], which agrees with the previous definition if f is integrable:

;
f := sup{

;
g : g is a step function and 0 ≤ g ≤ f} ∈ [0,∞].

Also, for a measurable function f : X → C, f is integrable iff |f | is integrable, in which case we have
|
;
f | ≤

;
|f |.

10.2.1. Theorem (Monotone convergence theorem). Suppose (fn) is a sequence of measurable functions
X → [0,∞] such that 0 ≤ f1 ≤ f2 ≤ . . . , then the pointwise limit f satisfies

;
f = lim

;
fn.

10.2.2. Theorem (Dominated convergence theorem). Suppose measurable functions f1, f2, · · · : X → C
converge pointwise to f : X → C. If there is an integrable g : X → C such that |fn| ≤ |g| for all n, then f
and fn are all integrable and

;
f = lim

;
fn.

10.2.3. Definition. Let X be a Hausdorff topological space. X is locally compact if every x ∈ X has a
compact neighborhood (i.e. x ∈ U ⊆ K where U open and K compact).

10.2.4. Definition. An outer Radon measure is a Borel measure (a measure on B) such that:

• (locally finite) Every x ∈ X has an open neighborhood U such that µ(U) < ∞;
• (outer regular) Every S ∈ B satisfies µ(S) = inf{µ(U) : U ⊇ S open};
• (inner regular) Every open U satisfies µ(U) = sup{µ(K) : K ⊆ U compact};

Let C(X) be the C-vector space of continuous functions f : X → C, and let Cc(X) be the C-vector
space of continuous functions with compact support.

10.2.5. Definition. A Radon integral on X is a C-linear map I : Cc(X) → C such that I(f) ≥ 0 if f ≥ 0.
(It is assumed that f is real-valued.)

Given an outer Radon measure µ, we can define an integral Iµ : f %→
;
X
fdµ. The converse is:

10.2.6. Theorem (Riesz–Markov–Kakutani representation theorem). Let X be a LCH space, then the map

{outer Radon measures µ} → {Radon integrals on X}
by µ %→ Iµ, is a bijection.

10.2.7. Example. Let X = Rn, the Riemann integral corresponds to the Lebesgue measure.

10.2.8. Example. Examples of LCH topological groups:

• R,C,Zp,Qp,A;
• The unit groups A× of any of the above topological rings;
• GLn(A) of any of the above;
• Any group equipped with the discrete topology.

10.3. Haar measures.

10.3.1. Definition. Let G be a LCH topological group. A left Haar measure on G is a nonzero left-invariant
outer Radon measure.

Theorem 6.1.4 says that such a measure always exists and is unique up to multiplication by a positive
constant.

10.3.2. Proposition. G is compact iff µ(G) < ∞. In this case, the normalized Haar measure is the unique
Haar measure with µ(G) = 1.

10.3.3. Example. Examples of Haar measures:

• On Rn, the Lebesgue measure is a Haar measure;
• On a discrete group, the counting measure is a Haar measure.

10.3.4. Definition. An LCA group is a locally compact abelian Hausdorff topological group. This forms a
category, with morphisms being continuous homomorphisms.

For example, T ∼= R/Z is the unit circle in the complex plane; it is an LCA group.

10.4. Duality of locally compact abelian groups.
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10.5. Dec. 7.

10.6. Dec. 9.

10.7. Dec. 12.

10.8. Dec. 14.

11. Local class field theory: Setup

11.1. Kronecker–Weber theorem.

11.1.1. Theorem (global KW). Any finite abelian extension of Q is contained in a cyclotomic extension
Q(ζm).

11.1.2. Theorem (local KW). Any finite abelian extension of Qp is contained in a cyclotomic extension
Qp(ζm).

11.1.3. Lemma (Galois group of compositum). Let L1, L2/K be finite Galois extensions that lie in some
bigger extension Ω/K. Then L1L2 is Galois over K, with

Gal(L1L2/K) ∼= {(σ1,σ2) ∈ Gal(L1/K)×Gal(L2/K) : σ1|L1∩L2 = σ2|L1∩L2}.

11.1.4. Proposition. Local KW implies global KW.

Proof. Consider each prime p ∈ Z where a finite abelian extension K/Q is ramified. Fix p | p to be
a prime in K above p, and consider the extension Kp/Qp, which is finite abelian with Gal(Kp/Qp) = Dp.
Assuming local KW, suppose Kp ⊆ Qp(ζmp). Let np = vp(mp) and m =

%
pnp , among all (finitely many) p

that ramify. Let L = K(ζm). It suffices to show L = Q(ζm).
Because L = K ·Q(ζm), L/Q is abelian as well. Pick a prime q | p in L/K, then Lq is also finite abelian

over Qp. Let Fq be the maximal unramified extension of Qp in Lq. Then Lq/Fq is totally ramified with
Galois group Iq =: Ip, which only depends on p (since the Galois group is abelian).

We claim that Ip ∼= (Z/pnpZ)×. To show this, notice that Qp(ζmp/p
np ) is unramified over Qp, so

Kp ⊂ Fq(ζpnp ). Now, since Lq ⊇ Kp(ζm) and [Lq : Kp] = [L : K], Lq = Kp(ζm) ⊆ Fq(ζpnp ), so in fact
Lq = Fq(ζpnp ). So we have the following field inclusions

Lq

Fq Qp(ζpnp )

Qp,

where Qp = Fq ∩Qp(ζpnp ) since one is unramified and the other is totally ramified. So

Ip = Gal(Lq/Fq) = Gal(Qp(ζpnp )/Qp) ∼= (Z/pnpZ)×.
Now, let I be the subgroup of Gal(L/Q) generated by Ip’s. Then

|I| ≤
2

|Ip| =
2

φ(pnp) = φ(m) = [Q(ζm) : Q].

Let LI be the fixed field of I. Then LI/Q is unramified, so LI = Q. This means

[L : Q] = [L : LI ] = |I| ≤ [Q(ζm) : Q] ≤ [L : Q],

so L = Q(ζm) as desired. □

11.1.5. Proposition. It suffices to show local KW for cyclic extensions with Galois group Z/ℓrZ.

Proof. For an arbitrary abelian extension K/Qp, decompose its Galois group into the product of prime-
power cyclic groups Hi, and let Ki = KHi . Then K =

<
Ki (compositum), from which the proposition is

clear. □

Now we begin the proof of local KW, with Gal(K/Qp) ∼= Z/ℓrZ. There are three cases:
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• tamely ramified case, ℓ ∕= p;
• wildly ramified case with odd degree, ℓ = p ≥ 3;
• wildly ramified case with even degree, ℓ = p = 2.

Proof of case 1. Let F be the maximal unramified extension of Qp in K. Then F/Qp is already equal
to some cyclotomic extension (to see this, consider the corresponding finite separable extension of residue
fields; the Galois group of finite field extensions is cyclic). Furthermore, K = F (π1/e) for some uniformizer π
in F (cf. 5.6.3). Assume that π = −pu, where u ∈ O×

K . Then K lies in the compositum F ((−p)1/e) ·F (u1/e),
and it suffices to show both are included in some cyclotomic extension of F .

For F (u1/e)/F , it is unramified since the discriminant is disc(xe − u), which is a unit in F . This implies
that it is also equal to some cyclotomic extension.

Consider K(u1/e)/Qp, which is the compositum of K and F (u1/e), so it is also an abelian extension.

Therefore, since F ((−p)1/e) ⊆ K(u1/e), Qp((−p)1/e)/Qp is Galois as well, which implies ζe ∈ Qp((−p)1/e)

because Qp((−p)1/e) then must contain all e-th roots of −p. And it is totally ramified since the minimal

polynomial of (−p)1/e, xe + p, is Eisenstein. Since Qp(ζe) ⊂ Qp((−p)1/e) is unramified over Qp, we conclude
Qp(ζe) = Qp. Because the residue field of Qp contains only (p− 1)-th roots of unity, e | (p− 1). Then

Qp((−p)1/e) ⊆ Qp((−p)1/(p−1)) = Qp(ζp),

by the lemma that follows. But from this we conclude that F ((−p)1/e) is also in some cyclotomic extension,
so we are done. □

11.1.6. Lemma. Qp((−p)1/(p−1)) = Qp(ζp).

Proof. Let α = (−p)1/(p−1). Then αp−1 + p = 0, which is an Eisenstein polynomial of degree p− 1, so
α is a uniformizer for Qp(α). Let π = ζp− 1, whose minimal polynomial is also Eisenstein of degree p− 1, so
π is a uniformizer for Qp(ζp). The goal now is to show that α ∈ Qp(ζp), from which the lemma will follow
by a degree argument.

Let u = −πp−1/p ≡ 1 (mod π), so u is an unit in the valuation ring of Qp(ζp). Consider g(x) = xp−1−u,
which, mod π, has 1 as a simple root, so by Hensel’s lemma we obtain a root β of g(x). Then

(π/β)p−1 + p =
πp−1 + pβp−1

βp−1
= 0,

so α %→ π/β gives an injection. □

Proof of case 2. Suppose K/Qp cyclic of degree pr, p ≥ 3. There are two obvious cyclotomic exten-
sions of degree pr; in the unramified case we have Qp(ζppr−1), and in the totally ramified case we have the
index-(p− 1) subfield of Qp(ζpr+1). Suppose for contradiction K does not lie in Qp(ζpr+1(ppr−1)). Then

Gal(K(ζpr+1(ppr−1))/Qp) ⊆ Gal(K/Qp)× (Z/prZ)2 × Z/(p− 1)Z

surjecting onto the last two factors, and nontrivial in the first. So the Galois group has a quotient group
that is (Z/pZ)3, i.e. there exists an extension of Qp with Galois group (Z/pZ)3. We are going to show that
no such extensions exist. □

11.1.7. Definition (semidirect product). Let G be a group, N ⊳ G a normal subgroup, and H ≤ G a
subgroup. If H → G → G/N is an isomorphism, then we say G = N ⋊H.

More generally, let H,N be groups, with a homomorphism φ : H → Aut(N). Then N ⋊H, as a set, is
equal to N ×H, but the group operation is given by

(n1, h1)(n2, h2) = (n1φh1(n2), h1h2).

This is the (outer) semidirect product.

11.1.8. Proposition (Schur-Zassenhaus lemma). Let N ⊳G with |N | and |G/N | coprime, then there exists
a subsection G/N → G. Consequently G = N ⋊G/N .

11.1.9. Proposition. Let p be an odd prime, then any totally wildly ramified Galois extension of Qp is
cyclic.

Proof. See 18.786 pset 1. □
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11.1.10. Theorem. Let p be an odd prime, then no (Z/pZ)3-extension K/Qp exists.

Proof. We first only assume K/Qp is Galois. Let G = Gal(K/Qp), and let p ⊂ OK be the unique
prime above p. Since OK is a DVR, G = Dp. Let the ramification groups Gi = {σ ∈ G : σ(x) ≡ x
(mod pi+1) for any x ∈ OK}, and let πp : Dp → Gal(Fp/Fp) be the natural map whose kernel is Ip = G0.

Let Ui = 1 + pi be subgroups of O×
K for i ≥ 1, and set U0 = O×

K . Then U0/U1
∼= F×

p and Ui/Ui+1
∼= Fp

as abelian groups. For each i ≥ 0, there is an injection Gi/Gi+1 ↩→ Ui/Ui+1 given by σ %→ σ(π)/π where
p = (π). Therefore, G0/G1 is cyclic with order coprime to p, and G1 is a p-group. Consider the normal
subgroups G1⊳G0⊳G (which implies that G is solvable), then the corresponding subfield KG0 = KI is the
maximal unramified extension of Qp in K, KG1/Qp is the maximal tamely ramified extension, and K/KG1

is totally wildly ramified.
By Proposition 11.1.8, G0

∼= G1 ⋉G0/G1.
In the case G = (Z/pZ)3, since all nontrivial proper subgroups are Z/pZ or Z/p2Z, so G ∼= I×H, where

H := Gal(Fp/Fp) is cyclic. Since KH/Qp is totally wildly ramified (I = Gal(KH/Qp) is a p-group), it is
cyclic. But G is not the product of two cyclic groups. □

11.1.11. Remark. If p is odd, then there are exactly p ramified extensions with degree p, namely

Qp[x]/(x
p + pxp−1 + p(1 + ap))

for 0 ≤ a ≤ p− 1.

Proof of case 3. In this case, Q2(ζ24)/Q2 has Galois group (Z/2Z)3. But we can still follow a similar
argument. Suppose K/Q2 is cyclic with order 2r. As usual, the suspects are Gal(Q2(ζ22r−1)/Q2) ∼= Z/2rZ
and Gal(Q2(ζ2r+2)/Q2) ∼= (Z/2r+2Z)× ∼= Z/2Z × Z/2rZ. We claim that K ⊆ Q(ζ2r+2(22r−1)). Suppose
otherwise, then either

Gal(K(ζ2r+2(22r−1))/Q2) ∼= (Z/2rZ)2 × Z/2Z× Z/2sZ
for s ≥ 1, or

Gal(K(ζ2r+2(22r−1))/Q2) ∼= (Z/2rZ)2 × Z/2sZ

for s ≥ 2. So it has a quotient equal to either (Z/2Z)4 or (Z/4Z)3. In the first case, we can show that there
are 7 quadratic extensions of Q2, but (Z/2Z)4 has 15 subgroups of index 2; in the second case, there are 12
cyclic quartic extensions of Q2, but (Z/4Z)3 has 28 subgroups whose quotient is Z/4Z (see LMFDB). □

This finishes the proof of Kronecker–Weber theorem.

11.2. The Artin map. Now fix L/K an abelian extension of global fields, so that we have the Artin
symbol

pr
L/K

p
= Frobp =: σp

for unramified p. Let m be an ideal divisible by all ramified primes. Then we have the Artin map

ψm
L/K : Im

K → Gal(L/K).

The first major step in proving class field theory is the following:

11.2.1. Proposition. Let K be a number field, L/K abelian. Then the Artin map ψm
L/K is surjective.

11.2.2. Proposition. The primes in kerψL/K are the primes in K that split completely in L. □

11.2.3. Proposition. Let K ⊆ L ⊆ M be a tower of abelian extensions of global fields. Then the Artin
maps commute with the restriction map Gal(M/K) → Gal(L/K).

11.3. Ray class groups.

11.3.1. Proposition. The Artin map is surjective for abelian extensions L/Q.

Proof. By KW it suffices to show this for L = Q(ζm). In this case, (p) hits the residue class of p in
(Z/mZ)×, so the Artin map is clearly surjective. □
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For global field K, let MK be the set of places of K. Finite places v are ones corresponding to prime
ideals, and the rest are infinite places. (Infinite places can be nonarchimedean; for example, since function
fields have characteristic p, all nontrivial places are nonarchimedean. Places of a function field correspond
1-to-1 with closed points of its associated smooth projective curve. For number fields, however, infinite
places are all archimedean, and are either real or complex.)

11.3.2. Definition. Let K be a number field. A modulus for K is a function m : MK → Z≥0 with finite
support, such that m(v) ≤ 1 for infinite places, and m(v) = 1 only when v is real.

This should be thought of as a product of prime ideals and some set of real places.

11.3.3. Definition. A fractional ideal I of IK is coprime to m if vp(I) = 0 for finite primes p | m. The
subgroup of fractional ideals coprime to m is denoted by Im

K . The subgroup of elements a ∈ K× such that
(a) ∈ Im

K is denoted by Km. Finally, Km,1 is the subgroup of elements a where vp(a− 1) ≥ vp(m) for finite
p | m, and av > 0 for all infinite v | m where av is the image of the embedding K ↩→ Kv = R.

11.3.4. Definition. The ray group Rm
K ⊆ Im

K is the image of Km,1 in Im
K . The ray class group for m is

ClmK = Im
K/Rm

K .

11.3.5. Definition. A finite abelian extension L/K unramified at all primes that do not divide m, for
which kerψm

L/K = Rm
K is called a ray class field for m. When m is trivial, it is the Hilbert class field, i.e. the

maximal unramified abelian extension (which we will show).

When m has only all the real places, this is called the narrow class group.

11.3.6. Lemma. Let A be a Dedekind domain, a an A-ideal. Then every ideal class in Cl(A) contains an
A-ideal coprime to a.

Proof. Let I be a nonzero fractional ideal. For each p | a, pick πp ∈ p such that vp(πp) = 1 and

vq(πp) = 0 for all other q | a by strong approximation. Then I ′ = (
%

p|a π
−vp(a)
p )I is in the class of I and

satisfies I ′ coprime to a. Then make it integral by multiplying by the appropriate elements again found by
strong approximation. □

11.3.7. Proposition. Let m = m0m∞ be a modulus for K. We have an exact sequence

(∗) 0 → O×
K ∩Km,1 → O×

K → Km/Km,1 → ClmK → ClK → 0.

and Km/Km,1 ∼= {±1}#m∞ × (OK/m0)
× canonically.

Proof. Consider the composition Km,1 f−→ Km g−→ Im
K . Then f is injective, ker(g) = O×

K , ker(g ◦ f) =
O×

K ∩ Km,1, coker(g) = Im
K/ im(Km) = ClK by the previous lemma, and coker(g ◦ f) = ClmK . The kernel-

cokernel exact sequence yields

0 → ker(f) → ker(g ◦ f) → ker(g) → coker(f) → coker(g ◦ f) → coker(g) → 0,

which becomes (∗).
For the second statement, given α ∈ Km, write α = a/b ∈ Km where a, b ∈ OK are both coprime to m.

Send

φ : Km → {±1}#m∞ × (OK/m0)
×

by α mapping to (sgn(αv),α = ab
−1

). This is surjective by strong approximation, and the kernel is precisely
Km,1. This is canonical because α does not depend on a, b. □

11.3.8. Corollary. Let hm
K = |ClmK | be the ray class number. Then

hm
K =

φ(m)hK

[O×
K : O×

K ∩Km,1]
.

Here φ(m) = φ(m0)φ(m∞) = |Km/Km,1|, where

φ(m∞) = 2#m∞ , φ(m0) = |(OK/m0)
×| =

2

p|m0

|(OK/pm(p))×| = N(m0)
2

p|m0

(1−N(p)−1).
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11.4. Polar density.

11.4.1. Definition. Let S be a set of primes of a global field K. The partial Dedekind zeta function

ζK,S :=
2

p∈S

1

1−N(p)−s
.

This converges on Re(s) > 1.

If S is finite then this is just holomorphic on a neighborhood of s = 1. If S is cofinite then this is ζK
over a holomorphic function, hence meromorphic on a neighborhood of 1 with a simple pole at 1.

11.4.2. Definition. If ζnK,S extends to a meromorphic function on a neighborhood of 1, the polar density

ρ(S) :=
m

n
,

where m is the order of the pole.

The Dirichlet density is

d(S) = lim
s→1+

$
p∈S N(p)−s

$
p N(p)−s

= lim
s→1+

$
p∈S N(p)−s

log 1
s−1

,

and the natural density is

δ(S) = lim
n→∞

#{p ∈ S : N(p) ≤ n}
#{p : N(p) ≤ n} .

11.4.3. Proposition. If S has a natural density, then it has a Dirichlet density, and the two densities agree.

Proof. 18.786 problem set 2. □

11.4.4. Proposition. If S has a polar density, then it has a Dirichlet density, and the two densities agree.

Proof. Suppose ρ(S) = m/n, then the Laurent series for ζnK,S is

a(s− 1)−m +
!

r>−m

ar(s− 1)r.

Since ζK,S(s) > 0 for real s > 1, a > 0. Taking logarithms on both sides,

n
!

p∈S

N(p)−s ∼ m log
1

s− 1

as s → 1+. This shows that d(S) = m/n = ρ(S). □

11.4.5. Proposition. Let S, T be sets of primes in a number field K. Let P be the set of all primes, and
P1 the set of primes with f = 1. Then:

(a) If S is finite, ρ(S) = 0. If P\S is finite, then ρ(S) = 1.
(b) If S ⊆ T then ρ(S) ≤ ρ(T ) if both exist.
(c) If S ∩ T is finite, then ρ(S ∪ T ) = ρ(S) + ρ(T ) whenever two of the three exist.
(d) ρ(P1) = 1, and ρ(S ∩ P1) = ρ(S) whenever S has polar density.

Proof. (d) Let P2 be the other primes. The key fact here is that there are at most n = [K : Q] primes
above p in P2, each with norm at least p2. So ζK,P2(s) < ζn(2s), so ζK,P2 is holomorphic and vanishing
around 1. □

11.5. Surjectivity of the Artin map. We begin by commenting that all this works for global func-
tions as well, only the proofs will be sllightly different. Our goal in this subsection is to show the surjectivity
of the Artin map.

11.5.1. Theorem. Let L/K be Galois extensions of number fields of degree n. Let Spl(L/K) be the set of
primes in K that split completely in L. Then ρ(Spl(L/K)) = 1/n.
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Proof. Let S be the set of degree-1 primes that split completely, it suffices to show ρ(S) = 1/n. For
these p, e = f = 1. Let T = {q | p : p ∈ S}, then NL/K(q) = p, and N(q) = #(OL/q) = N(p), so q is degree
1 as well. On the other hand, any unramified q of degree 1 must lie above an unramified degree-1 prime p,
which is in S; so all but finitely many (ramified) degree-1 primes q ∈ T . This means ρ(T ) = 1.

Each prime p ∈ S has n primes above it in T . So

ζL,T =
2

q∈T

1

1−N(q)−s
=

2

p∈S

1

(1−N(p)−s)n
= ζnK,S .

This shows ρ(S) = 1
nρ(T ) =

1
n . □

11.5.2. Corollary. Let L/K be a finite extension with Galois closure M/K of degree n. Then ρ(Spl(L/K)) =
ρ(Spl(M/K)) = 1

n .

Proof. A prime p ⊂ K splits completely in L iff it splits completely in every conjugate of L in M , iff
it splits completely in M . □

11.5.3. Corollary. Let L/K be finite Galois with Galois group G, and H ⊳G. Then S = {p ∈ K : Frobp ⊆
H} has polar density ρ(S) = #H/#G.

Proof. We have Gal(LH/K) ∼= G/H, and Frobp ⊆ H iff every Frobq fixes LH for q | p in L, iff p splits
completely in LH . □

Write S ∼ T if S△T is finite; S ≲ T if S − T is finite.

11.5.4. Lemma. Let L/K,M/K be finite Galois extensions, and LM be their compositum. Then a prime
in K splits completely (resp. is unramified) in LM iff it splits completely (resp. is unramified) in both L
and M .

Proof. Use the fact that for a tower of Galois extensions M/N/K, if p ⊂ K and q ⊂ M lies above p,
then D(q) fixes N iff ep(N/K) = fp(N/K) = 1. Then since p splits completely in both L and M , for any q
in LM above p, both L,M ⊆ (LM)Dq , hence LM ⊆ (LM)Dq , hence |Dq| = 1. □

11.5.5. Theorem. If L/K, M/K are finite Galois, then

L ⊆ M ⇐⇒ Spl(M) ⊆ Spl(L) ⇐⇒ Spl(M) ≲ Spl(L).

Proof. The nontrivial direction is showing that Spl(M) ≲ Spl(L) =⇒ L ⊆ M . Consider the composi-
tum LM , then a prime p in K splits completely in LM if and only if it splits completely in both L and M .
So Spl(LM) ∼ Spl(M). This implies 1

[M :K] =
1

[LM :K] , so LM = M , so L ⊆ M . □

11.5.6. Theorem (the Artin map is surjective). Let L/K be finite abelian, m a modulus divisible by all
primes in K that ramify and all real places in K that ramify (that extend to a complex place). Then

ψm
L/K : Im

L/K → Gal(L/K)

is surjective.

Proof. Let H be the image, and F := LH ; we will show F = K.
For any p ∈ Im

L/K , ψm
L/K(p) ∈ H, so Frobp acts trivially on F , so p splits completely in F . But Im

L/K

contains all but finitely many primes, so ρ(Spl(F/K)) = 1. But ρ(Spl(F/K)) = 1
[F :K] , so F = K as

desired. □

11.5.7. Theorem. Let m be a modulus for K, and L/K,M/K finite abelian extensions unramified away
from m. If kerψm

L/K = kerψm
M/K , then L = M . In particular, the ray class field is unique (only depends on

m).

Proof. Consider the set S of primes not dividing m. Then p ∈ S splits completely in L iff it is in
kerψm

L/K . So Spl(L/K) ∼ S ∩ kerψL/K = S ∩ kerψM/K ∼ Spl(M/K), so L = M by applying Theorem

11.5.5 twice. □
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By surjectivity of the Artin map, if the ray group Rm
K ⊆ kerψm

L/K , then Gal(L/K) is a quotient of

ClmK , with equality iff L is the ray class field, which we denote by K(m). In general, the intermediate fields
between K and K(m) correspond 1-to-1 to subgroups between Rm

K and Im
K , by L %→ C = kerψm

L/K and

Im
K/C ∼= Gal(L/K).

Given a finite abelian L/K, there may be many choices of m, and as we make m smaller, the ray group
Rm

K gets bigger so that it might not be contained inside kerψm
L/K . Fortunately there is a minimal modulus

that works, called the conductor, for which Rm
K ⊆ kerψm

L/K , which implies Spl(K(m)) ⊆ Spl(L), which

implies L ⊆ K(m).

11.6. Conductors.

11.6.1. Definition. A congruence subgroup for a modulus m in a global field K is a subgroup C ⊆ Im
K that

contains the ray group Rm
K .

11.6.2. Definition. For two congruence subgroups C1 for m1 and C2 for m2, say that

(C1,m1) ∼ (C2,m2)

iff Im1

K ∩ C2 = Im2

K ∩ C1. This defines an equivalence relation, and if m1 = m2 then C1 = C2.

The reason we are interested in this equivalence relation, is that if (C1,m1) ∼ (C2,m2), then Im1

K /C1 ∼=
Im2

K /C2 canonically, and the isomorphism preserves cosets of ideals coprime to m1m2. And these quotients
are what we really care about.

If C is a congruence subgroup for two moduli m1 and m2, then (C,m1) ∼ (C,m2). So each subgroup
C ⊆ IK lies in at most one equivalence class. So we can just write C1 ∼ C2 without specifying the moduli.
Also, within one equivalence class, there can be at most one congruence subgroup with a specified modulus.

11.6.3. Lemma. Let (C1,m1) be a congruence subgroup, and m2 | m1. There exists (C2,m2) in the same
equivalence class iff

Im1

K ∩Rm2

K ⊆ C1,
in which case C2 = C1Rm2

K .

11.6.4. Proposition. If (C1,m1) ∼ (C2,m2), then there exists a congruence subgroup C in the same equiva-
lence class, with modulus m = gcd(m1,m2).

11.6.5. Corollary. If (C,m) is a congruence subgroup, then there exists a unique C′ ∼ C whose modulus
divides that of any C′′ ∼ C.

11.6.6. Definition. The unique modulus c = c(C) given by the above corollary is called the conductor of
C. We say C is primitive if Rc

K ⊆ C.

11.6.7. Proposition. If C is a primitive congruence subgroup of modulus m, then m is the conductor of all
C′ ⊂ C with modulus m. In particular, m is the conductor of Rm

K .

Proof. Suppose C′ ⊆ C with modulus m, and let (C0, c) be its conductor. Obviously c | m. On the other
hand,

Im
K ∩Rc

K ⊆ Im
K ∩ C0 = Ic

K ∩ C′ ⊆ C′ ⊆ C,
so if we let C′′ = CRc

K , then C′′ has modulus c and

Ic
K ∩ C = C = C(Im

K ∩Rc
K) = Im

K ∩ CRc
K = Im

K ∩ C′′,

so C ∼ C′′. Because C is primitive, m | c. So c = m. □

11.6.8. Example. Let K = Q, m = (2). Then R(2)
Q = I(2)

Q has conductor (1), since it is equivalent to I(1)
Q .

So (2) is not the conductor of any congruence subgroup of Q.

11.6.9. Example. Let K = Q, L = K[x]/(x3 − 3x− 1), G = Gal(L/K) = Z/3Z. This is unramified away
from (3), since it has discriminant 81. So the Artin map makes sense for any modulus divisible by 3. The
ray class field for (3) is Q(ζ3)

+ = Q, and the ray class field for (3)∞ is Q(ζ3). These both have degree at
most 2, so cannot contain L; equivalently, Rm

K is not contained in kerψm
L/K . The correct modulus to use is

m = (9), and indeed L = Q(ζ9)
+ is the ray class field for (9).

In general, the ray class field for (n) is Q(ζn)
+, and the ray class field for (n)∞ is Q(ζn).
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11.7. Ray class characters.

11.7.1. Definition. A totally multiplicative function χ : IK → C with finite image for which Rm
K ⊆

ker(χ) := χ−1(1) and Im
K = χ−1(U1) (unit circle) is a ray class character of m. Equivalently, χ is the

extension by zero of a character of the finite abelian group ClmK .

11.7.2. Example. When K = Q, a ray class character of modulus (m)∞ is just a Dirichlet character of
modulus m, and its conductor divides (m) iff the character is even, i.e. χ(−1) = 1.

11.7.3. Definition. Suppose χ1,χ2 are ray class characters of moduli m1 | m2. If χ2(I) = χ1(I) for all
ideals I ∈ Im2

K , then we say χ2 is induced by χ1. A ray class character is primitive if it is not induced by
any character other than itself.

11.7.4. Definition. The conductor of a ray class character is the conductor of its kernel (which is a
congruence subgroup).

11.7.5. Proposition. A ray class character is primitive iff its kernel is primitive, and every ray class
character is induced by a primitive one.

Proof. Let χ be a ray class character with (some) modulus m. Let κ be the corresponding group
character on Im

K/ kerχ. Let C be the primitive congruence subgroup equivalent to kerχ, with modulus c,
the conductor, dividing m. We have a canonical isomorphism φ : Ic

K/C → Im
K/ kerχ. Let =χ be the ray class

character of c that is the extension by zero of κ ◦ φ. By definition of φ, =χ(I) = χ(I) for I ∈ Im
K , so χ is

induced by =χ (whose kernel is primitive).
In general, if (χ2,m2) is induced by (χ1,m1), then kerχ1 ∩Im2

K = kerχ2 = kerχ2 ∩Im1

K , so kerχ1, kerχ2

are equivalent. If, furthermore, χ1 ∕= χ2, then Im1

K ∕= Im2

K =⇒ m1 ∕= m2. Applying this to the above situation
of χ and =χ: if =χ is induced by some other character with modulus c′, then c cannot divide c′, a contradiction;
so =χ is primitive. Moreover, χ is primitive iff χ = =χ iff kerχ = ker =χ is primitive. □

For a modulus m, ley X(m) denote the set of primitive ray class characters of conductor dividing m,
which is in bijection with the character group of ClmK . For a congruence subgroup C of modulus m, let X(C)
denote the set of primitive ray class characters whose kernels contain C, and X(C) is in bijection with the
character group of Im

K/C, a subgroup of X(m). (Why?)

11.7.6. Definition. A ray class character is principal if kerχ = χ−1(U1). We use 1 to denote the unique
primitive principal ray class group. (It is not the unique primitive character of conductor (1); when ClK is
nontrivial, any character on ClK induces a primitive character of conductor (1), but only one is principal.)

11.8. Weber L-functions.

11.8.1. Definition (Weber L-function). The Weber L-function L(s,χ) of ray class character χ is

L(s,χ) =
2

p∈K

1

1− χ(p)N(p)−s
=

!

a

χ(a)N(a)−s,

which converges absolutely to a nonvanishing holomorphic function for Re(s) > 1.

This generalizes Dirichlet L-functions (K = Q) and Dedekind zeta functions (χ = 1), both of which
generalize the Riemann zeta function.

11.8.2. Proposition. Let χ be a ray class character for a global field K. Then L(s,χ) extends to a mero-
morphic function on a neighborhood of s = 1, with a simple pole at s = 1 if χ = 1 and holomorphic
otherwise.

Proof. Wait for Tate’s thesis. □
11.8.3. Proposition. Let C be a congruence subgroup of modulus m for K. Let n = [Im

K : C], then
S = {p ∈ C} has Dirichlet density

d(S) =

4
1/n, if L(1,χ) ∕= 0 for all χ ∕= 1 in X(C);
0, otherwise.

(Actually the second case never happens, but that will be shown later.)
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Proof. By character theory,

1

n

!

χ∈X(C)

χ(p) =

4
1, if p ∈ C;
0, otherwise.

Because as s → 1+,

logL(s,χ) ∼
!

p

χ(p)N(p)−s,

we have !

χ∈X(C)

logL(s,χ) ∼
!

χ∈X(C)

!

p

χ(p)N(p)−s

=
!

p

N(p)−s
!

χ∈X(C)

χ(p)

= n
!

p∈C
N(p)−s.

By the above proposition, near s = 1, L(s,χ) = (s − 1)e(χ)g(s) where g is holomorphic and nonvanishing,
and e(χ) = −1 if χ = 1 and e(χ) ≥ 0 otherwise. So

n
!

p∈C
N(p)−s ∼ log

1

s− 1
−

!

χ ∕=1

e(χ) log
1

s− 1

as s → 1+. This is equivalent to saying as s → 1+,

0 ≤ d(S) =

$
p∈C N(p)−s

log 1
s−1

=
1−

$
χ ∕=1 e(χ)

n
,

which is either 0 or 1/n depending on whether one of the e(χ) = 1. □
11.8.4. Proposition. Let C be a congruent subgroup of modulus m, n = [Im

K : C]. Then for any I ∈ Im
K , the

coset {p ∈ IC} has Dirichlet density the same as the trivial coset.

Proof. Same proof, just change the indicator function. □
11.8.5. Corollary. The coset {p ∈ IC} has Dirichlet density 1/n (so the second possibility never occurs),
and every non-primitive χ ∈ X(C) is nonvanishing at s = 1.

Proof. Summing over all cosets, the Dirichlet densities should add up to 1. □
11.8.6. Corollary. Let L/K be a finite abelian extension, C a congruence subgroup of modulus m. If
Spl(L/K) ≲ {p ∈ C}, then [ImK : C] ≤ [L : K].

Proof. We know Spl(L/K) has polar density (hence also Dirichlet density) 1/[L : K], and {p ∈ C} has
Dirichlet density 1/[ImK : C]. □

11.9. Second main inequality of CFT.

11.9.1. Definition. Let L/K be a finite abelian extension of local fields, then the conductor

c(L/K) :=

>
?@

?A

1, if L = C,K = R
0, if L = K archimedean

min{n : 1 + pn ⊆ NL/K(L×)}, otherwise.

For a finite abelian extension of global fields, c(L/K) is a map from MK (the set of places of K) to Z, given
by mapping v %→ c(Lw/Kv), where w is any place above v. (Since L/K is Galois, this does not depend on
the choice of w.)

11.9.2. Proposition. Let L/K be a finite abelian extension of local or global fields. For each prime p of K,

vp(L/K) =

>
?@

?A

0 if p is unramified

1 if p is tamely ramified

≥ 2 if p is wildly ramified.
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Proof. See 18.786 pset 2. □

11.9.3. Remark. The conductor and the discriminant are supported on the same primes (but the valuations
can be very different).

11.9.4. Lemma. Let L1, L2 be finite abelian extensions of local or global fields. Suppose L1 ⊆ L2 =⇒
c(L1/K) | c(L2/K).

Proof. In the local nonarchimedean case, NL2/K(L×
2 ) = NL1/K(NL2/L1

(L×
2 )) ⊆ NL1/K(L×

1 ). In the
local archimedean case this is obvious. So this also holds for global fields. □

11.9.5. Definition. Let L/K be a finite abelian extension of global fields, m a modulus divisible by c(L/K).
The norm group (also Takagi group) for m is

Tm
L/K = Rm

K NL/K(Im
L ),

where Im
L are the fractional OL-ideals coprime to m0OL.

11.9.6. Proposition. Let L/K be a finite abelian extension of global fields, m a modulus divisible by c(L/K),
then Spl(L/K) ≲ {p ∈ Tm

L/K}.

Proof. Suppose p is coprime to m, and splits completely in L, so ep = fp = 1. Pick q | p, then q ∈ Im
K

and NL/K(q) = p, so p is in Tm
L/K . □

11.9.7. Theorem (second main inequality). Let L/K be a finite abelian extension of global fields, m a
modulus divisible by c(L/K). Then

[Im
K : Tm

L/K ] ≤ [L : K].

Proof. Follows from corollary 11.8.6. □

The goal now is to show that this is actually an equality.

12. Global class field theory: Setup

12.1. Global CFT via ideals. What we are working towards is the following:

12.1.1. Theorem (global CFT, via ideals). The main theorems of ideal-theoretic CFT:

• The ray class field K(m) exists;
• For L/K finite abelian extension, L ⊆ K(m) iff c(L/K) | m.
• Artin reciprocity: If L ⊆ K(m), then kerψm

L/K = Tm
L/K , its conductor is c(L/K) | m, and

Im
K/Tm

L/K
∼= Gal(L/K) canonically.

Artin reciprocity gives the following commutative diagram of canonical bijections:

{finite abelian L/K with c(L/K) | m} {congruence subgroups of modulus m}

{quotients of Gal(K(m)/K)} {quotients of ClmK}

L +→Tm
L/K

L +→Gal(L/K) C +→Im
K/C

ψm
L/K

12.1.2. Definition. The Hilbert class field of a global field K is the maximal unramified abelian extension
of K (in some fixed algebraic closure).

From class field theory, taking the trivial modulus, we see in particular that this is a finite extension,
which is already not obvious.
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12.2. Simple pole of ζK at s = 1. In this subsection we digress to show that ζK(s) can be meromor-
phically continued to have a simple pole at s = 1. We use the following fact without proof:

12.2.1. Proposition. Let a1, a2, · · · ∈ C be a sequence of complex numbers, ρ a nonzero real, and σ ∈ [0, 1),

such that
$t

k=1 ak = ρt+O(tσ), then
$

ann
−s has a meromorphic continuation to Re(s) > σ with a simple

pole at s = 1 with residue ρ. □
So to show analytic continuation of ζK(s), it suffices to show that #(a : N(a) ≤ t) = ρt + O(tσ) for

σ ∈ [0, 1). The strategy is to first count the principal ideals, then count the ideals by partitioning into ideal
classes: note that if we fix ideal class representatives a ∈ IK . Then

{integral ideals b ∈ [a−1] : N(b) ≤ t}
∼=−→ {nonzero principal integral (α) ⊆ a : N(α) ≤ tN(a)}
∼=−→ {nonzero integral α ∈ a : N(α) ≤ tN(a)}/O×

K .

by multiplying by a.
Recall that for a number field K, KR := K ⊗Q R =

%
v|∞ Kv = Rr1 × Cr2 . We have an injection

K× ↩→ K×
R by embedding diagonally, and a map

Log : K×
R → Rr1+r2

sending (xv) %→ log ‖xv‖v, where ‖‖v is the usual norm in R and the square of the absolute value in C. By

Dirichlet’s unit theorem, O×
K = µK × U , where Log maps O×

K into a full lattice ΛK in Rr1+r2
0 , with kernel

µK .
Define ν : K×

R → K×
R,1 by xN(x)−1/n, where n = r1+2r2. Then Log(ν(K×

R )) = Rr1+r2
0 . Let us fix a fun-

damental domain F for the lattice ΛK (whose covolume is RK , the regulator), and let S := ν−1(Log−1(F )).
Then S is a set of coset representatives for K×

R /U . Let S≤t = {x ∈ S : N(x) ≤ t} ⊆ KR ∼= Rn. It then
suffices to estimate #(S≤t ∩OK): the method only uses the fact that OK is a lattice, so the same method
will work for counting #(S≤t ∩ a).

Since t1/nS≤1 = S≤t (where we work in Rn), what we want is:

12.2.2. Proposition. Let Λ be a lattice in V ∼= Rn, let S be a “nice” (Lebesgue) measurable set, then

#(tS ∩ Λ) = µ(S)
covol(Λ) t

n +O(tn−1).

This would imply that #(S≤t ∩OK) = ρt+O(t1−
1
n ), which is the bound we want. We now need to say

what it means to be “nice”.

12.2.3. Definition. Let X,Y be metric spaces. A map f : X → Y is Lipschitz continuous if there exists
c > 0, such that d(f(u), f(v)) ≤ cd(u, v) for all u, v ∈ X.

This is a stronger condition than uniform continuity.

12.2.4. Definition. A set B in a metric space X is d-Lipschitz parametrizable if it is the union of finitely
many images for Lipschitz-continuous functions f : [0, 1]d → X.

12.2.5. Lemma. Let S ⊆ Rn be measurable with boundary (n− 1)-Lipschitz parametrizable. Then #(tS ∩
Zn) = µ(S)tn +O(tn−1). □

So what we need to show is that ∂S≤1 is (n−1)-Lipschitz parametrizable. The kernel of Log is (±1)r1 ×
U(1)r2 . We thus have a continuous isomorphism of locally compact groups

K×
R → Rr1+r2 × {±1}r1 × [0, 2π)r2

mapping (x1, . . . , xr1 , z1, . . . , zr2) %→ (Log x)× (sgnx1, . . . , sgnxr1)× (arg z1, . . . , arg zr2).
Analyzing S≤1, it has 2

r1 connected components, each parametrized by n parameters:

• r1 + r2 − 1 parameters in [0, 1) encoding a point in F as an R-linear combination of Log applied to
a basis of U ;

• r2 parameters in [0, 1) encoding an element of U(1);
• one parameter in (0, 1] encoding the n-th root of the norm.

This gives a continuously differentiable bijection from [0, 1)n−1× (0, 1] to a connected component of S≤1. So
its boundary is clearly (n− 1)-Lipschitz parametrizable, proving the theorem.

12.2.6. Remark. If we keep track of the coefficient of the linear term, we actually get the analytic class
number formula.
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12.3. Group cohomology.

12.3.1. Definition. Let G be any group, a left G-module is an abelian group A with a compatible G-action:
g(a + b) = ga + gb. Equivalently, A is a left Z[G]-module. A morphism of G-modules is a morphism of
Z[G]-modules. The category of G-modules is denoted ModG. Since it is just the category of modules over a
ring Z[G], it is an abelian category.

12.3.2. Remark. When G is a topological group, we need to require the G-action to be continuous.

12.3.3. Example. Examples of G-modules:

• If A is any abelian group, A can be made into a trivial G-module, i.e. G acts trivially.
• For L/K Galois extension, the abelian groups L,L×,OL,O×

L are all Gal(L/K)-modules.
• For A,B ∈ ModG, the abelian group HomAb(A,B) has a natural G-module structure: (gφ)(a) =
gφ(g−1a).

12.3.4. Definition. For A ∈ ModG, the subgroup AG = {a ∈ A : ga = a for all g ∈ G} is the subgroup of
G-invariants.

12.3.5. Example. HomG(A,B) ∼= HomAb(A,B)G. In particular, HomG(Z, A) ∼= AG.

Any morphism of G-modules A → B restricts to a morphism AG → BG. We thus have a functor
•G : ModG → ModG (in fact the subcategory of trivial G-modules, which is just Ab), which is left exact
because it is HomG(Z, •). (Recall that this is exact iff Z is a projective Z[G]-module, which is not true when
G is nontrivial.)

The category ModG is in fact a Grothendieck category (in particular, has enough injectives). So we
can define Hn(G,A) to be the n-th right derived functors of the left exact •G : ModG → Ab. In particular
H0(G,A) = AG.

Now, we give another definition of group cohomology using cochains.

12.3.6. Definition. Let A be a left G-module, n ≥ 0. The group Cn(G,A) of n-cochains is the abelian
group of maps of sets f : Gn → A, under pointwise addition. The n-th coboundary map is a homomorphism
dn : Cn(G,A) → Cn+1(G,A) given by

dnf(g0, . . . , gn) := g0f(g1, . . . , gn) +

n!

i=1

(−1)if(. . . , gi−2, gi−1gi, gi+1, . . . ) + (−1)n+1f(g0, . . . , gn−1).

Define the n-cocycles and n-coboundaries Zn(G,A) = ker dn and Bn(G,A) = im dn−1. Since dn+1dn = 0,
Bn(G,A) ⊆ Zn(G,A). In other words, we get a cochain complex

0 → C0(G,A) → C1(G,A) → C2(G,A) → . . . ,

and the n-th cohomology group of G with coefficients in A is

Hn(G,A) =
Zn(G,A)

Bn(G,A)
.

12.3.7. Example. Low-degree cohomologies:

• C0(G,A) ∼= A;
• d0 : C0(G,A) → C1(G,A) sends a %→ (g %→ ga− a);
• H0(G,A) = ker d0 = AG;
• B1(G,A) is the group of principal crossed homomorphisms;
• d1 : C1(G,A) → C2(G,A) sends f %→ ((g, h) %→ gf(h)− f(gh) + f(g)).
• Z1(G,A) = ker d1 consists of f : G → A such that f(gh) = f(g) + gf(h). This is the group of
crossed homomorphisms.

• H1(G,A) = Z1(G,A)/B1(G,A) are the crossed homomorphisms modulo the principal ones.
• If A = AG, then H1(G,A) = HomGrp(G,A) = HomAb(G

ab, A).

We give a useful interpretation of H2(G,A).

12.3.8. Definition. Let A ∈ ModG, a group extension E of G by A is a short exact sequence of groups:

0 → A → E → G → 0,

such that for any set-theoretic subsection s : G → E, we have s(g)as(g)−1 = ga.



12. GLOBAL CLASS FIELD THEORY: SETUP 75

In other words, A has a G-action because it is a G-module, and G ∼= E/A also acts on A by conjugation,
and we require these two actions to be the same.

Two extensions E,E′ are isomorphic if there is an isomorphism θ : E → E′ such that

0 A E G 0

0 A E′ G 0

θ

commutes.

12.3.9. Proposition. H2(G,A) is canonically the abelian group of isomorphism classes of extensions of G
by A, which sends f : G2 → A to Ef = A×G (as a set) with the group law

(a, g) · (b, h) = (a+ gb+ f(g, h), gh).

By definition, the image of 0 ∈ H2(G,A) is A⋊G.

12.3.10. Lemma. Given a map of G-modules α : A → B, there is an induced map of cochain complexes
C•(G,A) → C•(G,B) (which in turn induces maps αn : Hn(G,A) → Hn(G,B)).

Proof. It suffices to show that αn : Cn(G,A) → Cn(G,B) commutes with dn. For f ∈ Cn(G,A),

αn+1dnf(g0, . . . , gn) = α(g0f(g1, . . . , gn) +

n!

i=1

(−1)nf(. . . , gi−1gi, . . . ) + f(g0, . . . , gn−1))

= g0αf(g0, . . . , gn) +

n!

i=1

(−1)nαf(. . . , gi−1gi, . . . ) + αf(g0, . . . , gn−1)

= dnαnf(g0, . . . , gn).

That a map of cochain complexes induces a map of cohomologies is clear. □

12.3.11. Lemma. If 0 → A
α−→ B

β−→ C → 0 is a exact sequence of G-modules, then 0 → Ci(G,A) →
Ci(G,B) → Ci(G,C) → 0 is exact for all i ≥ 0, hence an exact sequence 0 → C•(G,A) → C•(G,B) →
C•(G,C) → 0. □

12.3.12. Theorem. Every short exact sequence 0 → A → B → C → 0 induces a long exact sequence

0 → H0(G,A) → H0(G,B) → H0(G,C)

→ H1(G,A) → H1(G,B) → H1(G,C)

→ H2(G,A) → . . .

and this is functorial.

Proof. Apply the snake lemma to

coker dn−1
A coker dn−1

B coker dn−1
C 0

0 ker dn+1
A ker dn+1

B ker dn+1
C

dn
A dn

B dn
C

where the resulting connecting homomorphism δ : Hi(G,C) → Hi+1(G,A) is explicitly given by sending [f ]
to [α−1 ◦ dnB(f)], where we lift f along β to f ∈ Hi(G,B). □

12.3.13. Definition (cohomological δ-functors). Let C be abelian, C ′ additive. A (covariant) cohomological
δ-functor C → C ′ is:

• a system of additive functors T i : C → C ′ (i ≥ 0), and
• connecting morphisms δ : T i(A′′) → T i+1(A′), for every i ≥ 0 and each short exact 0 → A′ → A →
A′′ → 0 in C ,

satisfying:
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• Given a map of short exact sequences

0 A′ A A′′ 0

0 B′ B B′′ 0,

the diagram

T i(A′′) T i+1(A′)

T i(B′′) T i+1(B′)

δ

δ

commutes;
• Given an exact sequence 0 → A′ → A → A′′ → 0, the sequence

0 → T 0(A′) → T 0(A) → T 0(A′′)
δ−→ T 1(A′) → . . .

is a chain complex.

When C ′ is abelian as well, the δ-functor is called exact if the above chain complex is exact.

In this context, Hi(G, •) is the unique universal exact cohomological δ-functor extending •G.
We will give yet another equivalent definition of group cohomology.

12.3.14. Definition. The standard resolution of Z by G-modules is

· · · → Z[Gn+1]
dn−→ Z[Gn]

dn−1−−−→ . . .
d1−→ Z[G]

d0−→ Z → 0,

where Z[Gn] is the free Z-algebra generated by the direct productGn, with left diagonal action g·(g1, . . . , gn) =
(gg1, . . . , ggn), and

dn(g0, . . . , gn) :=

n!

i=0

(−1)i(g0, . . . , gi−1, gi+1, . . . , gn).

Note that d0 : Z[G] → Z is the augmentation map
$

ngg %→
$

ng ∈ Z.

12.3.15. Lemma. The standard resolution is exact, so that it is a free resolution of Z as a (trivial) Z[G]-
module.

12.3.16. Definition (Ext groups). Let A,B be R-modules. Take P• → B to be a projective resolution of
B. Applying the contravariant left exact functor HomR(•, A) to P• → 0 and deleting the Hom(B,A)-term,
we get a cochain complex

0 → Hom(P0, A) → Hom(P1, A) → . . . ,

then ExtnR(B,A) is defined as its n-th cohomology.

12.3.17. Lemma. The groups ExtnR(B,A) do not depend on the projective resolution.

Applying this for B = Z, R = Z[G], we can use the standard resolution to compute ExtnZ[G](Z, A), as
the n-th cohomology of

0 → HomZ[G](Z[G], A)
d∗
1−→ HomZ[G](Z[G2], A)

d∗
2−→ . . . .

12.3.18. Proposition. We have isomorphisms of abelian groups (n ≥ 0):

Φn : HomZ[G](Z[Gn+1], A) → Cn(G,A)

by

φ %→ [(g1, . . . , gn) %→ φ(1, g1, g1g2, . . . , g1g2 · · · gn)].
Furthermore, this commutes with the coboundary maps, so that it defines a chain isomorphism.
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Proof. Φn is clearly a homomorphism.
Injectivity: let φ ∈ kerΦn. For any g0, . . . , gn ∈ G, define hi = g−1

i−1gi. Then

φ(g0, . . . , gn) = g0φ(1, h1, h1h2, . . . , h1h2 · · ·hn) = 0,

so φ = 0.
Surjectivity: for f ∈ Cn(G,A), define φ ∈ HomZ[G](Z[Gn+1], A) by

(g0, . . . , gn) %→ g0f(g
−1
0 g1, . . . , g

−1
n−1gn).

This gets sent to f by Φn.
Finally, we show that Φn commutes with coboundary maps, i.e. Φn+1d∗n+1 = dnΦn. We compute:

Φn+1(d∗n+1(φ))(g1, . . . , gn+1) = d∗n+1(φ)(1, g1, . . . , g1 · · · gn+1)

= φ(dn+1(1, g1, . . . , g1 · · · gn+1))

= φ(g1, . . . , g1 · · · gn+1)−
n!

i=1

(−1)iφ(. . . , g1 · · · gi−1, g1 · · · gi+1, . . . )

+ (−1)n+1φ(1, g1, . . . , g1 · · · gn)

= g1Φ
n(φ)(g2, . . . , gn+1)−

n!

i=1

(−1)iΦn(φ)(. . . , gi−1, gigi+1, . . . )

+ (−1)n+1Φn(φ)(g1, . . . , gn)

= dnΦn(φ)(g1, . . . , gn+1),

as desired. □

12.3.19. Corollary. Hn(G,A) = ExtnZ[G](Z, A).

We remark that Extn are also the right derived functors of HomZ[G](Z, •) = •G, and right derived
functors of any left-exact functor F is the unique universal exact cohomological δ-functor extending F . This
shows the equivalence of the four definitions of group cohomology we gave:

• via injective resolutions, i.e. as right derived functors of •G;
• as the unique universal exact cohomological δ-functor extending •G;
• via cochains;
• via the standard resolution.

12.3.20. Corollary. Hn(G,A⊕B) = Hn(G,A)⊕Hn(G,B).

Proof. This is because in general,

ExtiR(
,

Mα, N) =
2

ExtiR(Mα, N) and ExtiR(M,
2

Nα) =
,

ExtiR(M,Nα)

for any R-modules M and N . □

12.3.21. Definition. Let H ≤ G be a subgroup, A and H-module. The induced G-module

IndGH(A) := Z[G]⊗Z[H] A,

and the coinduced G-module

CoIndGH(A) := HomZ[H](Z[G], A).

12.3.22. Theorem. If H has finite index in G, then IndGH(A) ∼= CoIndGH(A).

When H = {1} we just write IndG and CoIndG.

12.3.23. Lemma. Group cohomology of coinduced modules from the trivial group:

Hn(G,CoIndG(A)) =

4
A, if n = 0;

0, otherwise.
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Proof. For n ≥ 1 we have isomorphisms of abelian groups

HomZ[G](Z[Gn],CoIndG(A)) → HomZ(Z[Gn], A),

given by

φ %→ [z %→ φ(z)(1)]

[z %→ [y %→ φ(yz)]] ← ! φ.
so Hn(G,CoIndG(A)) = Hn({1}, A) for n ≥ 0. Just use the stupid resolution 0 → Z → Z → 0. □

12.4. Group homology. A minor point concerning tensor products over noncommutative rings: for
M ⊗R N , it only makes sense when M is a right R-module and N is a left R-module, and the resulting
M ⊗R N is a priori only an abelian group. So, in the definition of IndGH(A), we really think of Z[G] as

a right Z[H]-module, and then “manually” define the extra structure of IndGH(A) as a Z[G]-module, by

g(α⊗ a) = (gα)⊗ a. Similarly, the Z[G]-module structure on CoIndGH(A) is given by (gφ)(α) = φ(αg).

12.4.1. Lemma. When G is finite, there is a canonical isomorphism CoIndG(A) ∼= IndG(A) given by

φ %→
!

g∈G

g−1 ⊗ φ(g)

(g−1 %→ a) ←! g ⊗ a.

where (g−1 %→ α) maps g′ to 0 for g′ ∕= g−1.

12.4.2. Definition (group homology). The n-th group homology with coefficients in A is

Hn(G,A) = TorZ[G]
n (Z, A) = Ln(Z⊗Z[G] •)(A) = Ln(•⊗Z[G] A)(Z).

In practice, we use the last expression, with the standard resolution of Z by right Z[G]-modules (the same
as the standard resolution by left Z[G]-modules, except G acts diagonally on the right). This is the (unique)
universal exact homological δ-functor extending •⊗Z[G] A.

12.4.3. Lemma. Hn(G,A⊕B) ∼= Hn(G,A)⊕Hn(G,B).

Proof. This is just because Tor commutes with arbitrary direct sums and filtered colimits in each
variable. □

12.4.4. Definition (coinvariants). Let A be a left G-module. The G-coinvariants AG of A is the G-module
A/IGA, where IG is the augmentation ideal

IG = ker(ε : Z[G] → Z) = Z[g − 1 : g ∈ G].

In other words, AG is the largest quotient of A which is a trivialG-module. Observe that naturally Z⊗Z[G]A ∼=
AG, so that H0(G,A) = AG (just like H0(G,A) = AG).

Similar to group cohomology, we have:

12.4.5. Lemma. Group homology of induced modules from the trivial group:

Hn(G, IndG(A)) =

4
A, if n = 0;

0, otherwise.

12.5. Tate cohomology.

12.5.1. Lemma. Let G be finite, and let NG =
$

g∈G g be the norm element. Let NG : A → A be the

multiplication-by-NG map. Then IGA ⊆ kerNG and imNG ⊆ AG. Consequently, we get an induced map
N̂G : AG → AG. □

12.5.2. Definition (Tate (co)homology). Define Ĥn(G,A) = Hn(G,A) for n > 0, and Ĥ0(G,A) =

coker N̂G. Define Ĥn(G,A) = Hn(G,A) for n > 0, and Ĥ0(G,A) = ker N̂G. Define Ĥ−n(G,A) =

Ĥn−1(G,A) and Ĥ−n(G,A) = Ĥn−1(G,A) for n > 0.

Then, it is easy to check that a morphism of G-modules induces natural morphisms of Tate (co)homology
groups in all degrees. The key theorem is the following:
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12.5.3. Theorem. Let 0 → A → B → C → 0 be a short exact sequence of G-modules. Then we get a long
exact sequence of abelian groups

. . . → Ĥ1(G,A) → Ĥ1(G,B) → Ĥ1(G,C)

→ Ĥ0(G,A) → Ĥ0(G,B) → Ĥ0(G,C)

→ Ĥ0(G,A) → Ĥ0(G,B) → Ĥ0(G,C)

→ Ĥ1(G,A) → Ĥ1(G,B) → Ĥ1(G,C) → . . .

Furthermore, this is functorial.

Proof. Apply the snake lemma to the commutative diagram

H1(G,C) AG BG CG 0

0 AG BG CG H1(G,A).

ĤG ĤG ĤG

Furthermore, by diagram chasing, the image of H1(G,C) lies in Ĥ0(G,A), and CG → H1(G,A) factors

through Ĥ0(G,A). Finally, it is not hard to verify exactness at these two terms, and to check that a
commutative diagram of short exact sequences induces a commutative diagram of long exact sequences. □

12.5.4. Lemma. Ĥn(G,A⊕B) ∼= Ĥn(G,A)⊕ Ĥn(G,B), and Ĥn(G,A⊕B) ∼= Ĥn(G,A)⊕ Ĥn(G,B).

12.5.5. Theorem. Let G be finite, and B = IndG(A) ∼= CoIndG(A). Then the Tate (co)homology groups
of G with coefficients in B all vanish.

Proof. It suffices to show that for B = Z[G] ⊗Z A, ker(NG : B → B) = IGB and im(NG) = BG.
Since G acts on B only on its Z[G]-component, it suffices to show this for Z[G], in which case it is easily
verified. □

12.5.6. Corollary. Let A be a free Z[G]-module, then it has trivial Tate (co)homology.

Proof. Let B be the free Z-module generated by a Z[G]-basis of A. Then A ∼= IndG(B). □

Finally, we specialize to the case where G = 〈g〉 is a finite cyclic group. Then, instead of using the
standard resolution, we can use instead

(∗) · · · → Z[G]
NG−−→ Z[G]

g−1−−→ Z[G]
NG−−→ Z[G]

g−1−−→ Z[G]
ε−→ Z → 0.

Since G is abelian, we may view HomZ[G](Z[G], A) as a Z[G]-module by (gφ)(h) := φ(gh), and Z[G]⊗Z[G] A
as a Z[G]-module by g(h⊗ a) := (gh)⊗ a = h⊗ (ga). Of course, both of these are canonically isomorphic to
A as G-modules.

12.5.7. Theorem. Let G = 〈g〉 be a finite cyclic group, then the even-indexed Tate cohomologies (i.e.

odd-indexed Tate homologies) of any G-module A are all equal to Ĥ0(G,A), and the odd-indexed Tate coho-

mologies (i.e. even-indexed Tate homologies) are all equal to Ĥ0(G,A).

Proof. Apply the tensor and hom functors on (∗). □

12.6. Herbrand quotient.

12.6.1. Definition. Let G be a finite cyclic group, A a G-module. Let h0(A) = h0(G,A) = #Ĥ0(G,A),

and h0(A) = h0(G,A) = #Ĥ0(G,A). When both of these are finite, the Herbrand quotient is defined as

h(A) = h0(A)/h0(A) ∈ Q.
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12.6.2. Proposition. Let G be a finite cyclic group, 0 → A → B → C → 0 be a short exact sequence of
G-modules. Then there is an exact hexagon

Ĥ0(A) Ĥ0(B)

Ĥ0(C) Ĥ0(C)

Ĥ0(B) Ĥ0(A)

α0

β0

δ0

α0

β0

δ0

where the map δ0 is given by Ĥ0(C) ∼= Ĥ−2(C) = Ĥ1(C) → Ĥ0(A). □

12.6.3. Corollary. In 0 → A → B → C → 0, if two of h(A), h(B), h(C) are defined then so is the third,
and h(B) = h(A)h(C).

Proof. We have h0(A) = #Ĥ0(A) = #kerα0# imα0 = #kerα0#kerβ0. Similarly, we obtain

h0(A)h0(C)h0(B) = #kerα0#kerβ0#ker δ0#kerα0#kerβ0#ker δ0 = h0(A)h0(C)h0(B),

as desired. □

12.6.4. Corollary. If A is either (a) induced or coinduced, or (b) finite, then h(A) = 1.

Proof. If A is induced or coinduced, then both h0(A) and h0(A) are 1.

If A is finite: consider the exact sequence 0 → AG → A
g−1−−→ A → AG → 0, which implies

#AG = #ker(g − 1) = #coker(g − 1) = #AG,

so h0(A) = #ker(N̂G) = #coker(N̂G) = h0(A). □

12.6.5. Corollary. Let A be a finitely generated abelian group, then h(A) = h(A/Ators). Moreover, if A is
a trivial G-module, then h(A) = #(G)rkA. □

12.6.6. Lemma. Let α : A → B have finite kernel and cokernel. Then h(A) = h(B).

Proof. Use the exact sequences 0 → kerα → A → imα → 0 and 0 → imα → B → cokerα → 0 □

12.6.7. Corollary. Let A ⊆ B be a submodule with finite index, then h(A) = h(B).

12.7. Herbrand unit theorem. We now apply all this to the class field theory setting. Let L/K be a
finite Galois extension of local or global fields. Then the abelian groups L, L×, OL, O×

L , IL, PL (principal)
are all (nontrivial) G-modules, where G = Gal(L/K).

In the case G = 〈σ〉 is cyclic, we can compute the Herbrand quotient for all of the above (recall, again,

that Ĥ0(A) = ker N̂G = ker(NG)/ im(σ − 1) and Ĥ0(A) = coker N̂G = ker(σ − 1)/ im(NG)). Also, in the
case for L×,O×

L , IL,PL, the norm map corresponds to the element norm and the ideal norm; in the case L
and OL, the norm map corresponds to the trace.

12.7.1. Lemma (linear independence of automorphisms). Let L/K be finite Galois, then the set AutK(L)
is linearly independent in the L-vector space f : L → L.

Proof. Suppose otherwise, then suppose n is smallest such that there exists distinct f1, . . . , fn ∈
AutK(L) and a1, . . . , an ∈ L× with

$
aifi ≡ 0. Since f1 ∕= f2, there exists x0 ∈ L such that f1(x0) ∕= f2(x0).

Then
$

aifi(x0x) =
$

aifi(x0)fi(x) = 0 for all x ∈ L. Canceling out the two equations gives us a linear
dependence among n− 1 automorphisms, a contradiction. □

12.7.2. Lemma. Let L/K finite Galois, G = Gal(L/K). Then:

(i) Ĥ0(G,L) = Ĥ1(G,L) = 0;

(ii) Ĥ0(G,L×) ∼= K×/N(L×), and Ĥ1(G,L×) is trivial.
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Proof. For (i): first, since ker(σ − 1 : L → L) = LG = K, and im(NG) = im(TrL/K) = K (L/K

Galois hence separable hence trace form nondegerate), we have Ĥ0(G,L) = 0. To find H1(G,L), we use its
description as the crossed homomorphisms f : G → L modulo the principal ones. Let f : G → L be any
crossed homomorphism, then let β =

$
τ∈G f(τ)τ(α) ∈ L, where α ∈ L is a fixed element with trace 1.

Then for any σ ∈ G,

σ(β) =
!

τ∈G

σ(f(τ))σ(τ(α)) =
!

τ∈G

(f(στ)− f(σ))(στ(a)) = β − f(σ),

so f(σ) = β − σ(β), so f is in fact principal.
For (ii), (L×)G = K×, and im(NG) = N(L×). To find H1(G,L×), let f : G → L× be any crossed

homomorphism. Let β =
$

τ∈G f(τ)τ(α) where α is chosen so that β ∈ L× (by linear independence of
automorphisms). Then

τ(β) =
!

τ∈G

σ(f(τ))σ(τ(α)) =
!

τ∈G

f(στ)f(σ)−1(στ(α)) = f(σ)−1β,

so f(σ) = β/τ(β) is principal. □

Let L/K be a Galois extension of global fields. Then Gal(L/K) acts on the set of places ML, via
‖α‖σw = ‖σα‖w. Also, for a fixed place v of K, it permutes the places w | v.

12.7.3. Definition. The decomposition group Dw of a place w ∈ ML is the stabilizer

Dw := {σ ∈ Gal(L/K) : σ(w) = w}.

We know Gal(L/K) acts transitively on {w | v}, so the Dw’s are conjugate.

12.7.4. Remark. For archimedean places for number fields, w | v, Dw is trivial unless w is complex and v
is real, in which case #Dw = 2. Also, in the archimedean case, we define Iw = Dw. So fw = 1 always, and
ew = 2 iff w is a complex place that extends a real place.

With these definitions, [L : K] = evfvgv for all places v ∈ MK .

12.7.5. Definition. Let L/K be an extension of number field. Let e0 =
%

v∤∞ ev and e∞ =
%

v|∞ ev,

e(L/K) = e0e∞.

12.7.6. Theorem (Herbrand unit theorem). Let L/K be a Galois extension of number fields, and let
w1, . . . , wr+s be the archimedean places of L. Then there exist ε1, . . . , εr+s ∈ O×

L , such that:

• σ(εi) = εj ⇐⇒ σ(wi) = wj, for σ ∈ G;
• ε1, . . . , εr+s generate a finite index subgroup of O×

L ;
• ε1ε2 . . . εr+s = 1, and all other multiplicative relations are multiples of this.

Proof. Pick v1, . . . , vr+s ∈ O×
L (i.e. 1 at all finite places) such that |vi|wj

< 1 when i ∕= j and |vi|wi
> 1

(which is then automatic). These can be picked as follows (say i = 1): we use the adelic Minkowski theorem.
Choose the idèle d as follows: |dw|w = 1 for nonarchimedean w, |dwi |wi

= 1
M for i ∕= 1 (M a large number

chosen afterwards), and |dw1 |w1
large enough such that |d| = c (the bound in adelic Minkowski), so that

L(d) contains a nonzero point x ∈ L. In fact, by construction, x ∈ OL, and N(x) =
%

i |x|wi = c. To modify

x so that it lies in O×
L , choose a generator γ for all (finitely many) principal ideals of norm at most c. Then

dividing x by the previously fixed generator of (x) gives a number in O×
L . To control its absolute value under

wi (i ∕= 1), let

M = max
γ:i ∕=1

1

|γ|i
,

so that |x/γ|i < 1 for i ∕= 1. This concludes the process of choosing v1 = x/γ.

Let αi =
%

σ∈Dwi
σ(vi) ∈ O×

L . Then it is easy to compute |αi|wi
> 1 and |αi|wj

< 1 for j ∕= i, and

furthermore the stabilizer of αi in G is Dwi .
Now, the Galois group partitions wi into m orbits, where m is the number of archimedean places of K.

Reindex wi and ai such that w1, . . . , wm lie in distinct orbits. For i = 1, . . . , r+s, let r(i) = min{j : σ(wj) =
wi for some σ}, and call the corresponding σi (which is unique up to Dwr(i)

).
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Now, let βi = σi(αr(i)), which does not depend on the choice of σi since αr(i) is fixed by Dwr(i)
. Then

it is not hard to verify that βi satisfy the first bullet point. Furthermore,

|βi|wj
=

//σi(αr(i))
//
wj

=
//αr(i)

//
σi(wj)

,

so |βi|σ−1
i wr(i)

> 1 and for all other places of L, |βi| < 1. Furthermore, it is clear that σ−1
i wr(i) are simply

a permutation of wi: if σ−1
i1

wr(i1) = σ−1
i2

wr(i2), then r(i1) = r(i2) and σi1σ
−1
i2

∈ Dwr(i1)
, so βi1 = βi2 ,

which implies wi1 = wi2 , so i1 = i2. Thus, to show that βi’s generate a finite index subgroup of O×
L ,

we observe that in fact any r + s units satisfying the condition εi has this property (essentially because a
(r + s− 1)× (r + s− 1) matrix with positive row sums, where only diagonal elements are positive and the
rest are negative, is necessarily invertible).

Finally, because βi’s must have one relation, suppose
%

i β
ni
i is one with coprime exponents. By a rank

argument, these cannot have other relations. Then, we claim that taking εi = βni
i finishes the problem.

Indeed, (iii) and (ii) are easy to verify. To show (i), we need ni = nj whenever wi and wj are in the same
G-orbit. But this is true, since applying σ ∈ G should not give any additional relations between βi. □

12.8. The ambiguous class number formula.

12.8.1. Lemma (Noether). For L/K finite cyclic with G = Gal(L/K), Ĥ0(G,L) = Ĥ0(G,L×) = 0.

Proof. Let σ be a generator of G. By normal basis theorem (theorem 1.7.6), there exists β ∈ L× such
that {σiβ} is a basis of L/K. Under this basis, σ acts by translating the coordinates. So for α ∈ ker(NG) ⊆ L,

α =
$

i αi(σ
iβ), let us define γ =

$
i γi(σ

iβ) where γi = −
$i

j=1 αi. Since
$

i αi = 0, we have α = σγ − γ,

i.e. α ∈ im(σ − 1). This shows Ĥ0(G,L) = 0. A similar proof works for Ĥ0(G,L×). □

12.8.2. Remark. This also follows from the vanishing of Ĥ1(G,L) and Ĥ1(G,L×) in general, and that for

G cyclic, Ĥ1 = Ĥ0.

12.8.3. Corollary (Hilbert 90, original form). Let L/K be a finite cyclic extension, with Gal(L/K) generated
by σ. Then for α ∈ L×, N(α) = 1 iff α = β/σ(β) for some β ∈ L×.

12.8.4. Theorem. Let L/K finite cyclic, then

h(O×
L ) =

e∞(L/K)

[L : K]
.

Proof. Let ε1, . . . , εr+s be as in the Herbrand unit theorem, and let A be the finite-index subgroup of
O×

L they generate. Then A is also a G-module. For an embedding φ : K ↩→ C, let Eφ be the free Z-module
with basis ϕ : L ↩→ C extending φ. Then Eφ are also G-modules; in fact, G acts on {ϕ | φ} freely and

transitively, so Eφ
∼= Z[G] ∼= IndG(Z). Let vφ be the place of K corresponding to φ. Let Av be the free

G-module with basis w (places above v). Consider the G-module morphism π : Eφ → Av, sending ϕ %→ wϕ.
We have an exact sequence

0 → kerπ → Eφ
π−→ Av → 0,

where kerπ = (σm−1)Eφ, where σ is a generator for G and m = #{w | v}. If φ is unramified, then kerπ = 0
and h(Av) = h(Eφ) = 1. If G is ramified, then a more careful analysis gives h(kerφ) = 1/2, so h(Av) = 2.
In any case, h(Av) = ev.

Now, consider the exact sequence of G-modules

0 → Z →
,

v|∞

Av
φ−→ A → 0,

where ψ sends wi %→ εi. We are done because h(Z) = #G = [L : K]. □

12.8.5. Lemma. Let L/K be a cyclic extension of global fields. Then h0(IL) = 1 and h(IL) = h0(IL) =
e0(L/K)[IK : N(IL)].

Proof. Suppose I ∈ kerNG, i.e. I ∈ IL satisfies N(I) = OK . By using the explicit description
N(q) = pfq , we can conclude that for each p in K,

$
q|p vq(I) = 0. Since G = Gal(L/K) is cyclic, we can

order {q | p} = {q1, . . . , qg} such that σqi = qi+1 where σ is a fixed generator of G (of course, σqg = q1).
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Let ni = vqi(I) and mi = −
$i

j=1 nj , and let Jp =
$

qmi
i . Then σ(Jp)/Jp =

%
q|p q

vq(I). The conclusion is

that I = σ(J)/J , i.e. I ∈ im(σ − 1). This shows h0(IL) = 1.
Now, we compute h0(IL). Suppose I ∈ ker(σ − 1) = IG

L , then this is equivalent to vq(I) being constant

for q over a fixed p. Then I is a product of ideals of form (pOL)
1/ep . So [IG

L : IK ] = e0(L/K), so
h0(IL) = [IG

L : N(IL)] = [IG
L : IK ][IK : N(IL)] = e0(L/K)[IK : N(IL)]. □

12.8.6. Theorem (ambiguous class number formula). Let L/K be a finite cyclic extension of number fields.
Then

#ClGL =
e(L/K)#ClK
n(L/K)[L : K]

,

where n(L/K) = [O×
K : N(L×) ∩O×

K ] ∈ Z≥1.

Proof. Consider the long exact sequence in cohomology

0 → PG
L → IG

L → ClGL → H1(PL) → 0,

since H1(IL) ∼= Ĥ0(IL) = 0. Therefore, #ClGL = h0(PL) · [IG
L : PG

L ].
Consider the inclusions PK ⊆ PG

L ⊆ PL, so

[IG
L : PG

L ] =
[IG

L : PK ]

[PG
L : PK ]

=
[IG

L : IK ][IK : PK ]

[PG
L : PK ]

=
e0(L/K)#ClK

[PG
L : PK ]

.

Now, consider another long exact sequence in cohomology

0 → (O×
L )

G → (L×)G → PL → H1(O×
L ) → H1(L×) → H1(PG

L ) → H2(O×
L ) → H2(L×),

which can be simplified into

0 → O×
K → K× → PG

L → Ĥ0(O×
L ) → 0 → Ĥ0(PL) → Ĥ0(O×

L )
f−→ K×/N(L×).

Since K×/O×
K

∼= PK , we get

[PG
L : PK ] = h0(O×

L ) =
h0(O×

L )[L : K]

e∞(L/K)
.

The last three terms of the above long exact sequence also gives

h0(O×
L )

h0(PL)
= # im f = [O×

K : N(L×) ∩O×
K ].

Therefore,

#ClGL =
h0(PL)e(L/K)#ClK

h0(O×
L )[L : K]

=
e(L/K)#ClK
n(L/K)[L : K]

,

as desired. □

Some remarks on the ambiguous class number formula. First, if L/K is quadratic, then G = {1,σ} has
order 2. In this case, for any I ∈ IL, N(I) = I · σI, so passing to ClL gives [1] = [I][σI]. This means that
[I] is a 2-torsion element in ClL iff [I] is G-invariant. In particular, when L/K is an imaginary quadratic
extension with discriminant D, e∞(L/K) = [L : K] = 2 and n(L/K) = 2, so the ambiguous class number

formula gives #ClL[2] =
e0(L/K)

2 , i.e. its Z/2Z-rank is #{p | D} − 1. This has applications in factoring
integers.

12.9. First main inequality of CFT.

12.9.1. Lemma. Let f : A → C be a map of abelian groups, such that ker f ⊆ B ⊆ A, then A/B ∼=
f(A)/f(B).

Proof. Use snake lemma. □

And now the payoff:

12.9.2. Theorem (first main inequality). Let L/K be a totally unramified cyclic extension of number fields
(i.e. e(L/K) = 1). Then

[IK : TL/K ] ≥ [L : K],

where TL/K = PKN(IL) is the norm group (Takagi group) for the trivial modulus.
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Proof. Let us rewrite

[IK : PKN(IL)] =
[IK : PK ]

[PKN(IL) : PK ]

=
#ClK

[N(IL) : N(IL) ∩ PK ]

=
#ClK

[IL : N−1(PK)]

=
#ClK

[IL/PL : N−1(PK)/PL]

=
#ClK

[ClL : ClL[NG]]

=
#ClK

#NG(ClL)
.

Now, h0(ClL) = [ClGL : NG(ClL)], so by the ambiguous class number formula:

[IK : TL/K ] =
#ClK h0(ClL)

#ClGL
=

h0(ClL)n(L/K)[L : K]

e(L : K)
= h0(ClL)n(L/K)[L : K] ≥ [L : K],

as desired. □

12.9.3. Corollary (norm index equality, etc.). Let L/K be a totally unramified cyclic extension of number
fields, then:

• [IK : TL/K ] = [L : K];

• #ClGL = #ClK /[L : K];
• the Tate cohomologies of ClL all vanish;
• every unit in O×

K is the norm of an element in L.

Proof. Equality follows from theorems 11.9.7, 12.9.2. In fact, because equality holds, the proof of the
first main inequality tells us more things: Ĥ0(ClL) = 0 and O×

K ⊂ N(L×) (every unit is a norm). The

ambiguous class number formula then says #ClGL = #ClK /[L : K]. In addition, h(ClL) = 1 since ClL is
finite, and since we know h0(ClL) = 1, h0(ClL) = 1 as well. □

In the homework, it will be shown that this implies kerψL/K = TL/K , and a similar equality holds in the
ramified case where there is a nontrivial modulus. This then immediately implies that Im

K/TL/K
∼= Gal(L/K)

is an isomorphism, i.e. Artin reciprocity.

12.10. Local CFT. In this subsection we will focus on local class field theory. Since what we’ve shown
points to the importance of the images of norm maps, and norms can be computed locally, it makes sense
for us to start locally.

Let K be a local field, with a fixed separable closure Ksep, and let

Kab =
5

L⊆Ksep:L/K finite abelian

L

Kunr =
5

L⊆Ksep:L/K finite unramified

L

be the maximal abelian and unramified extensions of K (inside Ksep), so K ⊆ Kunr ⊆ Kab ⊆ Ksep. The
middle inclusion is true because any finite unramified extension of K is cyclic. Infinite Galois theory tells us
that there is a one-to-one correspondence

{extensions L/K in Kab} ←→ {closed subgroups of Gal(Kab/K)}
{Galois extensions} ←→ {closed normal subgroups}

{finite extensions} ←→ {open subgroups}.
The archimedean case is not very interesting, so let us assume K is nonarchimedean. Then the discrete
valuation ring OK is a DVR, with prime p, and let Fp be the residue field.
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Let L/K be unramified, then the Galois group Gal(L/K) is generated by the Frobenius element FrobL/K .
The Artin map ψL/K : IK → Gal(L/K) sends p %→ FrobL/K . Since OK is a PID, we can extend ψL/K

multiplicatively to a map ψL/K : K× → Gal(L/K).

12.10.1. Theorem (local Artin reciprocity). Let K be a local field. There is a unique continuous homo-
morphism θK : K× → Gal(Kab/K), such that for any finite abelian L/K in Kab, we have an induced map
θL/K : K× → Gal(Kab/K) ↠ Gal(L/K), which satisfies:

• If K is nonarchimedean and L is unramified, then θL/K(π) = FrobL/K , where π is any uniformizer
of K;

• θL/K is surjective with kernel NL/K(L×), hence induces an isomorphism K×/NL/K(L×) ∼= Gal(L/K).

12.10.2. Remark. Mentally compare this to the more complicated global CFT: there is no modulus since
Kab covers everything, and Im

K/TL/K is replaced with K×/N(L×). The analogue in global CFT is by
considering the idèle class group, which contains everything and hides the moduli.

12.10.3. Definition. A norm group of a local field K is any subgroup of K× of the form NL/K(L×), L
finite ab. extension.

12.10.4. Remark. The word “abelian” can be removed without changing anything. If L/K is any finite
extension, not even necessarily Galois, then the norm limitation theorem implies that N(L×) = N(M×),
where M is the maximal abelian extension of K in L.

12.10.5. Corollary. The map L %→ N(L×) induces an inclusion-reversing bijection between finite abelian
extensions L/K and norm groups of K, satisfying:

• N((L1L2)
×) = N(L×

1 ) ∩N(L×
2 );

• N((L1 ∩ L2)
×) = N(L×

1 )N(L×
2 ).

Proof. The inclusion-reversal follows from transitivity of norms. We use Artin reciprocity to prove the
two bullet points.

To show N(L×
1 )∩N(L×

2 ) ⊆ N((L1L2)
×): because Gal(L1L2/K) → Gal(L1/K)×Gal(L2/K) is injective,

we can conclude by Artin reciprocity. The other direction is clear.
To show the map L %→ N(L×) is a bijection: surjectivity follows by definition. Suppose L1, L2 give

rise to the same norm group, then L1L2 also gives rise to the same norm group. By Artin reciprocity,
Gal(L1L2/K) = Gal(L1/K) = Gal(L2/K), so L1 = L2. This shows injectivity.

Finally, to show the second bullet point, note that N(L×
1 )N(L×

2 ) is the smallest subgroup of K× con-
taining both norm groups, and L1 ∩ L2 is the largest extension of K contained in both L1 and L2. So
N((L1 ∩ L2)

×) = N(L×
1 )N(L×

2 ) by the bijection described above. □

12.10.6. Corollary. Every norm group has finite index in K×, and every group that contains a norm group
is a norm group.

Proof. By Artin reciprocity, K×/N(L×) ∼= Gal(L/K) is a finite group, so every norm group has finite
index.

Suppose N(L×) ≤ H ≤ K×. Consider F = LH/N(L×), where H/N(L×) is viewed as a subgroup of
K×/N(L×) ∼= Gal(L/K). Then Artin reciprocity shows that N(F×) ∼= H. □

12.10.7. Lemma. Let L/K be any extension of local fields. If N(L×) has finite index in K×, then it is
open.

Proof. The archimedean case is not interesting, so WLOG K is nonarchimedean. Since O×
L is compact,

its image N(O×
L ) must also be compact, hence closed (K× is Hausdorff). Because for α ∈ L×,

α ∈ O×
L ⇐⇒ |α| = 1 ⇐⇒

//NL/K(α)
// = 1 ⇐⇒ NL/K(α) ∈ O×

K ,

we have N(O×
L ) = N(L×) ∩ O×

K , so it is the kernel of the map O×
K ↩→ K× ↠ K×/N(L×). This shows

O×
K/N(O×

L ) is finite, and thus N(O×
L ) is closed and of finite index in O×

K , hence open. But O×
K is open in

K×, so N(O×
L ) is open in K×, so N(L×) is open as well, being the union of cosets of N(O×

L ). □

The two other main statements of local CFT are the following:
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• Existence: for any open H ⊆ K× of finite index, there exists a unique L/K in Kab such that
H = N(L×). By virtue of Lemma 12.10.7, this means that for subgroups of K×, finite index open
⇐⇒ is a norm group.

• Main Theorem: θK induces a canonical homeomorphism of profinite groups

)θK : +K× ∼=−→ Gal(Kab/K).

Proof of the Main Theorem. By Artin reciprocity and the existence theorem,

Gal(Kab/K) ∼= lim←−
L/K f. ab.

Gal(L/K) ∼= lim←−
H norm group

K×

H
= lim←−

H finite index open

K×

H
∼= +K×,

as desired. □

When K is archimedean, +K× is either trivial (K = C) or has order 2 (K = R). So we focus on the
nonarchimedean case. By picking a uniformizer π, we get a non-canonical isomorphism K× ∼= O×

K × Z.
So +K× ∼= +O×

K × )Z = OK × )Z, where O×
K is already profinite because it is compact, Hausdorff, and totally

disconnected. More canonically, we have the commutative diagram of split exact sequences

1 O×
K K× Z 1

1 Gal(Kab/Kunr) Gal(Kab/K) Gal(Kunr/K) 1

v

∼= θK φ

where φ becomes the inclusion φ : Z ↩→ )Z under the identification Gal(Kunr/K) ∼= Gal(Fp/Fp) ∼= )Z, and
sends 1 to the element (FrobL/K)L, called the arithmetic Frobenius. (Aside: φ(−1) is called the geometric
Frobenius.) Taking the profinite completion of the top row yields the bottom row. The arithmetic/geometric
Frobenius is a topological generator (generates a dense subgroup) of Gal(Kunr/K).

Now consider Gal(Kab/K). Because the top sequence splits, the bottom does as well (also non-

canonically): Gal(Kab/K) ∼= O×
K × )Z. The fixed field of OK

∼= Gal(Kab/Kunr) is Kunr, and let Kπ be
the fixed field of θK(π). Then Kab = KunrKπ. The fact that Kπ is not canonical reflects the fact that one
cannot say the “maximal totally ramified extension”. But what we can say is that Kπ is the compositum of
all finite, totally ramified L/K in Kab such that π ∈ N(L×).

12.10.8. Example. Let K = Qp, and pick π = p (of course, we could have picked any valuation-1 element).
Then the picture looks like this:

Qab
p

Qunr
p

∼=
"

n Qp(ζpn) (Qp)p =
"

gcd(m,p)=1 Qp(ζm)

Qp

!Z Z×
p

Z×
p !Z

12.11. Global CFT via idèles. Let K be a global field. Recall the group of idèles

IK = A×
K :=

2′

v
(K×

v ,O×
v ).

Standard caveat is that in the first equality, the topology of IK is finer than the one inherited as a subset of
AK . We have a natural map

ϕ : IK → IK
a %→

2

p

pvp(a).
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This ignores the infinite places. There is a natural commutative diagram

1 K× IK CK 1

1 PK IK ClK 1

x +→(x) ϕ

where CK is the idèle class group.

12.11.1. Definition. Given finite separable L/K, define the norm map

NL/K : IL → IK
mapping

(aw)w %→ pr
2

w|v

NLv/Kw
(aw)

v

.

This behaves well with the other norm maps:

L× IL IL

K× IK IK ,

NL/K NL/K N

so this induces a map

CL ClL

CK ClK .

NL/K NL/K

We wish to glue together the local Artin homomorphisms to get a global Artin homomorphism.
Define ϕw : Gal(Lw/Kv) ↩→ Gal(L/K) by restricting σ %→ σ|L. Then the image of ϕw is just Dw.

Because L/K is abelian, Dw only depends on v. Furthermore, ϕw ◦ θLw/Kv
: K× → Gal(L/K) does not

depend on w. This is easy to see in the unramified nonarchimedean case.
Define iv : K×

v ↩→ IK sending α %→ (1, . . . ,α, . . . , 1) at the entry corresponding to v. The image intersects
the principal idèles trivially. In addition, iv commutes with the norm maps Lw → Kv and IL → IK .

Now, for a finite abelian extension L/K, define a map

θL/K : IK → Gal(L/K)

mapping

(av)v %→
2

v

φw(θLw/Kv
(av))

where we fix a place w | v for each v; this does not depend on which w we pick. This product is well-defined,

because for unramified (all but finitely many) v, φw(θLw/Kv
(av)) = Frobv(av)

v , which is 1 for all but finitely
many av.

It is clear that θL/K is a group homomorphism. It is also continuous, because its kernel is the union of
open sets. In addition, if L1 ⊆ L2 are two finite abelian extensions of K, then θL1/K is the same as θL2/K

composed with Gal(L2/K) ↠ Gal(L1/K). So we get a unique induced continuous homomorphism

θK : IK → Gal(Kab/K).

12.11.2. Definition. This is called the global Artin homomorphism.

12.11.3. Proposition. The global Artin homomorphism is the unique continuous homomorphism charac-
terized by the property that for any finite abelian L/K, and any place w of L extending v of K, the diagram

K×
w Gal(Lw/Kv)

IK Gal(L/K)

θLw/Kv

iv φw

θL/K

commutes. □
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Now we are ready to state the main theorems of the idèle-theoretic formulation of global CFT.

12.11.4. Theorem (global CFT, via idèles). The global Artin homomorphism θK satisfies:

• (Artin reciprocity) ker θK contains K×, and the induced map θK : CK → Gal(Kab/K) satisfies
that for any L/K finite abelian, the induced θL/K : CK → Gal(L/K) is surjective, with kernel
NL/K(CL).

• (Existence theorem) For any finite index open H ≤ CK , there exists a unique finite abelian L/K
in Kab such that NL/K(CL) = H.

• (Main theorem) θK induces an isomorphism

)θK : +CK → Gal(Kab/K).

• (Functoriality) For any finite separable L/K, the diagram

CL Gal(Lab/L)

CK Gal(Kab/K)

θL

NL/K res

θK

commutes.

12.11.5. Remark. There is then an inclusion-reversing bijection

{finite index open subgroups H ≤ CK} ←→ {finite abelian extensions L/K in Kab}

H %→ (Kab)θK(H)

NL/K(CL) ← ! L.

12.11.6. Remark. When K is a number field, θK is surjective with kernel he connected component of the
identity in IK . When K is a global function field, θK is injective with dense image.

Finally, we state the connection to ideal-theoretic CFT (Theorem 12.1.1). Let m =
%

v v
ev be a modulus

for K. Define the group

Um
K(v) :=

>
?@

?A

O×
v , for v ∤ m

R>0, for v real, v | m
1 + pev , for v finite, v | m, where p = {x ∈ Ov : |x|v < 1}.

Let Um
K =

%
v U

m
K(v), then this is an open subgroup of IK . Its image U

m

K in CK is a finite index open
subgroup. Define

Cm
K = IK/(K×Um

K) = CK/U
m

K ,

then it turns out that

Cm
K

∼= ClmK
∼= Gal(K(m)/K).

The existence of ray class fields K(m) is then the reincarnation of the existence of a field L such that

N(CL) = U
m

K .

Finally, for a finite abelian L/K, N(CL) contains U
m

K for some m; in fact, the U
m

K forms a neighborhood

basis of 1 in CK , and the smallest m for which U
m

K ⊆ N(CL) is true is the conductor c(L/K). This then
shows that L is contained in some ray class field.

13. Cohomological tools

13.1. Dimension shifting. In the next few subsections we develop more cohomological tools to prove
local CFT.

To see the connection with cohomology: Ĥ0(G,A) = AG/NG(A), so taking A = L× and G = Gal(L/K)

gives precisely that Ĥ0(Gal(L/K), L×) = K×/N(L×) for any Galois L/K. We will use a theorem of Tate

to construct an explicit isomorphism Gal(L/K) ∼= Ĥ0(Gal(L/K), L×).
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13.1.1. Definition. Let A be a G-module. Define another G-action on IndG(A) and CoIndG(A):

g(z ⊗ a) = gz ⊗ ga

gϕ = [z %→ gϕ(g−1z)].

This only makes sense when A is a G-module (while the usual Ind and CoInd make sense for any abelian
group A).

13.1.2. Lemma. Let A be a G-module, A◦ the corresponding abelian group by forgetting its G-module
structure. Then the maps

Φ : IndG(A) → IndG(A◦)

g ⊗ a %→ g ⊗ g−1a

and

Ψ : CoIndG(A) → CoIndG(A◦)

φ %→ [g %→ gφ(g−1)]

are G-module isomorphisms.

Proof. It is straightforward to check these are G-module homomorphisms. The inverse of the first one
is g ⊗ a %→ g ⊗ ga, and the second one is its own inverse. □

Recall the augmentation ideal IG satisfies an exact sequence of G-modules

0 → IG → Z[G]
ε−→ Z → 0

where ε :
$

ngg %→
$

ng. As Z-modules, this sequence obviously splits. But the splitting is not a map of
G-modules: Z ∼= Z1G is not a G-submodule of Z[G].

13.1.3. Lemma. Let A be a G-module, then the map

π : IndG(A) → A

z ⊗ a %→ ε(z)a

is surjective with kernel IG ⊗Z A, and the map

ι : A → CoIndG(A)

a %→ [z %→ ε(z)a]

is injective with cokernel HomZ(IG, A). □
So we get two short exact sequences of G-modules

0 → IG ⊗Z A → IndG(A)
π−→ A → 0

and
0 → A

ι−→ CoIndG(A) → HomZ(IG, A) → 0.

Recall that IndG and CoIndG have trivial (co)homology at n > 0, and when G is finite, their Tate coho-
mologies all vanish (even as H-modules where H ≤ G finite index). So we have:

13.1.4. Theorem (dimension shifting). Let A be a G-module, H ≤ G a subgroup of finite index. If G is
finite, then for any n ∈ Z,

Ĥn+1(H,A) = Ĥn(H,HomZ(IG, A))

and
Ĥn−1(H,A) = Ĥn(H, IG ⊗Z A).

When G is any (not necessarily finite) group, this holds for Hn and Hn for n > 0.

Using this theorem, one could alternatively define Tate (co)homology using only the zeroth Tate coho-
mology. Dimension shifting gives us theorems about all cohomologies provided we have proven it in general
for the zeroth.

13.1.5. Proposition. When G is finite, A any G-module, then Ĥn(G,A) is torsion with exponent dividing
#G.
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Proof. By dimension shifting, it suffices to show this for n = 0, where Ĥ0(G,A) = AG/NG(A). But

for a ∈ AG, NGa = (#G)a, so #G kills Ĥ0. □

13.1.6. Corollary. Let G be finite, A any G-module. If multiplication by #G is an isomorphism A → A,
then A has trivial Tate cohomology.

In particular, this holds when A is the additive group of a ring and #G is a unit in it.

Proof. [#G] then induces isomorphisms on all Ĥn(G,A), but they are all killed by #G, hence trivial.
□

13.1.7. Corollary. Let G be finite, A any finitely generated G-module. Then Ĥn(G,A) is finite for all
n ∈ Z. In particular, the Herbrand quuotient will be defined.

Proof. It is a finitely generated torsion abelian group, hence finite. □

13.2. Restriction. Recall the functoriality of group (co)homology: a map of G-modules φ : A → B
induces maps

φn : Hn(G,A) → Hn(G,B), φn : Hn(G,A) → Hn(G,B).

In the other input, if ϕ : H → G is a group homomorphism, we get a homomorphism from the standard
resolution of Z by H-modules to the standard resolution of Z by G-modules. This induces maps

ϕn : Hn(H,ResGH(A)) → Hn(G,A), ϕn : Hn(G,A) → Hn(H,ResGH(A)).

13.2.1. Definition. Let ϕ : H → G be a group homomorphism, A an H-module, and B a G-module.
Suppose φ : A → B or φ : B → A is a map of H-modules, then we say φ is compatible with ϕ.

If φ : A → B is compatible with ϕ : H → G, we get homomorphisms

Hn(H,A)
φn−−→ Hn(H,B)

ϕn−−→ Hn(G,B)

and if φ : B → A then we get

Hn(G,B)
ϕn

−−→ Hn(H,B)
φn

−−→ Hn(H,A).

13.2.2. Definition. Let A be a G-module, H ≤ G. The morphisms

Res : Hn(G,A) → Hn(H,A)

CoRes : Hn(H,A) → Hn(G,A)

are the above maps induced by ϕ : H → G and φ : A
id−→ A.

13.2.3. Example. When n = 0, Res : AG → AH is the natural inclusion, and CoRes : AH → AG is the
natural quotient.

13.2.4. Definition. Let A be aG-module, H ≤ G of finite index. Fix S ⊆ G a set of left coset representatives
for H. Define

NG/H :=
!

s∈S

s ∈ Z[G], N−1
G/H :=

!

s∈S

s−1 ∈ Z[G].

Define a restriction map on homology by

Res : H0(G,A) → H0(H,A)

a+ IGA %→ N−1
G/Ha+ IHA

It is easy to check that this does not depend on the set of representatives we choose, and for α : A → B
a map of G-modules, the diagram

H0(G,A) H0(G,B)

H0(H,A) H0(H,B)

Res

α0

Res

α0

commutes.
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If G is finite, then Res(ker N̂G) ⊆ ker N̂H , so we have an induced map

Ĥ0(G,A) → Ĥ0(H,A).

Similarly, define the corestriction for cohomology

CoRes : H0(H,A) → H0(G,A)

a %→ NG/Ha

and it is also functorial and does not depend on the coset representatives S.
Now, we extend Res to higher homologies. From the long exact sequence for 0 → IG⊗ZA → IndG(A) →

A → 0, we can uniquely extend

0 H1(G,A) H0(G, IG ⊗Z A) H0(G, IndG(A)) 0

0 H1(H,A) H0(H, IG ⊗Z A) H0(H, IndG(A)) 0

∃! Res Res

and similarly dimension shifting gives maps Res : Hn(G,A) → Hn(H,A).
Similarly, we get CoRes : Hn(H,A) → Hn(G,A). Restriction and corestriction are transitive and

δ-functorial.

13.2.5. Proposition. Let A be a G-module, H ≤ G fintie index, then CoRes ◦Res is multiplication by
[G : H] on Hn(G,A) and Hn(G,A) (and all Ĥn(G,A) when G is finite).

Proof. Prove this for n = 0, and use dimension shifting. □

13.3. Inflation.

13.3.1. Definition. Let A be aG-module, H⊳G. Then AH , AH are trivialH-modules, henceG/H-modules.
Then the map induced by ϕ : G → G/H and φ : AH → A is the inflation

Inf : Hn(G/H,AH) → Hn(G,A)

and the map induced by ϕ : G → G/H and φ : A → AH is the coinflation

CoInf : Hn(G,A) → Hn(G/H,AH).

These are also δ-functorial.

13.3.2. Example. In degree n = 0, Inf and CoInf are just the identity maps on AG and AG.

13.3.3. Example. Let f : Gn → A be a n-cochain representing γ ∈ Hn(G,A). Then Res(γ) ∈ Hn(H,A) is
represented by the restriction of f to Hn.

Let f : (G/H)n → A be a n-cochain representing γ ∈ Hn(G/H,A). Then Inf(γ) ∈ Hn(G,A) is given
by composing f with the projection Gn → (G/H)n.

13.3.4. Theorem (inflation-restriction theorem). Let A be a G-module, H ⊳ G, n ≥ 1. If Hi(H,A) = 0
for 1 ≤ i ≤ n− 1, then

0 → Hn(G/H,AH)
Inf−−→ Hn(G,A)

Res−−→ Hn(H,A)

is exact.

Proof. Use induction on n.
In the base case n = 1, everything can be written down explicitly. Let f : G/H → AH be a 1-cochain

representing γ ∈ ker Inf. Since f composed with G → G/H must be of form [g %→ ga− a] for some a ∈ AH ,
f itself must be given by [g %→ ga−a], so it is a coboundary, so γ = 0. Next, since H → G → G/H is trivial,
im Inf ⊆ kerRes. To show equality, let f : G → A be a 1-cochain representing γ ∈ kerRes. Then on H, f
must act as [h %→ ha− a] for some a ∈ A. Define f : G → A by g %→ f(g)− ga+ a, then f vanishes on H, so

f(gh) = gf(h) + f(g) = f(g)

and

f(hg) = hf(g) + f(h) = hf(g).
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The first equation tells us that f factors through G/H, and the second tells us that the image of f is
H-invariant. So f gives an element in H1(G/H,AH) whose inflation is f . This shows the case n = 1.

Now the induction step. Assume this holds for n (for all G,H,A), and we show this for n + 1. By
dimension shifting, if A satisfies the hypothesis for n + 1, then HomZ(IG, A) satisfies the hypothesis for n.
By inductive hypothesis,

0 → Hn(G/H,HomZ(IG, A)H)
Inf−−→ Hn(G,HomZ(IG, A))

Res−−→ Hn(H,HomZ(IG, A))

is exact. By dimension shifting again,

0 → Hn+1(G/H,AH)
Inf−−→ Hn+1(G,A)

Res−−→ Hn+1(H,A)

is exact. □
13.3.5. Remark. There is an analogous theorem for CoRes and CoInf:

Hn(H,A)
CoRes−−−−→ Hn(G,A)

CoInf−−−→ Hn(G/H,AH) → 0

is exact, if Hi(H,A) = 0 for 1 ≤ i ≤ n− 1.

13.4. Tate’s theorem.

13.4.1. Theorem. Let A be a G-module, where G is finite. Suppose for all H ≤ G, we have H1(H,A) =

H2(H,A) = 0. Then Ĥn(G,A) = 0 for all n ∈ Z.

Proof. For G cyclic, this is clear since Tate cohomology is periodic with period 2.
For G solvable, let 1 = H0 ⊳ H1 ⊳ · · · ⊳ Hm = G be the shortest possible subnormal series, such that

all consecutive quotients are cyclic. Proceed by induction on m, with the base case clear. Let H ∕= G be a
normal subgroup of G such that G/H is cyclic, then by induction hypothesis, Ĥn(H,A) = 0 for all n ∈ Z.

By the inflation-restriction theorem, we have Hn(G/H,AH) ∼= Hn(G,A) for n ≥ 1 (since Hn(H,A) =

Ĥn(H,A) = 0). So H1(G/H,AH) = H2(G/H,AH) = 0, and consequently for all n ∈ Z, Ĥn(G/H,AH) = 0.
This implies that Hn(G,A) = 0 for all n ≥ 1, and also

0 = Ĥ0(G/H,AH) = (AH)G/H/NG/H(AH).

Combine this with 0 = Ĥ0(H,A) = AH/NH(A), we have

AG = (AH)G/H = NG/H(AH) = NG/H(NH(A)) = NG(A),

so Ĥ0(G,A) = 0. Since this holds for general A, we may use dimension shifting to address n < 0: since

Ĥn−1(H,A) = Ĥn(H, IG⊗ZA), the hypothesisH1(H, IG⊗ZA) = H2(H, IG⊗ZA) = 0 holds, so Ĥ−1(G,A) =

Ĥ0(G, IG ⊗Z A) = 0, and repeating this proves that Ĥn(G,A) = 0 for all n ∈ Z.
In general, suppose G is not necessarily solvable. Let H be a Sylow p-subgroup of G, then H is solvable.

Consider the composition

Hn(G,A)
Res−−→ Hn(H,A)

CoRes−−−−→ Hn(G,A)

which is multiplication by (G : H), a number coprime to p. But for n ≥ 1, this is also the zero map since
the middle group is zero. So Hn(G,A) has no elements of order p. Since this is for any p, we conclude

Ĥn(G,A) = 0 for n ≥ 1. For n = 0, since Ĥ0(H,A) = 0, the map NH : A → AH is surjective, so for
any a ∈ AG ⊂ AH , there exists a′ ∈ A such that a =

$
h∈H ha′, so NG(a

′) = [G : H]a. This shows that

multiplication by [G : H] kills Ĥ0(G,A) as well, so it has no elements of order p, and since this is for any

p we conclude Ĥ0(G,A) = 0. Finally, for n < 0, again use the same dimension shifting argument as in the
solvable case. □
13.4.2. Theorem (Tate’s theorem). Let A be a G-module where G finite, and suppose for every H ≤ G,
H1(H,A) = 0 and H2(H,A) is cyclic with order equal to #H. For any generator γ of H2(G,A) and all
n ∈ Z, there is a uniquely determined isomorphism

Φγ : Ĥn(G,Z) → Ĥn+2(G,A)

compatible with Res and CoRes.

Tate’s theorem is the keystone of the proof of local Artin reciprocity, so we will walk through the proof
carefully.
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Proof of Tate’s theorem 13.4.2. Let ϕ be a 2-cocycle in C2(G,A) representing γ ∈ H2(G,A). Let
A(ϕ) be the G-module

A(ϕ) = A
,

g∈G−{1}

Zg,

where G acts on A as usual and gxh := xgh − xg + ϕ(g, h), where xg is the generator for the Zg component
for g ∕= 1, and x1 := ϕ(1, 1) ∈ A. It is easy to check that this is a G-action:

g1(g2xh)− (g1g2)xh = g1(xg2h − xg2 + ϕ(g2, h))− xg1g2h + xg1g2 − ϕ(g1g2, h)

= g1ϕ(g2, h)− ϕ(g1g2, h) + ϕ(g1, g2h)− ϕ(g1, g2)

= (dϕ)(g1, g2, h) = 0,

since ϕ is a cocycle.

Now, by definition, the 2-cocycle ϕ : G2 → A
i−→ A(ϕ) is the coboundary of the 1-cochain

ψ = [g %→ xg] ∈ C1(G,A(ϕ)),

since

(dψ)(g, h) = gxh − xgh + xg = ϕ(g, h).

So γ lies in the kernel of the map

i2 : H2(G,A) → H2(G,A(ϕ)).

But since γ generates H2(G,A), we conclude that i2 is the zero map.
Now define a morphism of G-modules φ : A(ϕ) → Z[G] sending a %→ 0 for a ∈ A and sending xg %→ g− 1

(it is easy to check this is G-equivariant). Note that kerφ = A and imφ = IG, so we have a short exact
sequence of G-modules

(∗) 0 → A
i−→ A(ϕ) → IG → 0.

In particular, for each H ≤ G, this is a short exact sequence of H-modules. We also have our usual short
exact sequence

0 → IG → Z[G]
ε−→ Z → 0.

Consider its long exact sequence of Tate cohomology. Because Ĥn(H,Z[G]) = 0 for all n, we have Ĥn(H,Z) ∼=
Ĥn+1(H, IG). In particular:

• H2(H, IG) = H1(H,Z) = HomAb(H,Z) (this can be seen using cochains and the fact that Z is a
trivial H-module), but this is zero because H is finite;

• H1(H, IG) = Ĥ0(H,Z) = ZH/NHZ = Z/(#H).

Now, we can write down the long exact sequence of Tate cohomology of (∗):

H1(H,A)
i1−→ H1(H,A(ϕ))

φ1

−→ H1(H, IG)
δ1−→ H2(H,A)

i2−→ H2(H,A(ϕ))
φ2

−→ H2(H, IG)

which, given our current information, is

0
i1−→ H1(H,A(ϕ))

φ1

−→ H1(H, IG)
δ1−→ Z/(#H)

i2−→ H2(H,A(ϕ))
φ2

−→ 0.

Now, since i2 is the zero map, H2(H,A(ϕ)) = 0, so δ1 is surjective. But since H1(H, IG) ∼= Z/(#H), we
conclude that δ1 is an isomorphism, and H1(H,A(ϕ)) = 0.

By theorem 13.4.1, we conclude that Ĥn(G,A(ϕ)) = 0 for all n ∈ Z. Therefore, we have isomorphisms

Ĥn(G, IG) ∼= Ĥn+1(G,A). So we have isomorphisms

Φγ : Ĥn(H,Z) ∼= Ĥn+1(G, IG) ∼= Ĥn+2(G,A).

Furthermore, the first map is canonical, and the second map only depends on γ (choosing a different ϕ does
not change any of the maps in cohomology). Since Res and CoRes are both morphisms of δ-functors, they
commute with both maps. This concludes the proof. □
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13.5. Continuous cohomology. Let us switch gears to developing more cohomology theory, this time
for profinite (more generally, topological) groups, taking the topology into account.

13.5.1. Definition. Let G be a topological group. A topological G-module (or continuous G-module) is
an abelian topological group A on which G acts continuously, i.e. G × A → A is continuous. A discrete
G-module A is a topological G-module such that A carries the discrete topology. A morphism of topological
G-modules is a map of topological abelian groups compatible with the G-action.

In general, there are several inequivalent ways to define cohomology for topological G-modules. But we
are only interested in the case where G is profinite and A is discrete, and in this case there is a natural
choice, namely continuous cohomology.

Consider the continuous n-cochains Cn(G,A), consisting of continuous maps Gn → A. This forms an
abelian group. Consider the continuous cochain complex, and it is easy to see that the coboundary of a
continuous cochain is necessarily continuous as well. So we may define Hn(G,A) to be the cohomology
groups of the continuous cochain complex. Note that H0(G,A) = AG. To distinguish this from usual group
cohomology, this is also denoted Hn

c (G,A) or Hn
cts(G,A).

Let A → B be a morphism of topological G-modules. We then get induced maps Cn(G,A) → Cn(G,B),
hence Hn(G,A) → Hn(G,B). But warning! This is not necessarily a cohomological δ-functor. But it is, in
the case we are interested in (G profinite and A discrete). This also makes sense, because the more connected
G is, the harder it is for a cochain to be continuous, and profinite groups are totally disconnected.

13.5.2. Lemma. Let G be a compact group, A a G-module, then the following are equivalent:

(i) A is a discrete G-module;
(ii) For every a ∈ A, Stab(a) is open;
(iii) A =

"
AH , where H ranges among open normal subgroups of G.

Proof. (i) =⇒ (ii) is clear.
(ii) =⇒ (iii): Let a ∈ A, then Stab(a) is open. Since G is compact, Stab(a) has finite index, hence

finitely many conjugates; their intersubsection is an open normal subgroup H that fixes a.
(iii) =⇒ (i): For each a ∈ A, it is fixed by some open normal H ⊳G. Then for π : G× A → A, π−1(a)

is the union of open sets Ng × {b} where gb = a, hence open. □

In general, (i) and (ii) are equivalent even when G is not compact.

13.5.3. Lemma. Let 0 → A → B → C → 0 be an exact sequence of discrete G-modules, then the induced

0 → Cn(G,A) → Cn(G,B) → Cn(G,C) → 0

is exact for all n.

Warning: this does not hold for topological G-modules in general (right-exactness may fail)!

13.5.4. Theorem. Every short exact sequence of discrete G-modules 0 → A → B → C → 0 induces a long
exact sequence in continuous cohomology

0 → H0(G,A) → H0(G,B) → H0(G,C) → H1(G,A) → . . .

and commutative diagrams induce commutative diagrams.

13.6. Cohomology of profinite groups.

13.6.1. Definition. Let G be a group, and H ⊳K be two subgroups normal in G. We can view K/H as a
normal subgroup of G/H, and so we get an inflation map

Inf : Hn(G/K,AK) → Hn(G/H,AH).

This is compatible with towers of inclusions H ⊳K ⊳ L, all normal in G.

For any profinite group

G = lim←−
N⊳G open

G/N,

the inflation maps give us a direct system of Hn(G/N,AN ).
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13.6.2. Theorem. Let G be a profinite group, then for every discrete G-module A and n ≥ 0,

Hn(G,A) ∼= lim−→
N⊳G open

Hn(G/N,AN ).

Proof. Direct limits are exact in the category of modules over a ring, in particular in Ab. So it suffices
for us to show that the natural map

ϕ : lim−→
N⊳G open

Cn(G/N,AN ) → Cn(G,A)

is a bijection, where for H⊳K, Cn(G/K,AK) → Cn(G/H,AH) is given by composing a continuous cochain
(G/K)n → AK with the quotient map (G/H)n → (G/K)n and the map AK ↩→ AH .

It is clear that ϕ is injective. To show it is surjective, let f : Gn → A be a continuous cochain. Then
since G is compact, so is im f . Since it is also discrete, it is finite. So the stabilizer of im f is open, and
intersecting it with its conjugates gives an open normal subgroup N1 ⊳ G, such that im f ⊆ AN1 . For any
a ∈ im f , f−1(a) is open in Gn, so it contains a product of n open sets in G, each of which contains some
open normal subgroup, and intersecting them gives an open normal Na, so that f(Nn

a ) = a. Finally, let
N = N1

'
a∈im f Na, then f induces a continuous cochain (G/N)n → AN . □

13.6.3. Corollary. For every profinite G and discrete G-module A, Hn(G,A) is torsion for all n ≥ 0.

Proof. By proposition 13.1.5, each Hn(G/N,AN ) is torsion. The direct limit of torsion abelian groups
is torsion as well. □

13.6.4. Corollary (Hilbert 90 for infinite extension). Let L/K be any (not necessarily finite) Galois exten-
sion, then H1(Gal(L/K), L×) is trivial.

Proof. Follows from lemma 12.7.2. □

13.6.5. Theorem. Let G be profinite, and suppose A is a direct limit of discrete G modules Ai. Then A is
a discrete G-module, and

Hn(G,A) ∼= lim−→
i

Hn(G,Ai)

for all n ≥ 0.

Proof. Every a ∈ A is represented by some ai ∈ Ai, so its stabilizer is open. This shows that A is a
discrete G-module. As before, since direct limits are exact in Ab, it suffices to show the natural map

ϕ : lim−→
i

Cn(G,Ai) → Cn(G,A)

is an isomorphism. It is clearly injective. To show surjectivity, let f : Gn → A be a continuous cochain. It
has finite image since the image is compact and discrete. So there exists i such that im f ⊆ Ai (recall that in
the definition of directed limits, i ranges in a directed set I, so upper bounds always exist). Then f induces
a continuous cochain Gn → Ai. This shows surjectivity. □

13.6.6. Definition. Let ϕ : G → G′ be a continuous homomorphism of profinite groups, A a continuous
G-module, A′ a continuous G′-module. Then a continuous map φ : A → A′ or φ : A′ → A is compatible with
ϕ if it commutes with the G-action.

We can similarly define Res and Inf for profinite groups G and discrete G-modules; equivalently, one
could define them as direct limits of the maps defined for finite quotients of G. Because direct limits are
exact, we get:

13.6.7. Theorem (inflation-restriction for profinite groups). Let H be a closed normal subgroup of a profinite
group G. Let A be a discrete G-module, and let n ≥ 1. If Hi(H,A) = 0 for 1 ≤ i ≤ n− 1, then

0 → Hn(G/H,AH)
Inf−−→ Hn(G,A)

Res−−→ Hn(H,A)

is exact.
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13.6.8. Remark. As in infinite Galois theory, we need H to be closed because we require it to be profinite;
a subgroup of a profinite group is profinite iff it is closed. This follows immediately from the fact that a
topological group is profinite iff it is totally disconnected, compact and Hausdorff. Every subset of a totally
disconnected space is totally disconnected, but a subset of a compact Hausdorff space is compact Hausdorff
iff it is closed.

13.6.9. Remark. What cannot be extended to the discrete G-module case? When G is infinite, Z[G] will
not be a discrete G-module! This makes it hard to define homology and Tate cohomology directly, but one
can work around this by taking an inverse limit of quotients of G by open normal subgroups.

14. Local class field theory: Proof

14.1. The invariant map: unramified case. With our cohomological tools in place, let us return to
local CFT. Let K be a nonarchimedean local field, L/K Galois (not necessarily finite). Then G = Gal(L/K)
is profinite and L× and O×

L are discrete G-modules (any α ∈ L× generates a finite extension K(α)/K that
is the fixed field of a finite index closed subgroup, which is open).

We first do the finite unramified case:

14.1.1. Theorem. Let L/K be finite unramified, then Ĥn(G,O×
L ) = 0 for all n ∈ Z. Moreover, for any

subgroup H ≤ G, Ĥn(H,O×
L ) = 0 for all n ∈ Z.

Proof. Since G is then cyclic, it suffices to prove this for n = 0, 1. For any uniformizer π for OL,
L× ∼= O×

L ×Z by x %→ ( x
πvL(x) , vL(x)). Since L/K is unramified, vL extends vK with index 1, so we can pick

π to be a uniformizer of OK . Then G acts trivially on the Z component in OL. Then for every n,

Ĥn(G,L×) ∼= Ĥn(G,O×
L )⊕ Ĥn(G,Z).

By Hilbert 90, H1(G,L×) = 0, so Ĥ1(G,O×
L ) = 0. So we focus on the degree 0 case, where Ĥ0(G,O×

L ) =

O×
K/N(O×

L ). So it suffices to show that the norm hits every element in O×
K .

Let p, q, k, ℓ be the maximal ideals and the residue fields of K,L. Let Ur
K = 1 + pr and Ur

L = 1 + qr

be subgroups of O×
K and O×

L , so that U0
L/U

1
L
∼= ℓ× and U i

L/U
i+1
L

∼= ℓ for i ≥ 1. Now, since G = Gal(ℓ/k),
by Hilbert 90, H1(G, ℓ×) = 0. Since ℓ× is finite, its Herbrand quotient h0(ℓ×)/h0(ℓ

×) = 1 (cf. Corollary

12.6.4). Consequently, k×/N(ℓ×) = Ĥ0(G, ℓ×) = 0, so the norm map on residue fields is surjective. By

Lemma 12.7.2, k/Tr(ℓ) = Ĥ0(G, ℓ) = 0, so the trace map on residue fields is surjective as well.
I claim that these are sufficient to imply that N(O×

L ) = O×
K . Suppose we are given u ∈ O×

K . By the
commutative diagram

O×
L O×

L /U
1
L
∼= ℓ×

O×
K O×

K/U1
K

∼= k×,

mod q

N N

mod p

we may pick v1 ∈ O×
L such that the norm of the image of v1 in ℓ× is the image of u in k×. This implies that

u/N(v1) ∈ U1
K . By the commutative diagram

U1
L U1

L/U
2
L
∼= ℓ

U1
K U1

K/U2
K

∼= k,

N Tr

we may pick w2 ∈ U1
L such that N(w2) ≡ u/N(v1) modulo U2

K . Taking v2 = w2v1, we see that u/N(v2) ∈ U2
K .

We may repeat this process with U2
L, U

3
L, . . . , and since these form a Cauchy sequence in O×

L , they approach
a limit v (because L is complete). Then u/N(v) lies in every U i

K , hence equals 1. This concludes the proof

that Ĥn(G,O×
L ) = 0 for all n ∈ Z.

For any subgroup H ≤ G, H = Gal(L/LH). So we may just apply the above to the extension L/LH . □

In the proof, we have shown the following:

14.1.2. Corollary. Let L/K be finite unramified, then the norm map O×
L → O×

K is surjective. □
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14.1.3. Corollary. Let L/K be unramified (not necessarily finite). Then Hn(G,O×
L ) = 0 for n > 0.

Proof. For any open normal subgroup N ⊳G, the fixed field LN is a finite unramified extension, with
Gal(LN/K) ∼= G/N , and Ĥn(G/N, (OL)

N ) = 0. For n > 0, taking the direct limit gives Hn(G,O×
L ) = 0

(theorem 13.6.2). □

Now for L/K unramified, consider the exact sequence of discrete G-modules

0 → O×
L → L× → Z → 0,

then by what we proved above, H2(G,L×) ∼= H2(G,Z). Now consider the exact sequence of trivialG-modules

0 → Z → Q → Q/Z → 0.

Since #(G/N) is a unit in Q for every open normal N ⊳ G, Hn(G,Q) = lim−→Hn(G/N,Q) = 0 for n > 0

(corollary 13.1.6). So

H1(G,Q/Z) ∼= H2(G,Z).

Since Q/Z is a trivial G-module, H1(G,Q/Z) just consists of continuous homomorphisms of abelian groups
G → Q/Z.

Now, consider the Frobenius element σ ∈ G that restricts to the Frobenius element FrobM/K in any
finite extension M/K in L.

14.1.4. Definition. The invariant map is defined by the composition

invL/K : H2(G,L×) → H2(G,Z) → H1(G,Q/Z) f +→f(σ)−−−−−→ Q/Z.

Note that this is very canonical. In particular, it is functorial in L in the sense that for K ⊆ M ⊆ L
unramified,

H2(Gal(M/K),M×) H2(Gal(L/K), L×)

Q/Z

Inf

invM/K invL/K

commutes.

14.1.5. Theorem. The invariant map invK := invKunr/K is the unique isomorphism

invK : H2(Gal(Kunr/K),Kunr×)
∼=−→ Q/Z,

such that for any finite unramified L/K in Kunr, composing with the inflation map gives isomorphisms

invL/K : H2(Gal(L/K), L×)
∼=−→ 1

[L : K]
Z/Z.

Proof. For any unramified L/K (not necessarily finite), σ is a topological generator, so invL/K is
always injective.

For any finite unramified L/K, G = Gal(L/K), we have a cochain f ∈ H1(G,Q/Z) mapping FrobL/K %→
1

[L:K] , so the image of inv contains 1
[L:K]Z/Z. But this must be an equality, since H1(G,Q/Z) ∼= H2(G,Z) ∼=

Ĥ0(G,Z) ∼= Z/(#G). So invL/K is an isomorphism onto 1
[L:K]Z/Z. Now, since Kunr contains unramified

extensions of every degree, invKunr/K is surjective. So it is an isomorphism. It remains to show that
invK := invKunr/K is unique. This is just because

H2(G,Kunr×) ∼= lim−→
H⊳G open

H2(G/H, (Kunr×)H),

where G = Gal(Kunr/K), and knowing that invK restricts to invL/K already determines invK . □
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14.2. The invariant map: general case. Now we have to figure out how to deal with ramification.

14.2.1. Proposition. Let L/K be a finite extension, not necessarily unramified and not necessarily Galois.
There is a canonical homomorphism φ that makes

H2(Gal(Kunr/K),Kunr×) H2(Gal(Lunr/L), Lunr×)

Q/Z Q/Z

φ

invK invL

[L:K]

commute. When L/K is Galois, we may identify kerφ with a subgroup of H2(Gal(L/K), L×) isomorphic to
1

[L:K]Z/Z.

Proof. Note that Lunr is just the compositum L·Kunr since finite unramified extensions are constructed
by adjoining appropriate roots of unity.

By Hilbert 90, H1(Gal(Lunr/L), Lunr×) = 0. Suppose L/K is Galois, then by inflation-restriction, there
is an exact sequence

0 → H2(Gal(L/K), L×)
Inf−−→ H2(Gal(Lunr/K), Lunr×)

Res−−→ H2(Gal(Lunr/L), Lunr×).

Similarly, since H1(Gal(Lunr/Kunr), Lunr×) = 0, there is an exact sequence

0 → H2(Gal(Kunr/K),Kunr×)
Inf′−−→ H2(Gal(Lunr/K), Lunr×)

Res′−−−→ H2(Gal(Lunr/Kunr), Lunr×).

Now, define φ : Res ◦ Inf ′. Note that this is defined even when L/K is not Galois. But when it is, there
exists an induced injection kerφ → H2(Gal(L/K), L×).

Now we drop the condition that L/K is Galois. Then the discrete valuation vL extends vK with index
e = eL/K . Let σK ,σL be the arithmetic Frobenii of K and L, and f = fL/K be the inertia degree, so that
[L : K] = ef . Writing out the maps defining invK and invL:

H2(Gal(Kunr/K),Kunr×) H2(Gal(Kunr/K),Z) H1(Gal(Kunr/K),Q/Z) Q/Z

H2(Gal(Lunr/L), Lunr×) H2(Gal(Lunr/L),Z) H1(Gal(Lunr/L),Q/Z) Q/Z,

φ [e]◦φ [L:K]

where the leftmost square is induced by

Kunr× Z

Lunr× Z,

vK

[e]

vL

the middle square is just a pair of isomorphisms, and the right square is commutative because given any

cochain g : Gal(Lunr/L) → Q/Z (homomorphism of abelian groups), g(σL) = g(σf
K) = f · g(σK). Finally,

having argued that the diagram is commutative, it is then clear that kerφ is isomorphic to 1
[L:K]Z/Z, the

kernel of the rightmost map. □

To extend the invariant map to arbitrary separable extensions, we first prove what Neukirch calls the
class field axiom:

14.2.2. Theorem (class field axiom). Let L/K be a cyclic extension of nonarchimedean local fields, and

G = Gal(L/K) has order n. Then #Ĥk(G,L×) = n when k is even, and 1 when k is odd.

Proof. Since G is cyclic, it suffices to show this for k = 0, 1. By Hilbert 90, Ĥ1(G,L×) is trivial. So it

remains to show Ĥ0(G,L×) has cardinality n. Consider the exact sequence

0 → O×
L → L× v−→ Z → 0.
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Then h(L×) = h(O×
L )h(Z). By corollary 12.6.5, h(Z) = n. Since #Ĥ0(L

×) = #Ĥ1(L×) = 0, it suffices to

show that h(O×
L ) = 1. By corollary 12.6.7 it suffices to find a finite-index G-submodule A ⊂ O×

L with trivial
Tate cohomology groups.

Let p, q be the maximal ideals of OK ,OL, with uniformizers π,ϖ. Let σ generate G. By normal basis
theorem 1.7.6, choose α ∈ L× such that {σiα} forms a K-basis of L. Write α = β/γ where β, γ ∈ OL, then
vi = NL/K(γ)σiα ∈ OL. Take zj ∈ L× to be the dual basis of vi, so that TrL/K(zjvi) = δij . Then one can

easily see zj = σjz0. Again, scale z0 by an element of OK so that zj lie in OL; we may also assume they
have arbitrarily small absolute value, by scaling by a big power of ϖ, say ϖm. Let

M =
,

i

ziOK ⊂ OL.

This is a G-submodule of OL isomorphic to OK [G]. Also by, say, Atiyah–MacDonald proposition 5.17, a
multiple of OL sits inside M , so M has finite index in OL.

Now, to construct A, there are two ways. The easy way is to take A = exp(M), where

exp(x) = 1 + x+
x2

2
+ . . .

is the exponential function (see section 4.5), whose radius of convergence is p−
1

p−1 . The drawback is that
this only works in characteristic zero. The hard way is to take A = 1 + πmM , which is an open subgroup
of the compact group O×

L , hence finite index; and take a filtration Ai = 1 + πm+iM . These are all normal

subgroups of O×
L . Then

A/Ai
∼= M/πiM ∼= (OK/pi)[G] ∼= IndG(OK/pi)

as G-modules, which has trivial Tate cohomology (theorem 12.5.5). In fact, they are cohomologically trivial,
i.e. for any H ≤ G their Tate cohomology groups also vanish. Then, since

A ∼= lim←−
i

A/Ai,

it suffices to prove that an inverse limit of cohomologically trivial G-modules is cohomologically trivial. By
18.786 pset (add reference)... □

14.2.3. Corollary. For L/K finite Galois extension of nonarchimedean local fields, H2(Gal(L/K), L×) is
cyclic of order n = [L : K].

Proof. We show this by induction on n. If L/K is cyclic, we are already done. □

14.2.4. Theorem. Let K be a nonarchimedean local field. There is a unique isomorphism

invK : H2(Gal(Ksep/K),Ksep×)
∼−→ Q/Z

which descends through Inf to isomorphisms

invL/K : H2(Gal(L/K), L×)
∼−→ 1

[L : K]
Z/Z

for every finite Galois extension L/K, that coincides with the previously defined invL/K in the unramified
case.

Moreover, for any finite separable extension L/K, then the diagram

H2(Gal(Ksep/K),Ksep×) H2(Gal(Ksep/L),Ksep×)

Q/Z Q/Z

Res

invK invL

[L:K]

commutes, and when L/K is Galois we have an isomorphism of exact sequences

0 H2(Gal(L/K), L×) H2(Gal(Ksep/K),Ksep×) H2(Gal(Ksep/L),Ksep×) 0

0 1
[L:K]Z/Z Q/Z Q/Z 0

Inf

invL/K

Res

invK invK

[L:K]
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14.3. Proof of local Artin reciprocity. Let K be a nonarchimedean local field.
Let us recall the invariant map

invK : H2(Gal(Ksep/K),Ksep×)
∼−→ Q/Z

which descends to

invL/K : H2(Gal(L/K), L×)
∼−→ 1

[L : K]
Z/Z

for every finite Galois extension L/K.
We also defined the local Artin map, which is the inverse of

Gab ∼= H1(G,Z) = Ĥ−2(G,Z) ∼−→ Ĥ0(G,L×) = K×/N(L×).

The first map is an isomorphism via Gab ∼= IG/I
2
G, mapping g %→ (g − 1) + I2G. The last map is given by

Tate’s theorem 13.4.2, which requires choosing a generator uL/K ∈ H2(G,L×), the fundamental class, which

is the inverse image of 1
[L:K] under invL/K . It is nontrivial (and shown on the problem set) that the local

Artin maps are all compatible, so we may define the Artin homomorphism

θK : K× → Gal(Ksep/K)ab = Gal(Kab/K).

Our goal is to show part 1 of local CFT, i.e. θK restricted to Kunr sends any uniformizer π of K× to the
arithmetic Frobenius FrobK . Clearly, it suffices to show this for finite unramified L/K. Let σ = FrobL/K ,
which generates the cyclic G = Gal(L/K). What we need to show is, the sequence of isomorphisms (writing
out the isomorphism in Tate’s theorem)

G ∼= IG/I
2
G = H0(G, IG)

δ−1
0−−→ H1(G,Z) = Ĥ−2(G,Z) δ̂0−→ Ĥ−1(G, IG)

δ̂L/K−−−→ Ĥ0(G,L×) = K×/N(L×)

sends σ precisely to the coset of π. Remembering that Ĥ−1(G, IG) = Ĥ0(G, IG) = H0(G, IG), we see that

δ̂0 ◦ δ−1
0 = id. So this simplifies to showing that the map δ̂L/K appearing in the proof of Tate’s theorem

sends the class of σ − 1 ∈ IG/I
2
G to the class of π in K×/N(L×).

Let us look inside δ̂L/K . It comes from the snake lemma

L×
G L×(ϕ)G IG/I

2
G 0

0 (L×)G L×(ϕ)G (IG)
G

N̂G

α

β

where ϕ is a cochain in H2(G,L×) representing uL/K . By definition, one preimage of [σ−1] under α is [xσ],
so it suffices to show that NG(xσ) represents the class of the uniformizer. Let us compute

NG(xσ) =

n−1!

i=0

σixσ =

n−12

i=0

ϕ(σi,σ).

So we have to write down an explicit 2-cochain ϕ representing uL/K . Recall that uL/K is the element in

H2(G,L×) that gets sent to the 1-cochain f : σ %→ 1/[L : K] in the composition (invL/K)

H2(G,L×)
∼−→ H2(G,Z) ∼−→ H1(G,Q/Z).

So let us trace through the steps. To pull f back to a cochain in H2(G,Z), consider the snake lemma again,
and we see that it is represented by the coboundary of a cocycle f : G → Q that agrees with f mod Z.
Computing this, we see

d1(f)(σi,σj) = σif(σj)− f(σi+j) + f(σi) =
i+ j

n
− (i+ j)modn

n
.

Now, pull this back to a cochain ϕ : G2 → L×; this is just done by composing with valuation. In particular,
we can pick ϕ such that ϕ(σi,σj) = π when i+ j ≥ n. So, now we finally have

NG(xσ) =

n−12

i=0

ϕ(σi,σ) = π,

as desired. This proves the entirety of local CFT.
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Finally, we show the norm limitation theorem, which shows that all norm groups arise through abelian
extensions (i.e. you cannot extend local Artin reciprocity beyond Kab).

14.3.1. Theorem (norm limitation). Let L/K be a finite extension of nonarchimedean local fields, E/K
its maximum abelian subextension. Then N(L×) = N(E×).

Proof. It is clear that N(L×) ⊆ N(E×). When L/K is Galois, by local Artin reciprocity,

K×/N(E×) ∼= Gal(E/K)ab = Gal(E/K) = Gal(L/K)ab ∼= K×/N(L×),

as desired. When L/K is not Galois, let M be its Galois closure. Let G = Gal(M/K), H = Gal(M/L), and
M [G,G] is the maximal abelian extension in M/K. Then E = M [G,G] ∩ MH = M [G,G]H , so Gal(M/E) =
[G,G]H. Since [H,H] = [G,G] ∩H, we then have the commutative diagram

L× Hab = H/[H,H]

K× Gab = G/[G,G]

K× Gal(E/K) = G/[G,G]H.

N

θM/L

ι

θM/K

π

θE/K

Consider any a ∈ NE/K(E×), then a ∈ ker(θE/K), so θM/K(a) ∈ kerπ = im ι. By surjectivity of θM/L,

there exists b ∈ L× with a/NL/K(b) ∈ ker θM/K = NM/K(M×). Now let c ∈ M× such that NM/K(c) =

a/NL/K(b), then a = NL/K(b)NM/K(c) = NL/K(bNM/L(c)) ∈ N(L×), as desired. □

14.4. Lubin–Tate formal groups. See paper notes.

14.5. Proof of local existence theorem.

15. Miscellaneous topics

15.1. Extensions of absolute values. The appendix collects material not covered in the lectures (but
important nonetheless).

15.1.1. Proposition (Strong Hensel’s lemma). Let K be complete wrt a nontrivial, nonarchimedean absolute
value | |. Let OK , mK be the corresponding valuation ring and maximal ideal. Let f(x) ∈ OK [x] such that
its image f in OK

mK
[x] is nonzero. Suppose f(x) = g(x)h(x) in OK

mK
[x] where g is monic and g, h are relatively

prime. Then we have lifts g, h ∈ OK [x] such that f(x) = g(x)h(x), and g(x) is monic with degree equal to
deg g.

15.1.2. Corollary. Let f(x) be irreducible in K[x], with degree n. Then

|f | := max(|a0|, . . . , |an|) = max(|a0|, |an|).

15.1.3. Proposition (Complete archimedean fields). Let K be complete with respect to a nontrivial, archimedean
absolute value. Then (K, | |) is isometrically isomorphic to either (R, | |r∞) or (C, | |r∞) for some 0 < r ≤ 1.

15.1.4. Theorem. Let K be complete wrt a nontrivial absolute value | |, and L/K a finite extension of
degree n. Then

‖β‖ := |NL/K(β)|1/n

is the unique absolute value on L extending that on K, and L is complete with respect to ‖ ‖.

Proof. If | | is archimedean, then there is not much to show because of proposition 15.1.3. Assume for
the rest that | | is nonarchimedean. We will show that so is ‖ ‖.

Lemma. For β ∈ L, if ‖β‖ ≤ 1, then ‖1 + β‖ ≤ 1.

Proof of lemma. Let β ∈ L, ‖β‖ = 1. Let fβ(x) ∈ K[x] be its minimal polynomial. Then

NL/K(β) = ((−1)deg fβfβ(0))
[L:K(β)],

which implies |fβ(0)| = ‖β‖deg fβ ≤ 1. Then by corollary 15.1.2, fβ(x) ∈ OK [x].
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Since the minimal polynomial of 1 + β is fβ(x− 1),

‖1 + β‖n = |NL/K(1 + β)| = |((−1)deg fβfβ(−1))[L:K(β)]| ≤ 1,

which proves the lemma. □
By the lemma, if ‖α‖ ≤ ‖β‖, we then have ‖α+ β‖ = ‖β‖

BB1 + αβ−1
BB ≤ ‖β‖, which is the nonar-

chimedean triangle inequality. Uniqueness follows because any two absolute values on L are norms on L (as
K-vector spaces), which must induce the same topology on L, so they must be equivalent absolute values,
so one must be a power of another, so they must be equal since they agree on K. Completeness is also
clear. □

Even better, it is easy to see that these extensions are compatible with each other, i.e. this gives us a
unique extension of an absolute value on K.

15.2. Cyclotomic fields. Let n be a positive integer, ζn a primitive root of unity. The goal in this
subsection is to show:

15.2.1. Theorem. The ring of integers in the cyclotomic extension Q(ζn)/Q is Z[ζn].

We will in fact prove a bit more about the discriminant of cyclotomic extensions along the way.
Our strategy is to first show Theorem 15.2.1 in the case where n = pr is a prime-power, then use that

to deduce the general case.
For simplicity, let ζ = ζpr be a primitive pr-th root of unity. Let O be the ring of integer in Q(ζ).

15.2.2. Proposition. Z[ζ] ∩ pO = pZ[ζ].

15.2.3. Proposition. discZ[ζ] is a power of p.

We first see how the above two propositions imply that O = Z[ζ]. Clearly Z[ζ] ⊆ O. If p | (O : Z[ζ]), then
O/Z[ζ] has a subgroup of order p. Then there exists a ∈ O, a /∈ Z[ζ], such that pa ∈ Z[ζ], so pa ∈ Z[ζ]∩pO =
pZ[ζ], which implies a ∈ Z[ζ], a contradiction. Thus, p ∤ (O : Z[ζ]). But (O : Z[ζ])2 · discO = discZ[ζ] is a
power of p, so O = Z[ζ].

Proof of proposition 15.2.2. It is clear that Z[ζ] = Z[1− ζ], and (1− ζ)i (0 ≤ i ≤ pr−1(p− 1)− 1)
forms a Z-basis for Z[1− ζ].

Lemma. NQ(ζ)/Q(1− ζ) = p.

Proof of lemma. The conjugates of 1− ζ are 1− α, where α are the roots of

P (X) = Xpr−1(p−1) +Xpr−1(p−2) + · · ·+Xpr−1

+ 1.

The product of these (1− α) is precisely P (1) = p. □
Let

$
i ci(1 − ζ)i ∈ Z[1 − ζ] ∩ pO, where ci ∈ Z. We will prove via induction on i that p | ci. Because

N(1 − ζ) = p, p ∈ (1 − ζ), so (1 − ζ) ∩ Z = (p). So c0 ∈ (1 − ζ) ∩ Z implies p | c0. For the induction step,

suppose we have shown p | c0, . . . , ci−1. It suffices to show that (1 − ζ)p
r−1(p−1) ∈ pO, since then we can

cancel out factors of (1− ζ) and repeat the same argument to show p | ci. We know that p is the product of

all pr−1(p− 1) conjugates of 1− ζ, so it suffices to show 1−ζi

1−ζ is a unit in O for all i, which is easy to see. □

Proof of proposition 15.2.3. discZ[ζ] = disc(1, ζ, . . . , ζp
r−1(p−1)−1), which is equal to NQ(ζ)/Q(P

′(ζ))

up to sign. After a easy computation (using the lemma above), we in fact have discZ[ζ] = ±pp
r−1(r(p−1)−1).

□
This finishes our proof of theorem 15.2.1 in the case n = pr. In general, use induction on the number of

distinct prime divisors of n, with the additional claim that discOn divides nφ(n). The base case is handled
above. Say n = prm, where p ∤ m. It is clear that then Q(ζn) = Q(ζpr )Q(ζm) and [Q(ζn) : Q] = φ(n) =
φ(pr)φ(m) = [Q(ζpr ) : Q][Q(ζm) : Q]. It suffices to show that On, the ring of integers in Q(ζn), is included
in Opr · Om, which by induction hypothesis is Z[ζpr ]Z[ζm] = Z[ζn].

Given an element α ∈ On, it must be of the form

α =
1

d

!

i,j

ci,jζ
i
prζjm
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where d, ci,j ∈ Z, since ζiprζjm forms a Q-basis of Q(ζn). Because the discriminants discZ[ζpr ] and discZ[ζm]
are coprime, it suffices to show d divides each of these determinants.

Let σ be the automorphism on Q(ζn) sending ζpr %→ ζapr and ζm %→ ζm. Then

σα =
1

d

!

i,j

ci,jζ
ai
prζjm =

!

i

ζaiprxi

where xi :=
$

j ci,jζ
j
m/d. Varying a and solving for xi by Cramer’s rule, we see that xi · discQ(ζpr ) is

integral over Z. So d | discQ(ζpr ), and similar for discQ(ζm). Finally, it is easy to show discOn divides

nφ(n) through a direct computation. This completes the proof.

15.3. Kummer theory.

15.3.1. Definition. Let G be a group which acts upon an abelian group (M,+). Then H1(G,M) is the
group of functions f : G → M such that f(gh) = f(g) + gf(h), modulo functions of the form f : g %→ gx− x
(x ∈ M).

15.3.2. Theorem (Hilbert’s theorem 90). Let L/K be a finite Galois extension, G = Gal(L/K), then
H1(G,L×) = 0.

In the case where G is cyclic and generated by σ, suppose a ∈ L× with norm 1. Then the function
f : G → L× given by

σn %→ a · σ(a) · · · · · σn−1(a)

must be of form σn %→ σn(b)/b for some b ∈ L×, so in particular a = b/σ(b).

15.3.3. Theorem. Let K be a field that contains ζn. Then every degree-n cyclic extension L/K is of form
K(α1/n), where α1/d /∈ K for 1 ∕= d | n.

Proof. Let L/K be a degree-n cyclic extension with σ ∈ G generating the Galois group. By Hilbert
90, there exists t ∈ L× with ζrn = σr(t)/t. So tn is fixed by G and tn = α ∈ K, and L = K(t) = K(α1/n).

Conversely, it is clear that there is an injective map Gal(K(α1/n)/K) → Z/nZ. Surjectivity is clear in
the case n is prime, and in general, the image of this map cannot be contained in pZ/nZ for any p | n, and
therefore is the whole group Z/nZ. □
15.3.4. Definition. Let K be a field that contains ζn. The Kummer pairing

Gal(K/K)×K× → {1, ζn, . . . , ζn−1
n }

is defined by: given σ ∈ Gal(K/K), z ∈ K×, choose y ∈ K, with yn = z, and define 〈σ, z〉 = σ(y)/y.

15.3.5. Theorem. The Kummer pairing induces an isomorphism

K×/(K×)n ∼= Homcts(Gal(K/K),Z/nZ).

15.3.6. Proposition. Let n be an odd prime power, K a field with charK coprime to n. Let L = K(ζn)

and M = L(α1/n) for some α ∈ L×. Define ω : Gal(L/K) → (Z/nZ)× by ζ
ω(g)
n = g(ζn). Then M/K is

abelian iff g(a)/aω(g) ∈ (L×)n for all g.



CHAPTER 6

Algebraic Topology
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CHAPTER 7

Algebraic Geometry

1. Category theory

1.1. Lemma. Consider the following cochain complex:

· · · → Ci−1 fi−1

−−−→ Ci fi

−→ Ci+1 → . . .

Then we have two pairs of short exact sequences:

• 0 → ker f i → Ci → im f i → 0 and 0 → im f i−1 → ker f i → Hi(C•) → 0;
• 0 → im f i−1 → Ci → coker f i−1 → 0 and 0 → Hi(C•) → coker f i−1 → im f i → 0.

1.2. Proposition (FHHF theorem). Let F : A → B be a covariant functor between abelian categories, and
let C• be a cochain complex in A .

(a) If F is right exact, there is a natural morphism FH•(C•) → H•F (C•).
(b) If F is left exact, there is a natural morphism H•F (C•) → FH•(C•).
(c) If F is exact, the two morphisms are inverses of each other.

Proof. (a) Applying F on Ci → Ci+1 → coker f i → 0, we get a natural isomorphism F coker f i →
cokerFf i. Applying F on 0 → im f i → Ci+1 → coker f i → 0, we get a natural epimorphism F im f i ↠
imFf i. Applying F on 0 → Hi(C•) → coker f i−1 → im f i → 0 and chasing diagrams, we get a natural map
FHi(C•) → HiF (C•).

(b) Applying F on 0 → ker f i → Ci → Ci+1, we get a natural isomorphism kerFf i → F ker f i. Applying
F on 0 → ker f i → Ci → im f i → 0, we get a natural monomorphism imFf i ↩→ F im f i. Applying F on
0 → im f i−1 → ker f i → Hi(C•) → 0 and chasing diagrams, we get a natural map HiF (C•) → FHi(C•).

(c) Carefully trace where each element goes. □

1.3. Proposition (Exactness and (co)limits). Limits commute with limits and right adjoints. In particular,
right adjoints and limits are both left exact since they commute with ker.

Colimits commute with colimits and left adjoints. In particular, left adjoints and colimits are both right
exact since they commute with coker.

In ModA, colimits over filtered index categories are exact.

2. Sheaves

2.1. The espace étalé of a (pre)sheaf. Let F be a (pre)sheaf on X. We can construct a topological
space F and a continuous π : F → X as follows:

• As a set, F =
3

p∈X Fp.

• Open sets of F are generated by the following base: given an open U ⊆ X and f ∈ F(U), the set
{(p, U, f) : p ∈ U} is open.

Then π : F → U is a local homeomorphism.

2.2. Stalks and sheafification.

2.3. Sheaf on a base. Suppose X is a topological space with {Bi} as a base of the topology. Suppose
we’re given the following information:

• To each Bi, we have an associated set/abelian group/ring/module F(Bi);
• For each Bi ⊆ Bj , a restriction map resBi,Bj : F(Bi) → F(Bj); this should be the identity when
i = j;

• If Bi ⊆ Bj ⊆ Bk, then resBi,Bk
= resBj ,Bk

◦ resBi,Bj .
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• If B =
"
Bi, then if f, g ∈ F(B) restricts to the same function on each F(Bi), then f = g;

• If B =
"
Bi, and fi ∈ F(Bi) such that if for any Bk ⊆ Bi ∩ Bj , fi and fj restrict to the same

function on Bk, then there exists f ∈ F(B) such that f restricts on each fi on each patch.

This is called a sheaf on a base. Given this information, the sheaf on any open set can be uniquely determined
up to unique isomorphism.

2.4. Inverse image sheaf.

3. Affine schemes

3.1. Spectrum of a ring.

3.2. Hilbert’s Nullstellensatz.

3.3. Topological properties of affine schemes.

3.3.1. Definition. A topological space X is Noetherian if it satisfies the d.c.c. on closed sets.

3.3.2. Proposition. Let X be Noetherian. Then every nonempty closed set Z can be uniquely expressed as
a finite union Z = Z1 ∪ · · · ∪ Zn of irreducible closed sets, none contained in any other.

4. Schemes

4.1. Proj construction. Given a (commutative) ring A, Spec produces from it a locally ringed space
SpecA. If we take A = k[x1, . . . , xn], then SpecA is the affine n-space An

k . Similarly, the Proj construction
takes a Z≥0-graded ring S as input, and produces from this data a scheme (not necessarily affine!) ProjS,
and in the special case S = k[x0, . . . , xn], ProjS is the projective n-space Pn

k .

4.1.1. Definition. Let S be a Z≥0-graded ring. The scheme ProjS is given by:

• As a set, the points in ProjS are the homogeneous prime ideals p such that S+ /∈ p;
• As a topological space, the closed sets are given by V (I) = {[p] ∈ ProjS : I ⊆ p}, for homogeneous
ideals I ⊆ S+. Equivalently, the topology is given by the base of distinguished opens D(f) = {[p] ∈
ProjS : f /∈ p}, for homogeneous f ∈ S+.

• As a locally ringed space, the structure sheaf is given on the base by OProjS(D(f)) = (Sf )deg 0.

4.1.2. Definition. Let S be a finitely generated graded ring over A. Then a scheme of the form ProjS is
called a projective scheme over A. An quasicompact open subscheme of a projective A-scheme is called a
quasiprojective A-scheme.

4.2. Properties of schemes.

4.2.1. Proposition. Let X be a scheme. Then the points of X correspond bijectively to irreducible closed
sets of X, via the map

x %→ {x}.

Proof. Because the closure of an irreducible set is irreducible, this is a well-defined map. Conversely,
given an irreducible closed set T ⊆ X, consider an affine open U such that T ∩ U ∕= ∅. Then T ∩ U is an
irreducible closed set in U , so it corresponds to a unique generic point in U . For affine opens U, V both
intersecting T , U ∩ V must also intersect T because T is irreducible. Pick an affine open W ⊆ U ∩ V that
is distinguished in both U and V and also intersects T . Then the unique generic point corresponding to
T ∩W must simultaneously be the unique generic points corresponding to T ∩U and T ∩V . In other words,
there is a unique point x ∈ T that is the unique generic point corresponding to T ∩ U for all affine opens U
intersecting T .

We claim that T = {x}; indeed for any closed K ⊆ X containing x, and for any point t ∈ T , there is an
affine open U containing t (and by default containing x too), K ∩ U contains x, so it must contain T ∩ U
(the closure of {x} in T ∩ U). In particular, t ∈ K as well. □

4.2.2. Proposition. Let X be a quasicompact scheme, then any point has a closed point in its closure.

4.2.3. Definition. A scheme X is called reduced if all stalks are reduced rings. Equivalently, for all open
U , OX(U) is reduced.
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4.2.4. Definition. A property P for affine open subsets of a scheme X is called affine-local if it satisfies:

• If an affine open SpecA satisfies P, then any SpecAf satisfies P also.
• If f1, . . . , fn ∈ A generate the unit ideal, and all SpecAfi satisfy P, then SpecA satisfies P as well.

4.2.5. Lemma (Affine Communication Lemma). Suppose P is an affine-local property, and X =
"

i∈I SpecAi

where each SpecAi satisfies property P. Then any affine open in X satisfies P.

Properties defined in this way:

• Locally Noetherian
• Noetherian
• Locally of finite type over B
• Finite type over B

4.3. Varieties. An affine scheme that is reduced and of finite type over k is called an affine k-variety. A
reduced quasiprojective k-scheme called a projective k-variety. In general, a variety is a reduced, separated,
finite type k-scheme.

4.4. Normality and factoriality. A scheme X is normal if all of its local rings are integrally closed
domains.

Because being integrally closed is a local property, SpecA for A integrally closed is an affine normal
scheme. For a quasicompact scheme, this can also be checked at closed points only.

A scheme X is factorial if all of its local rings are UFDs. Since UFDs are all integrally closed, factorial
schemes are normal. Factoriality is not affine-local.

4.5. Associated points. In the affine case, the associated points of an A-module M are primes p ⊂ A
of the form p = Ann(m) for some m ∈ M . (See here; also, taking M = A/I, we recover the usual associated
points of an ideal.) They have the following properties:

4.5.1. Theorem. Suppose A is Noetherian and M ∕= 0 is finitely generated. Then:

(1) Ass(M) is nonempty and finite.
(2) The natural map M →

%
p∈Ass(M) Mp is injective.

(3)
"

p∈Ass(M) is precisely the set of zerodivisors of M .

(4) Associated primes commute with localization:

AssS−1A(S
−1M) = AssA(M) ∩ SpecS−1A.

In general (see here):

4.5.2. Definition. Let X be a scheme, and F a quasicoherent sheaf. A point x ∈ X is associated to F if
mx is an associated point of the OX,x-module Fx.

4.5.3. Proposition. Let X be locally Noetherian, F quasicoherent. Let U = SpecA be an affine open,
x ∈ U corresponds to p ⊂ A, M = Γ(U,F ), then x ∈ Ass(F ) ⇐⇒ p ∈ Ass(M).

4.5.4. Definition. Let X be a scheme, F a quasicoherent sheaf. An embedded associated point is an
associated point that is not minimal.

4.5.5. Proposition. Let X be locally Noetherian, and F coherent (e.g. OX). Then the generic points of
irreducible components of SuppF are associated points, and the rest of the associated points are embedded.

4.6. Weakly associated points.

5. Morphisms of schemes

5.1. Morphisms to affine schemes. These have a nice characterization:

5.1.1. Proposition. The following are equivalent:

• There is a morphism of schemes X → SpecA;
• For every open U ⊆ X, OX(U) is an A-algebra;
• There is a ring map A → OX(X).

https://stacks.math.columbia.edu/tag/00L9
https://stacks.math.columbia.edu/tag/02OI
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5.2. Morphisms from affine schemes. Given any point p ∈ X, there is a canonical morphism
SpecOX,p → X. Composing this with the map induced by OX,p → κ(p), we get a canonical Specκ(p) → X,
often written just as p → X.

More generally: for a local ring (A,m), a scheme morphism π : SpecA → X sending m to p corresponds
bijectively to local homomorphisms OX,p → A.

5.2.1. Definition (functor of points). Let Z be a scheme, the Z-valued points of X (denoted X(Z)) are
the maps Z → X. (When Z = SpecA or Spec k, they are the A- or k-valued points.)

If we’re working with schemes over a base scheme B, then this data should also include a Z → B making
Z → X → B commute.

5.3. Functoriality of Proj. Suppose φ : S → R is a map of graded rings (i.e. there exists N+ such
that Sn maps to Rdn for all n). This induces a morphism of schemes

φ∗ : (ProjR)\V (φ(S+)) → ProjS,

as follows: given f ∈ S+, there is a map of rings Sf → Rφ(f), hence a map of rings (Sf )deg 0 → (Rφ(f))deg 0,
hence a morphism of affine schemes Spec(Rφ(f))deg 0 → Spec(Sf )deg 0, i.e. D(φ(f)) → D(f) ↩→ ProjS.
These glue together to form the desired morphism of schemes.

In particular, if V (φ(S+)) is empty, then we get an actual morphism ProjR → ProjS. This is satisfied
when rad(φ(S+)) = R+. (Recall from §4.1 that the radical turns out to be equal to the intersection of all
homogeneous primes containing the ideal.)

5.4. Veronese subring.

5.5. The relative point of view. Instead of thinking of properties of objects, it might be better
to understand them as properties of morphisms between objects. For example, given a property P about
schemes, one often turns it into a property about morphisms of schemes as follows: say π : X → Y has P if
and only if for every affine open U ⊂ Y , π−1(U) has P.

5.6. Green flags to look for in a property of morphisms.

(1) It is local on the target : for a morphism π : X → Y and a open cover Vi of Y , π satisfies P iff all
π|π−1(Vi) satisfy P.

(2) It is closed under composition.
(3) It is closed under base change, pullback, fibered products, etc.
(4) . . .

5.7. Finiteness conditions on morphisms. Recall that a scheme is called quasicompact if it is
the union of finitely many affine schemes, and a scheme is called quasiseparated if the intersection of any
two quasicompact open subsets is quasicompact. We turn them into properties of schemes as discussed
in §5.5. These are both affine-local on the target and closed under composition. Conversely, a scheme X
is quasicompact (resp. quasiseparated) if the canonical X → SpecZ is so. Note that many schemes we
commonly encounter are qcqs: in particular, all affine schemes are qcqs, and all Noetherian schemes are
qcqs.

5.7.1. Definition (affine morphisms). A morphism π : X → Y is affine if the preimage of any affine open
in Y is affine open in X. Affine morphisms are automatically qcqs.

5.7.2. Lemma (qcqs lemma). If X is qcqs, s ∈ OX(X), then the natural map OX(X)s → OX(Xs) is an
isomorphism.

Proof. Use the qcqs property as a finite presentation. □

5.7.3. Proposition. Affineness is affine-local on the target. In other words, affineness of a morphism can
be checked on affine covers of the target.

Proof. □

5.7.4. Definition (finite morphisms). An affine morphism π : X → Y is finite if for any affine SpecA ⊂ Y ,
π−1(SpecA) is the spectrum of a ring that is a finitely generated module over A.
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Finiteness is also affine-local on the target.

5.7.5. Example. Examples of finite morphisms:

• Branched covers: consider the map k[u] → k[t] given by u %→ p(t) for a polynomial p. Then
Spec k[t] → Spec k[u] is a finite morphism.

• Closed embeddings: A/I is a finite A-module (generated by 1), so SpecA/I → SpecA is a finite
morphism.

• Normalization: k[x, y]/(y2 − x2 − x3) %→ k[t] by x %→ t2 − 1, y %→ t3 − t induces a morphism of
schemes Spec k[t] → Spec k[x, y]/(y2 − x2 − x3). This is a finite morphism, and it is in fact an
isomorphism from D(t2 − 1) to D(x).

5.7.6. Proposition (7.3.H). If X → Spec k is a finite morphism, then X is a finite union of points with
the discrete topology, each point with residue field a finite extension of k.

Proof. We must have X = SpecA, where A is a k-algebra that is finitely generated as a module. Then
A is Noetherian and any prime p ⊂ A is maximal, so the (finitely many) irreducible components of A, which
correspond to minimal primes, are all closed points. Therefore SpecA is finite discrete, and the residue field
at each point [p] is a finite extension of k. □

5.7.7. Corollary (7.3.K). Finite morphisms have finite fibers.

5.7.8. Definition (integral morphisms). A morphism π : X → Y is integral if it is affine, and for every
affine open SpecB ⊂ Y , SpecA = π−1(SpecB), B → A is an integral extension.

Because integrality is an affine-local property, a morphism being integral is affine-local on the target.
Also, finite morphisms are integral, and integral morphisms are closed (they map closed sets to closed sets).

5.7.9. Definition (finite type morphisms). A morphism π : X → Y is locally of finite type if for every
affine open SpecB ⊂ Y , and for every SpecA ⊂ π−1(SpecB), B → A expresses A as a finitely generated
B-algebra. We say π is finite type if it is quasicompact and locally of finite type.

5.7.10. Proposition (7.3.P). A morphism is finite iff it is integral and of finite type.

5.7.11. Definition (finitely presented morphisms). A morphism π : X → Y is locally finitely presented if
for every affine open SpecB ⊂ Y , π−1(SpecB) =

"
i SpecAi with each B → Ai finitely presented. We say

π is finitely presented if it is locally finitely presented and qcqs.

It is clear that if Y is locally Noetherian, then locally of finite presentation is the same as locally of finite
type, and finite presentation is the same as finite type.

5.7.12. Proposition. Locally finitely presented-ness is affine-local on both the target and the source.

5.8. Elimination theory.

5.8.1. Lemma (Generic freeness). Let B be a Noetherian integral domain, A a finite type algebra over B,
and M a finitely generated A-module. Then there exists f ∈ B such that Mf is a free Bf -module.

5.8.2. Theorem (Chevalley’s theorem). Let π : X → Y be a finite type morphism between Noetherian
schemes. Then the image of any constructible set is constructible.

5.8.3. Theorem (Fundamental theorem of elimination theory). The map Pn
A → SpecA is closed, for any

ring A.

5.9. Closed subschemes, and related constructions.

5.9.1. Definition. A closed embedding π : X ↩→ Y is an affine morphism where for each SpecB ⊆ Y and
SpecA = π−1(SpecB), the induced ring map B → A is surjective.

5.9.2. Definition (equivalent to the above). A closed embedding π : X → Y is a morphism such that π
induces a homeomorphism of the underlying topological space of X onto a closed subset of the topological
space of Y , and the induced map π4 : OY → π∗OX of sheaves on Y is surjective.

Ideal sheaf, scheme-theoretic image, intersection and union of closed subschemes
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5.10. Effective Cartier divisors and regular sequences.

5.10.1. Definition. A locally principal closed subscheme π : X ↩→ Y is one for which there exists an
open cover Ui of Y , such that each π−1(Ui) → Ui is isomorphic to a closed subscheme V (si) ⊂ Ui, where
si ∈ OY (Ui). Equivalently, we may as well take all Ui to be affine.

5.10.2. Definition. An effective Cartier divisor is a locally principal closed subscheme where the ideal
sheaf is locally generated near every point by a non-zero divisor.

5.10.3. Example. Consider SpecA, where A = k[w, x, y, z]/(wz − xy). Let X be the open subscheme
D(y)∪D(w). The closed subscheme defined by V (z/y) on D(y) and V (x/w) on D(w) is an effective Cartier
divisor, but it is not generated by a single element of FracA.

5.10.4. Definition. Let M be an A-module. A sequence x1, . . . , xr of elements in A is called an M -regular
sequence if:

• For each i, xi is not a zero divisor for M/(x1, . . . , xi−1)M (exists no m ∈ M\(x1, . . . , xi−1)M such
that mxi ∈ (x1, . . . , xi−1)M), and

• (x1, . . . , xr)M ∕= M .

In particular, an A-regular sequence is just called a regular sequence.

5.10.5. Example. For any M -regular sequence x1, . . . , xn, and positive integers a1, . . . , an, the sequence
xa1
1 , . . . , xan

n is a regular sequence too.

5.10.6. Example. Let A = k[x, y, z]/(x − 1)z. Then x, (x − 1)y is a regular sequence, while (x − 1)y, x is
not.

5.10.7. Theorem. Let A be a Noetherian local ring, and M a finitely generated A-module. Then any
M -regular sequence remains regular when reordered.

5.10.8. Definition (regular embedding). Let π : X → Y be a locally closed embedding. Say that π is a
regular embedding of codimension r at x ∈ X if in OY,π(x), the ideal of X is generated by a regular sequence
of length r. Say that π is a regular embedding if it is at all points.

5.11. Fiber products.

5.12. An interlude on closed points.

5.12.1. Proposition. Let X be a scheme locally of finite type over a field k. If x ∈ SpecA ⊂ X corresponds
to a maximal ideal in some affine open subscheme of X, then x is a closed point in X.

Proof. Suppose x corresponds to m ⊂ A, then κ(x) = A/m. By the nullstellensatz, A/m is a finite
extension of k. Now, suppose SpecB ⊂ X is some other affine open containing x, and say x corresponds to
a prime p ⊂ B. Then κ(x) = FracB/p, so in particular k ⊆ B/p ⊆ κ(x). So B/p is an integral extension of
k, so it is a field as well, i.e. p is maximal. So {x} is closed in X. □

5.12.2. Proposition. Let X be a scheme locally of finite type over k. Suppose we have a morphism π :
Spec k → X, then its image is a closed point.

Proof. Let SpecA ⊂ X be an affine open subscheme. The morphism π factors through SpecA, so we
get φ : Spec k → SpecA. Suppose m is the kernel of the corresponding map A → k, and p is the prime
ideal corresponding to the image of π. Then we get a map of stalks Ap → k through which the map A → k
factors. Suppose a /∈ p, then a is invertible in Ap, so it is not in the kernel of A → k, so m ⊆ p. Since m is
maximal, m = p, so we conclude by the previous proposition. □

5.12.3. Proposition. Let X be a scheme locally of finite type over k = k. Then closed points of X are in
bijection with k-points of X.

Proof. The bijection is given by:

• Given a k-point Spec k → X, this maps to its image, which is a closed point in X;
• Given a closed point x ∈ X, its field of fractions is k by the nullstellensatz, so we get Spec k =
Specκ(x) → X.
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It suffices to verify that these two are inverses. Given a closed point x ∈ X, it is clear from definition
that the image of Specκ(x) → X is x. On the other hand, given a k-point Spec k → X, it is given by
Spec k → SpecA ⊆ X, where A/k is the maximal ideal corresponding to the image x of the k-point. So
A/k = κ(x), which finishes the proof. □

5.12.4. Corollary. Let f : X → Y be a morphism between schemes over k locally of finite type. Then
f maps closed points to closed points. In particular, maps between k-schemes map closed points to closed
points.

5.13. Separated morphisms.

5.13.1. Definition. A morphism of schemes π : X → Y is separated if the diagonal map ∆π : X → X×Y X
is a closed embedding.

To see that this definition isn’t too crazy, we notice the following.

5.13.2. Proposition. Let π : X → Y be a morphism. The diagonal ∆π : X → X ×Y X is a locally closed
embedding (i.e. a closed subscheme of an open subscheme).

Proof. Cover Y by affine opens Vi, and π−1(Vi) by affine opens Uij . Then Uij ×Vi Uij is an affine
open subscheme of X ×Y X by definition, and these cover the image of ∆π. Further, it is clear that
∆−1

π (Uij ×Vi
Uij) = Uij , and ∆|Uij

is a closed embedding. □

5.13.3. Definition. A variety over a field k is a reduced, separated, finite-type k-scheme.

Because a locally closed embedding whose image is closed is in fact a closed embedding, to check that
π : X → Y is separated, it suffices to check that the image of ∆ is closed.

Examples of separated morphisms:

• Locally closed embeddings (also called immersions);
• Morphisms between affine schemes;
• All quasiprojective A-schemes (with morphism to SpecA);
• Any morphism between varieties is automatically separated and finite type (this will follow from
the cancellation theorem).

5.13.4. Lemma (Magic diagram). Let X1, X2, Y, Z be objects in a category where fiber products exist.
Suppose we are given maps f1 : X1 → Y , f2 : X2 → Y , and g : Y → Z. Then the following diagram is a
Cartesian square:

X1 ×Y X2 X1 ×Z X2

Y Y ×Z Y.

f1×f2

∆

5.13.5. Proposition. Let X be separated over a ring A. Then for U, V ⊂ X affine opens, U ∩ V is an
affine open as well.

Proof. Consider the following fiber product:

U ∩ V U ×A V

X X ×A X∆

Here, U ∩ V = U ×X V is the fiber product because of the magic diagram. Now, because the bottom map
is a closed embedding, so is the top map. Since U ×A V is an affine scheme, so is U ∩ V . □

5.13.6. Proposition. Separatedness is well-behaved:

(1) affine-local on the target;
(2) stable under composition;
(3) stable under base change.
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Proof. (1) This follows from the fact that π : X → Y is separated if and only if im(∆) is closed.
(2) Suppose f : X → Y, g : Y → Z are separated. Consider the following commutative diagram

X X ×Y X X ×Z X

Y Y ×Z Y

∆f

∆g

The square is Cartesian by the magic diagram, so the top map X ×Y X → X ×Z X is a closed embedding.
So the composition X → X ×Z X, which can be verified to be the diagonal of g ◦ f , is a closed embedding.

(3) Suppose

X Y

Z W

is a pullback square, where Z → W is separated. It suffices to show that

X X ×Y X

Z Z ×W Z

∆

∆

is also a pullback square, which is a straightforward diagram chase. □

5.13.7. Proposition. Let π : X → Y be a morphism of Z-schemes, and Y → Z separated. Then its graph

Γπ : X
(id,π)−−−→ X ×Z Y is a closed embedding.

5.13.8. Proposition (Cancellation theorem). Let X
f−→ Y

g−→ Z, and suppose P is a property of morphisms,
such that:

• P is stable under composition;
• P is stable under base change;
• g ◦ f satisfies P;
• ∆g : Y → Y ×z Y satisfies P.

Then f satisfies P also.

Proof. We have the following Cartesian squares:

X ×Z Y Y

X Z.

π

g

g◦f

Here, because g ◦ f satisfies P, so does π : X ×Z Y → Y . Also, we have

X = X ×Y Y X ×Z Y

Y Y ×Z Y,

Γ

f

∆g

and because ∆g satisfies P, so does Γ. But π ◦ Γ is easily verified to be simply f , so f satisfies P also. □

5.13.9. Theorem (Reduced to separated theorem). Suppose X,Y are schemes over Z, where X is reduced,
and Y → Z is separated. Let π,π′ : X → Y be morphisms over Z. Suppose U ⊆ X is a dense open on which
π and π′ agree. Then π = π′.

Proof. Let V be the fiber product

V Y

X Y ×Z Y.

∆

(π;π′)
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Because ∆ is a closed embedding, so is V ↩→ X. Because π|U = π′|U , we get a map U → V through the
universal property of V . But U is an open subscheme of X. Because U is dense, V = X as sets. Because X
is reduced, V = X as schemes. So π = π′ on all of X. □

5.14. Dominant rational maps between irreducible varieties.

5.14.1. Definition. A rational map between schemes X &&' Y is a map U → Y where U is a dense open
in X. Two rational maps X &&' Y are equivalent if α|W = β|W on some dense open W ⊆ U ∩ V .

5.14.2. Definition. A morphism of schemes is dominant if its image is dense.

Fix a field k (algebraically closed when necessary), consider the category of irreducible varieties over k,
with morphisms as dominant rational maps.

Given an irreducible variety X, because irreducible and reduced implies integral, it has a unique generic
point η. The stalk at η is the function field K(X), which is equal to the fraction field FracA of any affine
open SpecA ⊆ X. Given a rational map X &&' Y , this induces a field homomorphism at the stalks of the
generic points.

5.14.3. Theorem. The functor described above gives an equivalence of categories between irreducible vari-
eties with dominant rational maps and finitely generated field L/k with inclusions of fields.

5.15. Ax-Grothendieck theorem.

5.15.1. Theorem (Ax-Grothendieck). Let X be a variety over C, f : X → X a morphism over C. Suppose
that the map of C-points X(C) → X(C) is injective (as a set), then it must be surjective.

We will define the spreading out of X, which is a finite type scheme over SpecR, for some finitely
generated Z-algebra R ⊂ C.

CoverX by (finitely many, sinceX is quasicompact) affine schemes Ui, which are of the form SpecC[x1, . . . , xn]/(f1, . . . , fr)
since X is finite type and by Hilbert’s basis theorem. Because X is separated, Ui ∩ Uj is also affine of the
above form. Even further, each f−1(Ui) is covered by finitely many affine opens Uij , because morphisms
between varieties are automatically quasicompact, and the Uij ’s are again of the above form. So we can take
R to be the Z-algebra generated by all coefficients of fi appearing in Ui, Ui ∩Uj , and Uij ’s, and define X by
glueing together SpecR[x1, . . . , xn]/(f1, . . . , fr). The map f : X → X also spreads out to a map F : X → X .
By definition, this satisfies the following Cartesian squares:

X X

X X

SpecC SpecR.

f F

Now, set U = X ×C X\∆(X), an open subscheme of X ×C X. Let W be the fiber product

W X

U X ×C X X ×C X,
f×Cf

and supposing x ∈ X is a point, let Z be the fiber

Z SpecC

X X.

x

f

Then X(C) → X(C) is injective implies that W = ∅, and we wish to show surjectivity at x, i.e. Z ∕= ∅.
Because spreading out behaves well with fiber products, we can similarly define the spread-out of

x, U,W,Z as χ,U ,W,Z.
Sketch of proof:
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• Reduce the problem into showing that given W = ∅, show that Z ∕= ∅.
• Spread out to get X , F,χ,U ,W,Z.
• W = ∅ implies W ×R K = ∅, where K = FracR. This implies the image of πW : W → SpecR,
which is constructible by Chevalley, does not include the generic point ηR. So ηR /∈ imπW , so we
may invert finitely many elements of R so that imπW = ∅, i.e. W = ∅.

• Let t be a closed point in SpecR, Ft : Xt → Xt be the induced map. Then κ(t) is a finite field Fq.
Because Wt(Fq) = ∅, the map Xt(Fq) → Xt(Fq) is injective, hence surjective. So Zt ∕= ∅ for all
closed points t.

• So πZ : Z → SpecR has image containing all closed points, which are dense in SpecR. So the
generic point ηR is contained in the image, which is constructible by Chevalley. So Z ×R K ∕= ∅,
which implies Z ∕= ∅. This concludes the proof.

5.15.2. Lemma. Let S be a constructible set in SpecR, R Noetherian. If ηR /∈ S, then ηR /∈ S.

Proof. Write S =
3

i(Ui ∩Ki) as the disjoint union of locally closed sets over a finite index set. Then

S =
"

i Ui ∩Ki. Suppose for contradiction ηR ∈ Ui ∩Ki for some i, then SpecR = Ui ∩Ki ⊆ Ki, so
Ki = SpecR and Ui is a dense open in SpecR, so ηR ∈ Ui, which implies ηR ∈ S, a contradiction. □

5.15.3. Lemma. Let k ⊆ C be a subfield, V a k-variety. Then the following are equivalent:

• V = ∅;
• VC := V ×k C = ∅;
• VC(C) = ∅.

5.16. Proper maps. Just as separatedness captures the topological concept of a Hausdorff space,
properness is meant to capture the concept of compactness. Of course, quasicompactness won’t do the job.
Recall the topological notion:

5.16.1. Definition. A map of topological spaces is proper if the inverse image of any compact set is compact.

5.16.2. Definition. A universally closed map f : M → N of topological spaces is one such that for all
P → N , fP : P ×N M → P is a closed map.

We remark that the map from M to a point is universally closed iff M is compact.
The same definition moves over to schemes:

5.16.3. Definition. A universally closed morphism f : X → Y of schemes is one such that for all Z → Y ,
fZ : Z ×Y X → Z is a closed morphism.

5.16.4. Definition. A morphism of schemes π : X → Y is proper if it is finite type, separated, and
universally closed.

So, X → Spec k being universally closed corresponds to X being “compact”.

5.16.5. Example. Examples of proper morphisms:

• Closed embeddings;
• Properness is stable under composition and base change;
• Pn

A → SpecA is proper; as a consequence, any projective morphism Z ↩→ Pn
A → SpecA is proper.

• In contrast, A1
C is not proper (this fits your intuition that a line is not compact). This can be seen

by the following square:

A2 A1

A1 •
But the left map is not closed: V (xy − 1) maps to D(x), which is not closed.

5.17. Chow’s lemma. Chow’s lemma says that “a proper morphism is fairly close to being a projective
morphism”. Note that by the fundamental theorem of elimination theory, projective morphisms are proper.
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5.17.1. Theorem (Chow). Let f : X → S be a separated, finite type morphism of Noetherian schemes.
Then for there exists a diagram

X ′ Pn
X Pn

S

X S

i

π′

f ′

π

f

where the square is Cartesian, i is a closed immersion, f ′ ◦ i is an immersion, and π′ ◦ i is surjective and
induces an isomorphism on a dense open set U ⊆ X.

In the case f is proper, f ′ must then be closed, so X ′ is a projective S-scheme that surjects onto X and
is an isomorphism over a dense open of X.

5.18. Valuative criteria.

5.18.1. Theorem (valuative criteria). We have the following criteria:

• Let f : X → Y be quasiseparated, then f is separated iff for every valuation ring V with field of
fractions K, XY (V ) → XY (K) is injective.

• Let f : X → Y be quasicompact, then f is universally closed iff for every valuation ring V with
field of fractions K, XY (V ) → XY (K) is surjective.

• Let f : X → Y be quasiseparated and finite type, then f is proper iff for every valuation ring V
with field of fractions K, XY (V ) → XY (K) is bijective.

(Aside: in fact, universally closed implies quasicompact. Also, a map of schemes is a closed immersion
if and only if it is a proper monomorphism.)

6. Dimension and smoothness

6.1. Definitions of dimension. The Krull dimension of a scheme is a purely topological construction
and does not depend on the sheaf structure.

6.1.1. Lemma. Let X be a topological space, U ⊆ X open. Then there is a bijection between closed
irreducible subsets of U and closed irreducible subsets of X that meet U , given by

K ⊆ U %−→ K ⊆ X

L ∩ U ⊆ U %−→L ⊆ X.

Proof. First, we show that given a closed irreducible set K ⊆ X that meets U , K ∩ U = K. Because
K meets U , K ∩ U c ∕= K, so because K = K ∩ U ∪ (K ∩ U c) is irreducible, K = K ∩ U .

Next, we show that given a closed subset K ⊂ U , K ∩ U = K. Clearly K ⊆ K ∩ U . Since K is closed
in U , K = L ∩ U for some closed L ⊆ X. Then K ∩ U ⊆ L ∩ U = K ⊆ K ∩ U , so equality holds.

Now we are ready to show the bijection. It suffices to show both maps are well-defined, since the above
two paragraphs shows that the two maps are inverses of each other. Given a closed irreducible K ⊂ U , it is
clear that its closure K is closed in X and meets U . To show it is irreducible, suppose K = C1∪C2 for closed
C1, C2. Then K = K ∩ U = (C1 ∩ U) ∪ (C2 ∩ U), so WLOG C1 ∩ U = K. Then C1 ⊆ K = C1 ∩ U ⊆ C1, so
equality holds and C1 = K.

Conversely, given a closed irreducible L ⊆ X that meets U , L∩U is closed in U . To show it is irreducible,
suppose L ∩ U = (C1 ∩ U) ∪ (C2 ∩ U), where C1, C2 ⊆ X are closed. Then

L = L ∩ U = (C1 ∩ U) ∪ (C2 ∩ U) = C1 ∩ U ∪ C2 ∩ U,

so WLOG C1 ∩ U = L. Then L∩U = C1 ∩ U ∩U = C1∩U . This shows L∩U is irreducible, which completes
the proof. □

6.1.2. Corollary. Suppose X =
"

i Ui is an open cover of a topological space. Then

dimX = sup
i

dimUi.

In particular, the dimension of a scheme can be checked on any affine open cover.
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Proof. Consider any sequence

∅ ∕= Z0 ⊊ Z1 ⊊ · · · ⊊ Zn ⊆ X,

where Zi are irreducible and closed. Because Z0 ∕= ∅, there exists Ui such that Z0 ∩ Ui ∕= ∅. Then

∅ ∕= Z0 ∩ Ui ⊊ Z1 ∩ Ui ⊊ · · · ⊊ Zn ∩ Ui ⊆ Ui

is also a chain of irreducible closed sets by the above lemma. This shows dimX ≤ supi dimUi. Conversely,
for any i and a chain of irreducible closed subsets

∅ ∕= Z0 ⊊ Z1 ⊊ · · · ⊊ Zn ⊆ Ui

of Ui,

∅ ∕= Z0 ⊊ Z1 ⊊ · · · ⊊ Zn ⊆ X

is a chain of irreducible closed sets in X, again by the above lemma. So dimX ≥ supi dimUi, so equality
holds. □

6.1.3. Definition. The codimension codimX Y of an irreducible subset Y ⊆ X is the supremum of lengths
of increasing chains of irreducible closed subsets starting with Y . The corresponding ring-theoretic notion
is the height ht p of a prime ideal p.

Warning: Noetherian rings can be infinite-dimensional. On the other hand, Noetherian local rings must
have finite dimension.

6.1.4. Theorem (Krull’s height theorem). Let A be a Noetherian ring, I a proper ideal generated by r
elements, then every minimal prime of I has height at most r.

6.1.5. Theorem (Algebraic Hartogs’s Lemma). Let A be a Noetherian integrally closed domain. Then

A =
(

ht p=1

Ap.

Intuitively, this says that on a normal Noetherian scheme, a rational function that is regular outside a
closed set of codimension at least 2 can be uniquely extended to a regular function on the whole scheme.
Compare this with Hartogs’s lemma in complex analysis.

Proof. This is trivially true when dimA ≤ 1. In general, suppose for contradiction x ∈ FracA belongs
to Ap for every prime of height 1, and x /∈ A. Let I = {a ∈ A : ax ∈ A}, then 1 /∈ I, so there exists a
minimal prime q ⊇ I. Because Iq = {a ∈ Aq : ax ∈ Aq} is not equal to Aq, we see that q has height at least
2.

Localize at q to assume WLOG that (A, q) is a local ring and q is the unique prime containing I. Then
q = rad(I), and because A is Noetherian, q is finitely generated, so I ⊇ qn for some n. Take the smallest
such n. Consider an element t ∈ qn−1\I, and let z = xt. Because t /∈ I, z = xt /∈ A, but zq ⊆ xqn ⊆ xI ⊆ A.

Now, if zq ∕⊆ q, then zq = A, so q = 1
zA is a principal ideal, contradicting ht q ≥ 2. So we conclude that

zq ⊆ q, and we have a faithful A[z]-action on the finitely generated A-module q, so z is integral over A. But
A is integrally closed, so z ∈ A, a contradiction. □

6.2. Dimension of fibers. The main theorem here is the following:

6.2.1. Theorem. Let X,Y be irreducible varieties, π : X → Y a dominant map. Suppose dimX = a,
dimY = b. Then:

• For any y ∈ imπ, dimπ−1(y) ≥ a− b.
• There exists a dense open U ⊂ Y , such that for any y ∈ U , dimπ−1(y) = a− b.
• Given a point x ∈ X, define e(x) to be the maximal dimZ, where Z ranges among the irreducible
components of π−1(π(x)) containing x. Then e(x) is an upper semi-continuous function: the sets
Xn = {x ∈ X : e(x) ≥ n} are closed.



6. DIMENSION AND SMOOTHNESS 117

6.3. Cotangent and tangent spaces.

6.3.1. Proposition. Let X be a scheme, f ∈ Ox(X), p ∈ V (f) a closed point, and f the image of f in
T ∗
X,p. Then

T ∗
V (f),p = T ∗

X,p/〈f〉

6.3.2. Proposition (Jacobian computes Zariski cotangent space). Let X be a finite type k-scheme, so that
locally it is Spec k[x1, . . . , xn]/(f1, . . . , fr). Then for any closed point p, T ∗

X,p = coker J , where J : kr → kn

is the linear map given by the Jacobian matrix

J =

C

DE

∂f1
∂x1

(p) · · · ∂fr
∂x1

(p)
...

. . .
...

∂f1
∂xn

(p) · · · ∂fr
∂xn

(p)

F

GH .

Proof. Translate p to the origin, and use the previous proposition repeatedly. □

Given a morphism of schemes f : X → Y , mapping p ∈ X to q ∈ Y , there is a naturally induced ring
map T ∗

Y,q → T ∗
X,p. If κ(p) = κ(q), the above is a linear map, and we also get a map TX,p → TY,q.

6.4. Regularity and smoothness.

6.4.1. Proposition. For a Noetherian local ring (A,m, k), dimA ≤ dimk m/m2.

Proof. By Nakayama, a set of generators of m/m2 over k lifts to a set of generators of m, which is at
least htm = dimA. □

6.4.2. Definition (regular local ring). A regular local ring is a Noetherian local ring (A,m, k) such that
dimA = dimk m/m2.

6.4.3. Definition (regularity). A locally Noetherian scheme X is regular at p ∈ X if OX,p is a regular local
ring. The word nonsingular is synonymous. Otherwise, we say X is singular at p.

X is regular if it is regular at all points, and it is singular otherwise.

6.4.4. Example. Regular local rings of dimension 0 are fields, while regular local rings of dimension 1 are
DVRs.

6.4.5. Proposition (Jacobian criterion). Suppose X = Spec[x1, . . . , xn]/(f1, . . . , fr) has pure dimension d.
(As usual, k = k). Then a k-point p ∈ X is regular iff dim coker J(p) = d at p.

Proof. We know dimT ∗
X,p = dim coker J(p) = d. So it suffices to show that dimOX,p = d. But this is

clear since p is a closed point and X has pure dimension d. □

In fact, for finite-type k-schemes, it suffices to check regularity at closed points (this is a hard fact).
So for such schemes, regular of pure dim d is equivalent to every irreducible component having dim d and
dim coker J(p) = d for all k-points p. But this still requires k = k. For general k, we have an alternate notion
of smoothness over Spec k:

6.4.6. Definition. A scheme X/k is smooth of dimension d over k if there exists an affine cover by
Spec k[x1, . . . , xn]/(f1, . . . , fr), for which the Jacobian matrix has dim coker = d at all points.

Remark: k-smoothness is equivalent to the Jacobian being corank d everywhere for every affine open
cover (and by any choice of generators of the ring corresponding to such an open set).

Regularity/smoothness correspond to the notion of “smoothness” in the world of manifolds. So:

schemes manifolds
Separated Hausdorff

Universally closed Compact
Proper Compact + Hausdorff

Krull dimension Dimension
Zariski (co)tangent space (Co)tangent space

Regular, smooth Smooth
Singular Singular
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More or less by definition, for a finite type scheme X/k of pure dim d, where k = k, X is regular at all
closed points iff X is smooth over k.

6.4.7. Theorem. Comparison between regularity and smoothness:

(a) If k is perfect, every regular finite type k-scheme is smooth over k.
(b) Every smooth k-scheme is regular (with no hypotheses on perfection).

6.4.8. Example. Let k = Fp(t), L a field extension given by L = k[x]/(xp − t). Let X = SpecL, then it is
regular since L is a field. But it is not smooth of dimension 0 since the derivative of xp − t vanishes.

6.4.9. Theorem. Regular local rings are domains, so regular implies reduced. (In fact, they are UFDs, but
this is a much harder fact.)

6.5. Bertini’s theorem.

6.5.1. Theorem (Bertini). Suppose X is a smooth subvariety of Pn
k . Then there is a dense open U ⊆ Pn

k
∗

such that for any closed point H ∈ U (corresponding to a hyperplane in Pn
k), H does not contain any

irreducible component of X, and H ∩X is k-smooth.

7. Quasicoherent sheaves

7.1. Basic definitions.

7.1.1. Definition. Let X be a scheme. A quasicoherent sheaf E on X is an OX -module where there exists

an affine cover {Ui = SpecAi ⊆ X}, such that E|Ui
∼= IMi for Ai-modules Mi.

7.1.2. Proposition. Let X = SpecA, E a quasicoherent sheaf on X, then E ∼= IM for M = Γ(X, E).

Proof. Define φ : IM → E on each D(f) by the natural map Mf → Γ(D(f), E). Check that these are
bijections using the sheaf axioms. □

7.1.3. Definition. Let X be Noetherian, then E is a coherent sheaf if there exists an affine cover {Ui =

SpecAi ⊆ X}, such that E|Ui
∼= IMi for finitely generated Ai-modules Mi.

Warning: locally free of rank r is not an affine local condition.

7.1.4. Proposition. There is an equivalence of categories A-Mod ←→ QCoh(SpecA).

7.1.5. Corollary. Exact sequences of qcoh sheaves implies exactness on affine opens.

7.1.6. Example. Tensor product of qcoh sheaves: on affine opens, (E1 ⊗ E2)(U) ∼= E1(U)⊗ E2(U). This is
the same as the sheafification of the obvious presheaf tensor product.

7.1.7. Proposition. Let F be a finite type qcoh sheaf on X, then its rank at a point is upper-semicontinous
on X.

7.2. f∗ and f∗.

7.2.1. Proposition. Let f : X → Y be qcqs. If E ∈ QCoh(X), then f∗E ∈ QCoh(Y ).

7.2.2. Definition. f∗ in the affine case: for f : SpecA → SpecB, F = =N , then f∗F = Ã⊗B N .
In general, cover f : X → Y by f |U : U → V between affine opens. Pull F back on each of them, and

glue together by universal property. Quasicoherence is obvious.

7.2.3. Proposition. f∗ ⊣ f∗. □

7.2.4. Proposition. The pullback f∗ sends coherent sheaves (resp. locally free of rank r) on Y to coherent
sheaves (resp. locally free of rank r) on X.

7.2.5. Proposition (base change map).

7.2.6. Proposition (projection formula). Let π : X → Y be qcqs, and F ,G QCoh sheaves on X,Y . Then
there is a natural map π∗F ⊗ G → π∗(F ⊗ π∗G), which is an isomorphism when either (1) G is locally free
or (2) π is affine.
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7.3. Invertible sheaves.

7.3.1. Definition. An invertible sheaf on X is an OX -module locally free of rank 1.

Why are invertible sheaves so important?

• Use global sections of an invertible sheaf L as replacement for Γ(X,OX).
• Invertible sheaves are “dual” to Weil divisors.

Invertible sheaves are preserved under ⊗.

7.3.2. Definition. The dual L∨ of a qcoh sheaf L is defined on affine opens by

Γ(U,L∨) := HomΓ(U,OU )(Γ(U,L),Γ(U,OU )).

This is also a qcoh sheaf. There is a natural pairing

L⊗ L∨ → OX

which is an isomorphism when L is invertible.

7.3.3. Definition. The invertible sheaves on X forms an abelian group, called the Picard group Pic(X).
Given f : X → Y , f∗ : Pic(Y ) → Pic(X) is a group homomorphism.

7.3.4. Example. Consider X = P1, then there is a homomorphism Z → Pic(X) mapping a %→ O(a). This
is in fact an isomorphism.

In general, for X = Pn, then we can similarly define O(a), and Z → Pic(X) is again an isomorphism.

7.4. Weil divisors. Let X be a Noetherian irreducible regular scheme. (Regular local rings are UFDs,
so X will be factorial.)

In topology, for a smooth compact oriented manifold M with dimension d, Hk(M) ∼= Hd−k(M). For
schemes and k = 1, the left side is Pic(X), and the right side should be “codimension 1 subsets of X”.

Let p ∈ X be a codimension-1 point. Then OX,p is a DVR. For f ∈ K(X), we may define vp(f) by the
discrete valuation.

7.4.1. Definition. A Weil divisor on X is a Z-linear finite sum of irreducible codimension-1 subsets$
aY [Y ].
For nonzero f ∈ K(X), its principal Weil divisor

div f =
!

Y

vY (f)[Y ].

This is a finite sum.

By Hartogs’s lemma 6.1.5, if f ∈ K(X)× such that vY (f) ≥ 0 for all Y , then f ∈ OX(X). If (f) = 0,
then both f, f−1 ∈ OX(X), so f ∈ OX(X)×.

It is not hard to see that the principal divisors on P1 all have degree 0. In contrast, all Weil divisors of
A1 are principal.

7.4.2. Definition. The class group of X is Cl(X) = Weil(X)/Prin(X).

7.4.3. Example. Let X = SpecOK , then Cl(X) = ClK .

7.4.4. Theorem. There is a natural isomorphism Pic(X) → Cl(X).

Given L ∈ Pic(X), and a nonzero section s ∈ Γ(X,L), consider an irred codim 1 subset Y and its generic
point pY . Pick an open neighborhood U of pY (equivalently, U ∩ Y ∕= ∞), such that L|U ∼= OU , so that we
can talk about vY (s) = vY (s|U ). This is easily checked to be well-defined. So we can define

div(s) :=
!

Y

vY (s)[Y ] ∈ Weil(X).

7.4.5. Example. Consider the line bundle O(1) on P1 = U0 ∪U1, and the section s given by t ∈ k[t] on U0,
and by 1 ∈ k[t−1] on U1. Then div(s) = [0] has degree 1.

7.4.6. Definition. A rational section of L is a section of L over some dense open V ⊂ X, modulo equivalence;
two rational sections are the same if they agree on some smaller open.
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Given any nonzero rational section s of L, we may similarly define div(s): this time, s only represents
a section on U ∩ V , hence a rational function on U , to which we may still associate vY (s). The set of (L, s)
with ⊗ forms a group. What we will show is:

0 K(X)×/OX(X)× (L, s) Pic(X) 0

0 Prin(X) Weil(X) Cl(X) 0.

∼= ∼= ∼=

To show theorem 7.4.4, we need to show bijectivity of the middle vertical map.
Injectivity: Suppose div(s) = 0 is defined on dense open V . For any irreducible codimension-1 D with

generic point p, pick an affine open neighborhood U = SpecA of p = [p], then there is an isomorphism

L|U
φ−→ OU . Then the rational function that s corresponds to belongs to Ap. Since this holds for all height-1

p ⊂ A, s ∈ A = OU (U). So these glue together to form a global section s ∈ OX(X). We will show that
the map OX → L defined by s is an isomorphism. Indeed, locally, after composing with local trivializations
φ : L|U → OU , φs : OU → OU still has no zeros and no poles, so it belongs to OU (U)×, i.e. is an isomorphism.
Since φ and φs are both isomorphisms, so is s locally, hence globally.

Surjectivity: suppose D is a Weil divisor. Define the sheaf O(D) as follows: on any U ⊂ X dense open,
define

Γ(U,O(D)) := {x ∈ K(X)× : div(x|U ) +D|U ≥ 0}.
Define a rational section sD of O(D) to be 1 ∈ Γ(U,O(D)) ⊆ K(X)×, where U is the complement of SuppD.
We claim that (O(D), sD) is the desired preimage.

1. To show that O(D) is a line bundle: first, we find an open cover of X, where on each open set
U , D|U is principal. Suppose S = SuppD, then X\S is such an open. We then construct such an open
neighborhood of each p ∈ S. Consider any irreducible divisor Y where p ∈ Y . Since X is factorial, every
stalk OX,p is a UFD. Since any open neighborhood of p contains the generic point ηY of Y , there is a natural
injection OX,p → OX,ηY

. For each affine neighborhood U = SpecA of p = [p] and ηY = [q], this is the
natural localization Ap → Aq. The preimage of qAq under this map is a height 1 prime in OX,p, a UFD, so
it is principal, say generated by f ∈ OX,p ⊆ K(X). WLOG we may choose f ∈ A, then f has no poles in
U , and if it has a zero at a divisor Y ′ containing p, say with generic point ηY ′ , then the preimage of mηY ′

in OX,p → OX,ηY ′ is another height 1 prime r containing f . Then q = (f) ⊆ r, which implies q = r. This
shows that f only has a zero of order 1 at ηY .

Now, let

U ′ = U ∩ (X\
5

Z irred codim 1
p/∈Z

Z)

which contains p, so it is a dense open. On U ′, div(f) = [Y ].
Now, suppose p ∈ Y1, . . . , Yn where D =

$
ni[Yi]. Choose fi so that on an open neighborhood of p,

div(fi) = [Yi]. Then on their intersections, which is an open neighborhood U of p,

div |U (
2

fni
i ) =

!
ni[Yi] = D|U .

This shows that we can find an open cover of X where D is locally principal. Now, fix one open U in the
cover, where D = div |U (s). For each affine open V ⊆ U , there is an isomorphism Γ(V,O(D)) ∼= OU (V ) by
sending t %→ st. This is functorial, so they glue together to form O(D)|U ∼= OU . This shows that O(D) is
locally free of rank 1.

2. To show that O(div(s)) ∼= L for (L, s): We claim that any open U that trivializes L satisfies
O(div(s))|U ∼= OU . Suppose L|U ∼= OU takes s to a rational function on U , which we also denote by s. Then
for any affine open V = SpecA ⊆ U ,

Γ(V,O(div(s))) = {t ∈ K× : divV (t) + divV (s) ≥ 0}
= {t ∈ K× : divV (st) ≥ 0}
= {t ∈ K× : st ∈ A}
= s−1A,
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which is isomorphic to OV (V ) = A as A-modules by sending t to st. Furthermore, this isomorphism is
clearly functorial as V ranges among affine open subsets of U , so this induces an isomorphism of sheaves
O(div(s))|U ∼= OU . Composing this with OU

∼= L|U , for sections over U , this is the bijection sending t to st.
Now, the set of Us (open sets trivializing L) forms a base of the Zariski topology on X, and the isomorphism
Γ(U,O(div(s))) → Γ(U,L) is clearly functorial, so this defines an isomorphism of sheaves O(div(s)) → L.

Suppose the canonical section “1” is a section of O(div(s)) over U . Its image is a section which, on each
V in part (a) (i.e. affine opens that trivialize L), agrees with s|V . So its image is s by the sheaf axiom.

7.4.7. Corollary. Pic(Pn
k )

∼= Z.

Proof. There is an exact sequence 0 → Z → Weil(Pn) → Weil(An) → 0, where An = U0 is the
complement of a hyperplane, and Z is freely generated by that hyperplane. This induces an exact 0 → Z →
Cl(Pn) → Cl(An) → 0. But Cl(An) = 0. □

7.5. Quasicoherent sheaf of graded module.

7.6. Sections of line bundles. One theme we see here is that global sections of line bundles on X
serve a similar purpose as functions on X.

7.6.1. Definition. Let X be a scheme, L ∈ Pic(X), s ∈ Γ(X,L), p ∈ X. The value of s at p, s(p), is the
image of s in the fiber L|p := Lp/mpLp = Lp ⊗OX,p

κ(p), which is naturally a 1-dim κ(p)-vector space. (In
general this makes sense for any quasicoherent sheaf.)

For s ∈ Γ(X,L), the locus of points where s does not vanish is denoted by D(s). This is open.

A map X → An
k is equivalent to choosing n global sections of OX . The analogous fact is:

7.6.2. Proposition. Let X be an A-scheme, for a ring A. The following data are equivalent:

• A map f : X → Pn
A;

• A line bundle L ∈ Pic(X), and sections s0, . . . , sn ∈ Γ(X,L), such that X =
"
D(si).

When A = k, on k-points, this is the map X(k) → Pn(k) given by p %→ [s0(p), . . . , sn(p)].

Proof. (⇐=): Recall that affine schemes Ui = SpecA[x0/i, . . . , xn/i] cover Pn
A. Given (L, s0, . . . , sn),

we define maps D(si) → Ui by specifying a ring homomorphism A[x0/i, . . . , xn/i] → Γ(D(si),OX). Because

sj ∈ Γ(D(si),L) and s−1
i ∈ Γ(D(si),L∨), there is an element sjs

−1
i ∈ Γ(D(si),OX), which we map xj/i to.

To check that these glue together, it suffices to show that

A[x0/i, . . . , xn/i]xj/i
Γ(D(si) ∩D(sj),OX)

A[x0/j , . . . , xn/j ]xi/j
Γ(D(si) ∩D(sj),OX)

This is true because xk/i %→ xk/jx
−1
i/j %→ sks

−1
j (sis

−1
j )−1 = sks

−1
i .

(=⇒): Let L = f∗OPn
A
(1), and si = f∗xi where xi ∈ A[x0, . . . , xn]deg 0

∼= Γ(Pn
A,O(1)). Then D(si) =

D(f∗xi) = f−1(D(xi)), so X =
"
D(si). □

7.6.3. Definition. Let F be a finite type quasicoherent sheaf on X. Say F is globally generated if for
any point p ∈ X, there exists a set of si ∈ Γ(X,F) such that si(p) generate L|p over κ(p). Equivalently
(Nakayama), there is a surjection of sheaves O⊕I ↠ L where I is an index set.

7.6.4. Definition. Let X be a k-scheme. A finite dimensional k-subspace W ⊂ Γ(X,L) is called a linear
series. It is a complete linear series if W ∼= Γ(X,L) and is often written |L|. Given a linear series W ,
the base locus is the set of points where all of W vanish. Then if W globally generates L, we get a map
X → PdimW−1

k . We say L is basepoint free if is is globally generated.

7.6.5. Example. The Veronese embedding Pn → P(
n+1
d )−1 can be seen as the map corresponding to picking

the degree-d monomials in Γ(Pn,O(d)) ∼= k[x0, . . . , xn]deg d, which globally generate O(d).

7.6.6. Example. All maps Pm → Pn are be characterized by choosing a d and n+1 degree-d homogeneous
polynomials in k[x0, . . . , xm] with no common zeros.
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7.6.7. Theorem (Serre’s Theorem A). Suppose S• is generated in degree 1, and finitely generated over
A = S0. Then for any finite type quasicoherent sheaf F on ProjS, there exists n0 such that for all n > n0,
F ⊗O(n) = F(n) is finitely globally generated.

7.6.8. Theorem (Curve to projective extension). Let C/k be a smooth curve (i.e. pure dimension one), Y
projective over k, p ∈ C a closed point. Then any map f : C − p → Y (uniquely) extends to C.

Proof. Uniqueness follows from the reduced-to-separated theorem (regular local rings are reduced). To
show existence, we make several reductions:

• Assume C is affine. This is because we can choose an affine neighborhood of p, and if the function
is extended to that neighborhood, then it glues with f to form an extension on the whole of C.

• Assume Y = Pn
k . This is because: suppose we have proven the theorem for Y = Pn

k . Then we may
extend f : C − p → Y → Pn

k to a map f : C → Pn
k . Take affine open neighborhood SpecA ⊆ C

of p such that its image lands in An
k . Then functions vanishing on Y ∩ An

k pull back to functions
vanishing at generic points of the irreducible components of C, hence they vanish on the entire C
(by reducedness), so SpecA → An

k factors through Y ∩ An
k .

Now, because C is regular and p is a closed point, OC,p is a DVR, so we can pick a uniformizer π. Pick
a neighborhood V of p, such that π ∈ Γ(V,OC). Shrink V so that V = SpecA is affine, π is nonvanishing
on V − p, and the line bundle L induced by f is trivialized on V − p. Suppose f |V−p = [f0 : f1 : · · · : fn],
fi ∈ Aπ (where V − p = SpecAπ). Let m = min vπ(fi), then t−mg0, . . . , t

−mgn ∈ A are (n + 1) functions
with no common zeros, which gives a map V → Pn

k extending f . This glues with f to produce an extension
on the whole C. □

7.7. Ampleness. Ample line bundles are “positive” in certain senses, and ampleness roughly means
“having many sections”.

7.7.1. Definition. Let X be a proper A-scheme. An invertible sheaf L on X is very ample if there exist
n+ 1 sections that globally generate L such that the induced map to Pn

A is a closed embedding.
Equivalently, X ∼= ProjS•, where S0 = A and S is generated in degree 1. Then L is very ample if

L = O(1).

7.7.2. Proposition. If L is very ample, then so are L⊗k (k ≥ 1).

Proof. Suppose L = f∗OPn(1) for f : X → Pn. Let g : Pn → PN , N =
-
n−1
k

.
+ 1 be the Veronese

embedding, so that g∗OPN (1) = OPn(k). Then (g ◦ f)∗OPN (1) = f∗OPn(k) = f∗OPn(1)⊗k = L⊗k , so L⊗k is
also pulled back from O(1) of a projective space, and L ↩→ Pn ↩→ PN is a closed embedding. □
7.7.3. Lemma (extending sections). Let X be qcqs, L a invertible sheaf, s ∈ Γ(X,L), F a quasicoherent
sheaf. Then for any t ∈ Γ(D(s), F ), there exists k ≥ 0, such that

t⊗ s⊗k ∈ Γ(D(s), F ⊗ L⊗k)

lies in the image of Γ(X,F ⊗ L⊗k). □
7.7.4. Definition (ample line bundles). Let X be a proper A-scheme. An invertible sheaf L on X is ample
if any of the following equivalent conditions hold:

(a) L⊗k is very ample for some k ≥ 1.
(a’) L⊗k is very ample for all k ≫ 0.
(b) For all finite type quasicoherent sheaves F , F ⊗ L⊗k is globally generated for some k ≥ 1.
(b’) For all finite type quasicoherent sheaves F , F ⊗ L⊗k is globally generated for all k ≫ 0.
(c) As f varies over global sections of L⊗k (over all k ≥ 1), the open sets D(f) form a base of the

topology on X.
(c’) In the above, the affine ones already form a base.
(c”) In the above, the affine ones cover X.

Proof. Clearly, (a’) =⇒ (a), (b’) =⇒ (b), and (c’) =⇒ (c), (c”).
(c) =⇒ (c’): Consider p ∈ X and any open neighborhood U of p. WLOG U is affine and trivializes L.

Then there exists f ∈ Γ(L⊗k) such that D(f) ⊆ U . This D(f) is affine.
(a) =⇒ (c): Suppose L⊗k is very ample. Then there is a closed immersion i : X ↩→ Pn and i∗(OPn(1)) =

L⊗k. Let Z be closed in X, and p a point in the complement of Z. We wish to find a neighborhood D(f) of
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p disjoint from Z. We can make Z into a closed subscheme. Then Z ↩→ X ↩→ Pn is a closed subscheme, so
Z ∼= ProjS• where S = A[x0, . . . , xn]/I for some homogeneous ideal I. Pick a homogeneous element s ∈ I,
say of degree d, so that s ∈ Γ(Pn,O(d)). Then f := i∗s ∈ Γ(X,L⊗kd) vanishes on Z, and does not vanish at
p, which is what we want.

(b) =⇒ (c): Similar to above, we wish to find a neighborhood D(f) of p disjoint from Z. Pick F = IZ to
be the ideal sheaf of Z. Then since IZ⊗L⊗k is globally generated for some k, there exists s ∈ Γ(X, IZ⊗L⊗k)
such that s(p) ∕= 0. Since 0 → IZ → OX is an injection, tensoring with the locally free L⊗k gives an injection
0 → IZ ⊗ L⊗k → L⊗k. Let f ∈ Γ(X,L⊗k) denote the image of s, and we claim that this works. For any
U trivializing L, f |U is the image of s|U under 0 → IZ |U → OU , hence vanishes on Z ∩ U . So s vanishes
on Z. Since p /∈ Z, there exists a neighborhood U of p trivializing L where IZ |U ∼= OU . So since s(p) ∕= 0,
f(p) ∕= 0 as well, as desired.

(c”) =⇒ (b’): Let X =
"
D(fi) be the union of finitely many affine opens, where fi ∈ Γ(X,L⊗a). (By

scaling, a can be chosen not to depend on i.) On each D(fi) = SpecAi, F is just some finitely generated
Ai-module, so it is globally generated by sij ∈ Γ(D(fi),F). Extend these to =sij ∈ Γ(X,F ⊗ L⊗k) where k
can be chosen to not depend on i, j. Then =sij generates F ⊗ L⊗k on each stalk, hence globally generates

F ⊗L⊗k. In fact, this shows that F ⊗L⊗(k+na) is globally generated for all n ≥ 0. Arguing similarly for all
residues mod a implies the desired statement.

(c”) =⇒ (a): Let X =
"
D(fi) be the union of finitely many affine opens, where fi ∈ Γ(X,L⊗a) and

D(fi) = SpecAi = A[aij ]/I, where aij ∈ Γ(D(fi),OX). Extend these to =aij ∈ Γ(X,L⊗r). We may choose
r so that fi,=aij are all global sections of L⊗r. We claim that these give a closed embedding to a projective
space. Since the linear series generated by fi is already basepoint-free, this gives us a map X → PN

A . We
index the coordinates of PN

A correspondingly with i and ij. Then it is clear that the ring homomorphisms
A[xi, xij ]/(xk − 1) → Γ(D(fk),L⊗k) = Ak are surjective. This shows that X → PN

A is a closed immersion.
(a), (b) =⇒ (a’): very ample tensor basepoint-free is very ample. □
There is another, more geometric, interpretation of ampleness.

7.7.5. Proposition (separating points and tangent vectors). Let X be proper over k = k, L an invertible
sheaf, and V a basepoint-free linear series giving a map f : X → Pn. If:

• for any two distinct k-points x, y ∈ X, there exists s ∈ V with s(x) = 0, s(y) ∕= 0;
• for any k-point x and nonzero tangent vector θ : Specκ(x)[ε] → X, there exists a section s ∈ V
vanishing at x such that the pullback of s along θ is nonzero,

then L is very ample and f is a closed immersion.

7.8. Projective morphism. Recall that a morphism X = ProjS• → SpecA, where S0 = A and S•
is finitely generated in degree 1, is called projective. We wish to define a notion of projectiveness over any
base scheme.

7.8.1. Lemma. Given a scheme Y , and the following data:

• for each affine open U ⊂ Y , a scheme ZU → U ;
• for V ⊆ U , a map ρUV : ZV ⊆ ZU such that ZV

∼= ZU ×U V ;
• for W ⊂ V ⊂ U , ρUW = ρUV ◦ ρVW ,

then there exists a scheme π : Z → Y such that π−1(U) = ZU .

Given a scheme Y , and a graded quasicoherent sheaf of OY -algebras S• =
#

n≥0 Sn such that

• S0 = OY ;
• Sym• S1 :=

#
Symk S1 → S• is surjective,

we can define ProjS• → Y using the above gluing lemma. Also, the line bundles on each affine open glue
together over ProjS•.

7.8.2. Example. Let E be locally free of rank r, then define S• = Sym• E . Then ProjS• is a projective
bundle that locally looks like U × Pr−1 on affine opens trivializing E .

7.8.3. Definition. A morphism π : X → Y is projective if X ∼= ProjS• for some S• as above.

Remark. Hartshorne defines projective morphisms as X ↩→ Y × Pn → Y , where the first map is a
closed immersion.
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7.9. Curves.

7.9.1. Theorem. The following categories are equivalent:

(1) Integral regular projective 1-dimensional k-varieties, and surjective k-morphisms.
(2) Integral regular projective 1-dimensional k-varieties, and dominant k-morphisms.
(3) Integral regular projective 1-dimensional k-varieties, and dominant rational maps.
(4) Integral 1-dimensional k-varieties, and dominant rational maps.
(5) The opposite category of finitely generated fields of transcendence degree 1 over k, and k-morphisms.

8. Cohomology

8.1. Properties. Let X → SpecA be separated. (This isn’t absolutely necessary.) We will define for
each k ≥ 0 a functor Hk(X,−) : QCoh(X) → A-Mod, such that:

• H0(X,−) = Γ(X,−);
• Short exact sequences of QCoh sheaves gets sent to long exact sequences of A-modules;
• Let π : X → Y be a morphism of schemes, and F ∈ QCoh(X). Then there exist αk : Hk(Y,π∗F) →
Hk(X,F), which are isomorphisms when π is affine, that extend α0 : Γ(Y,π∗F) → Γ(X,F). This
gives, for G ∈ QCoh(Y ), a composition

Hk(Y,G) → Hk(Y,π∗π
∗G) → Hk(X,π∗G).

• If X is covered by n affine open charts, then Hk(X,−) = 0 if k ≥ n. In particular, if X is affine,
then H1(X,−) = 0 (which we recall from earlier).

• Hk(X,
#

Fj) =
#

Hk(X,Fj).

A preview of what’s to come:

8.1.1. Theorem (cohomologies of O(m)). We have:

• H0(Pn
A,O(m)) = A(n+m

m ) if m ≥ 0, and 0 if m ≤ 0;

• Hn(Pn
A,O(m)) = A( −m−1

−m−1−n) if −m− 1 ≥ n, and 0 otherwise;
• All other cohomologies vanish.

8.1.2. Theorem. Let X be projective over A, and F a coherent sheaf. Then Γ(X,F) is a finitely generated
A-module.

Proof. We will show in fact that Hk(X,F) are all finitely generated over A.
Let i : X ↩→ Pn

A be a closed embedding, then Hk(X,F) = Hk(Pn
A, i∗F). So we may WLOG assume

X = Pn
A. Use descending induction on k. In the base cases k ≥ n+ 1, the cohomologies all vanish.

Recall that there exists a surjection O(m)⊕a → F → 0. Let K be the kernel, and unwind to a long exact
sequence. Suppose we want to show Hn(X,F) is finitely generated. A segment of the long exact sequence
reads:

· · · → Hn(O(m)⊕a) → Hn(F) → 0

and since Hn commutes with direct sums and by the explicit calculations, Hn(O(m)⊕a) is finitely generate,
so Hn(F) is as well. Suppose now we want to show this for n− 1. Then

· · · → Hn−1(O(m)⊕a) → Hn−1(F) → Hn(K) → . . . ,

and since both the left and right are finitely generated, so is the middle. □
8.2. Definition. Let U = {Ui}ni=1 be an affine cover of X, and let F be a quasicoherent sheaf. Define

the Čech complex

Ck
U (X,F) :=

2

|I|=k+1
I={i0,...,ik}⊆[n]

Γ(Ui0 ∩ · · · ∩ Uik ,F)

with obvious differentials
d : Ck

U (X,F) → Ck+1
U (X,F)

by alternatingly summing over the restriction maps. A short exact sequence of QCoh sheaves induces a short
exact sequence of Čech complexes (this is where it is crucial that we’re working with QCoh sheaves), which
then induces the long exact sequence. It is then obvious that if X is covered by n affine open charts, then
Hk vanishes for k ≥ n.
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8.2.1. Theorem. Let X be quasicompact and separated. The Čech cohomology is independent of the (finite)
affine cover U .

Proof. The proof proceeds in several steps.
Step 1: it suffices to show that the Čech complexes of {Ui}ni=1 and {Ui}n+1

i=1 are quasi-isomorphic.
Step 2: The kernel of the surjection C{Ui}n+1

i=1
(X,F) ↠ C{Ui}n

i=1
(X,F) is the chain complex whose k-th

term is the product over all I ⊆ [n+ 1] containing n+ 1, |I| = k + 1. The goal is then to show that this is
exact. But this is exactly the augmented Čech complex C{Ui∩Un+1}n

i=1
(Un+1,F). So it suffices to show that

for affine schemes X, the Čech cohomology vanishes except at degree 0.
Step 3: Suppose that X is affine and {Ui} cover X, and suppose Un already is X. Then the augmented

Čech complex of X surjects onto the augmented Čech complex of U1 ∩ · · ·∩Un−1, and the kernel is the Čech
complex for Un, which is just the Čech complex for X shifted by one. So by the cohomology long exact
sequence, the cohomology of the middle row vanishes.

Step 4: In general, suppose X is affine and {Ui} cover X. Then there is an affine cover D(fj) where each

D(fj) lies inside some {Ui}. Then the Čech complex localized at each fi is exact, so the original complex is
exact as well. □

More consequences of cohomology:

8.2.2. Proposition. Pushforwards of coherent sheaves by projective morphisms (of locally Noetherian schemes)
is coherent.

8.2.3. Proposition. Suppose Y is locally Noetherian. Then a morphism π : X → Y is projective and affine
iff it is finite.

8.2.4. Proposition. Suppose Y is Noetherian. Then a morphism π : X → Y is projective and has finite
fiber iff it is finite.

8.2.5. Proposition (fiber dimension of projective morphism is upper-semicontinuous). Let π : X → Y be
projective, and let Y be locallly Noetherian. Then the set {q ∈ Y : dimπ−1(q) ≥ k} is Zariski-closed.

8.2.6. Theorem (Serre vanishing). Let F be coherent on a projective X/A. Then for all m ≫ 0, Hi(X,F(m)) =
0 for all i > 0.

8.3. Euler characteristic, Hilbert functions. We work with a projective k-scheme X, and F ∈
Con(X). The Euler characteristic

χ(F) :=
!

i≥0

dimk H
i(X,F).

For example, for X = Pn, F = O(m), then

χ(O(m)) =
1

n!
(m+ 1)(m+ 2) . . . (m+ n)

for all m,n. A general heuristic is that χ is better behaved than individual cohomology groups, and we
study the individual cohomologies by proving vanishing theorems.

8.3.1. Proposition. Let 0 → F → G → H → 0 be an exact sequence of coherent sheaves. Then χ(G) =
χ(F) + χ(H).

Let i : X ↩→ PN
k be a fixed embedding. Then by definition, OX(1) = i∗OPN (1).

8.3.2. Definition. The Hilbert function of F is defined by

hF (m) = dimk H
0(X,F(m)) = dimk H

0(X,F ⊗OX(1)⊗m).

8.3.3. Example. Let F = IX be the ideal sheaf of X. Then we have an exact sequence

0 → IX → OPN → i∗OX → 0.

Tensoring with OPN (m), we get

0 → IX(m) → OPN (m) → (i∗OX)(m) → 0.

By the projection formula, (i∗OX)(m) = i∗(OX(m)). Taking Γ(Pn,−) gives us

0 → H0(PN , IX(m)) → H0(PN ,O(m)) → H0(X,OX(m))
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where the last map is just restriction to X. So in other words, H0(PN , IX(m)) should be interpreted as the
degree-m homogeneous polynomials in x0, . . . , xN that vanish on X. In particular, it depends on the way X
is embedded into PN .

8.3.4. Theorem. The function t %→ χ(F(t)) is a polynomial in Q[t] whose degree is dimSuppF .

Hence, by Serre vanishing, for m ≫ 0, the Hilbert function is a polynomial, called the Hilbert polynomial
pF (m). In particular, the Hilbert polynomial pX(m) of OX is a polynomial of degree dimX.

Proof. (TODO) □
8.3.5. Example. Let X = V (f) be a degree-d hypersurface. Then

pX(m) = pPn(m)− pPn(m− d) =
1

n!
((m+ 1) . . . (m+ n)− (m+ 1− d) . . . (m+ n− d)).

In particular, its leading term is d
n!m

n−1.

Remark. In general, for a closed subscheme X ↩→ Pn, its degree is defined as the positive integer a
such that the leading coefficient of pX(t) is a

n! . Another piece of information is the constant term pX(0) =
χ(X,OX). This is one minus the arithmetic genus.

8.4. Riemman-Roch for line bundles on a regular projective curve. Let C be a regular pro-
jective curve over k (not necessarily alg. closed), D a Weil divisor. Recall that if D =

$
ap[p], then

degD =
$

ap deg p.

8.4.1. Theorem. We have degD = χ(C,O(D))− χ(C,OC).

8.4.2. Definition. For a line bundle L on C, define its degree degL = χ(C,O(D))− χ(C,OC).

8.4.3. Definition. For a scheme X, the arithmetic genus is defined to be g = 1− χ(X,OX). When X is a
integral projective curve over an algebraically closed field, it is true that h0(X,OX) = 1, so h1(X,OX) = g.

8.5. Remarks on sheaf cohomology.

8.5.1. Theorem (Künneth formula). Let X,Y projective schemes over k, F ∈ QCoh(X), G ∈ QCoh(Y ).
Define F ⊠ G = π∗

1F ⊗ π∗
2G, where π1,π2 are projection maps from X × Y . Then

Hm(X × Y,F ⊠ G) =
,

p+q=m

Hp(X,F)⊗k Hq(Y,G).

8.5.2. Theorem (cup product). There is a ...

8.6. Baby intersection theory.

8.6.1. Definition. Let X be a smooth projective scheme over k. Given a line bundles L1, . . . ,Ln

9. Curves of small genus

We use the machinery of cohomology of line bundles to study curves of small genus.

9.1. Definition. In this section, a curve C is a projective, geometrically integral, geometrically regular,
dimension-1 scheme over a field k.

9.1. Preliminary tools.

9.1.1. Definition (degree of a finite morphism at a point). Let π : X → Y be a finite morphism. Then
π∗OX is a finite type quasicoherent sheaf, so we may consider the rank d of f∗OX at a point y ∈ Y . We call d
the degree of π at y. Equivalently, the degree is d = dimκ(y) Γ(Oπ−1(y),π

−1(y)) (just unwind the definition).

Remark. The degree of π is upper-semicontinuous on Y .

9.1.2. Lemma. Let π : X → Y be a finite morphism of Noetherian schemes, whose degree at every point of
Y is either 0 or 1. Then π is a closed embedding.

9.1.3. Theorem (separating points and tangent vectors). Let k be algebraically closed. Let π : X → Y
be a projective morphism of finite-type k-schemes that is injective on closed points and injective on tangent
vectors at closed points. Then π is a closed embedding.
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Proof. Since closed embeddings are affine-local on the target, we may WLOG Y = SpecB. Since π
is projective, its fiber dimension is upper-semicontinuous on Y , so {y ∈ Y : dimπ−1(y) ≥ 1} is closed. If
it is nonempty, then it contains a closed point, which contradicts with injectivity. So the fibers are finite
type and dimension 0 over the Spec of a field, hence finite. So π is projective with finite fibers, hence finite
(Theorem 8.2.4).

Now, for any closed point y ∈ Y , we claim that the degree of π at y is at most 1. Suppose π−1(y)
is nonempty, then it contains 1 point x that is finite over Spec k, so it has to be SpecA, where A is a
finite k-algebra with one prime ideal m. Then k must be the residue field. Suppose for contradiction that
dimk A ∕= 1, then Am ∕= k. But Am = Oπ−1(y),x = OX,x ⊗OY,y

k, so myOX,x ∕= mx. So my/m
2
y → mx/m

2
x

is not surjective as maps of k-vector spaces, which contradicts π being injective on tangent vectors, i.e.
(mx/m

2
x)

∨ → (my/m
2
y)

∨ being injective. So we conclude that the degree of π at closed points is at most 1.
But since the degree of π is upper-semicontinuous, its degree at all points is at most 1. Hence we are done
by the previous lemma. □

9.1.4. Lemma. Suppose L is a degree 2g − 2 line bundle, then h0(C,L) = g − 1 or g, with h0(C,L) = g iff
L = ωC .

9.1.5. Theorem. Let k be algebraically closed. Suppose L is a line bundle on a curve C, and let g =
h1(X,OX) be the arithmetic genus of C.

• If degL ≥ 2g, then L is basepoint-free.
• If degL ≥ 2g + 1, then L is very ample (in fact, any basis of Γ(C,L) gives a closed embedding

C ↩→ PdegL−g
k ).

9.2. Genus 0.

9.2.1. Example. The curve x2 + y2 + z2 = 0 in P2
R has genus 0, and is not isomorphic to P1

R.

9.2.2. Proposition. Any genus 0 curve C with a k-point is isomorphic to P1
k.

9.2.3. Proposition. All genus 0 curves can be described as conics in P2
k.

9.2.4. Proposition. Suppose C is a curve not isomorphic to P1
k, then any degree 1 line bundle L has

h0(C,L) < 2. As a consequence, for degree-1 points p, q on C, O(p) ∼= O(q) iff p = q.

9.3. Hyperelliptic curves. Assume k algebraically closed with characteristic not 2.

9.3.1. Definition. A genus g curve C is hyperelliptic if it admits a double cover (i.e. degree 2 finite
morphism) π : C → P1

k (which we may as well fix).

Then the preimage of any closed point consists of either 1 or 2 points.

9.3.2. Theorem (hyperelliptic Riemann-Hurwitz). Let C be a hyperelliptic curve with double cover π : C →
P1
k. Then π has 2g + 2 branch points (closed points p ∈ P1

k where π−1(p) is a single point).

9.3.3. Proposition. Let p1, . . . , pr be distinct closed points in P1
k. If r is even, then there is precisely one

double cover branched at those points. If r is odd, then there are none.

Proof. Suppose 0 and ∞ are distinct from p1, . . . , pr. Then all branch points are in A1. Any double
cover C ′ → A1 gives rise to a quadratic field extension K/k(x), which must be Galois. Find y ∈ K such
that the nontrivial element σ in the Galois group maps y %→ −y. Then y2 ∈ k(x), so we can replace y by
an appropriate k(x)-multiple such that y2 is a polynomial, monic with no repeated factors, say y2 = f(x) =
xN + aN−1x

N−1 + · · · + a0. This is a curve C ′
0 in A2, and by the Jacobian criterion, this curve is regular.

Thus C ′
0 and C ′ are both normalizations of A1 in k[x](y), hence isomorphic. Because the branch points are

p1, . . . , pr, we conclude that f(x) = (x− p1) . . . (x− pr).
In the projective situation, we simply do the same for k[u], u = x−1, which gives rise to the curve C ′′

defined by z2 = (u− 1
p1
) . . . (u− 1

pr
). So the double cover C → P1 has to be glued using C ′ and C ′′. Thus,

in K(C), we must have z2 = urf(1/u) = f(x)/xr = y2/xr. If r is even, then there is a unique way to glue,
i.e. identifying z = y/xr/2. If r is odd, x does not have a square root in k(x)[y]/(y2 − f(x)), so there is no
way to glue C ′ and C ′′ together compatibly. □
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Proof of hyperelliptic Riemann-Hurwitz. We now have an explicit description of π : C → P1
k,

in terms of covering it by two affine opens. Writing down the Čech complex then easily tells us that
g = h1(C,OC) =

r
2 − 1, as desired. □

9.3.4. Proposition. Suppose g ≥ 2. If L corresponds to a hyperelliptic cover C → P1, then L⊗(g−1) ∼= ωC .

Proof. Compose the hyperelliptic map with the (g − 1)-th Veronese embedding

C → P1 → Pg−1

then the pullback ofOPg−1(1) along this composition is L⊗(g−1). The pullbackH0(Pg−1,O(1)) → H0(C,L⊗(g−1))
is injective: if a hyperplane s ∈ H0(Pg−1,O(1)) is pulled back to 0, then s vanishes on all of the image of C,
so the image of C (a rational normal curve) is contained in a hyperplane, which is impossible. So L⊗(g−1) is
a degree 2g − 2 line bundle that has at least g linearly independent sections, so it is equal to ωC . □

9.3.5. Proposition. Any curve of genus at least 2 admits at most one hyperelliptic cover.

Proof. The hyperelliptic map, if it exists, can be reconstructed from the canonical linear series given
by ωC . □

9.3.6. Proposition. A curve C of genus at least 1 is hyperelliptic iff it has a degree 2 line bundle L with
h0(C,L) = 2.

Proof. Suppose L is a degree 2 line bundle with h0(C,L) ≥ 2. We claim h0(C,L) = 2. Suppose
otherwise. Consider a closed point p, and the exact sequence 0 → O(−p) → OC → O|p → 0. Tensoring
with L gives 0 → L(−p) → L → L|p → 0. Writing down the long exact sequence gives h0(C,L(−p)) + 1 ≥
h0(C,L) ≥ 3, so h0(C,L(−p)) ≥ 2. But L(−p) has degree 1, so this contradicts with Proposition 9.2.4.
So h0(C,L) = 2. Let s1, s2 be linearly independent sections, we claim that this is basepoint-free. Suppose
div(s1) = p + q1, div(s2) = p + q2. Then O(q1) = L(−p) = O(q2), which implies q1 = q2, so s1/s2 has no
zeros and no poles and therefore constant, which contradicts them being linearly independent.

Now, return to the original problem. Suppose C is hyperelliptic, then the pullback of OP1(1) is a degree 2
line bundle with at least 2 sections, so by our discussion above it has exactly 2 sections. Conversely, suppose
L is a degree 2 bundle with 2 sections, then it is basepoint-free and thus gives a map to P1, which has degree
2. □

9.4. Genus 1: elliptic curves.

9.5. Genus 2. We claim that in this case all curves are hyperelliptic. Let C be a curve of genus g = 2.
Then ωC has degree 2g − 2 = 2, and has 2 sections. By Proposition 9.3.6, it is basepoint-free and gives a
double cover to P1. Conversely, any double cover gives a degree 2 line bundle with 2 sections, which must
be ωC .

9.6. Genus 3.

9.6.1. Proposition (canonical embedding). Let k be algebraically closed. Suppose C is not hyperelliptic,
then ωC gives a closed embedding C ↩→ Pg−1.

Proof. To show ωC is basepoint-free, it suffices to show that given any closed point p,

h0(C,ωC(−p)) = h0(C,ωC)− 1.

By Riemann-Roch: h0(C,ωC(−p)) − h0(C,O(p)) = degωC(−p) − g + 1 = 2g − 3 − g + 1 = g − 2. But
h0(C,O(p)) = 1 by Proposition 9.2.4, so indeed h0(C,ωC(−p)) = g − 1 = h0(C,ωC)− 1.

Now, to show ωC is very ample, it suffices to show that given any closed points p, q (not necessarily
different),

h0(C,ωC(−p− q)) = h0(C,ωC)− 2.

By Riemann-Roch: h0(C,ωC(−p− q))− h0(C,O(p+ q)) = degωC(−p− q)− g+1 = 2g− 4− g+1 = g− 3.
Because C is not hyperelliptic, then the degree 2 line bundle O(p + q) must have h0(C,O(p + q)) = 1. So
h0(C,ωC(−p− q)) = g − 2 = h0(C,ωC)− 2 as desired. □
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Specializing to the genus 3 case, the canonical embedding gives an embedding C ↩→ P2 as a degree 4
curve. Conversely, I claim that every quartic curve in P2 is canonically embedded. The curve has genus
1− pC(0) = 1−

-
2
2

.
+
-−2

2

.
= 3. The embedding is given by a line bundle of degree 4 with at least 3 sections,

so it has to be ωC . In conclusion, there is a bijection between genus 3 non-hyperelliptic curves and quartics
in P2 (up to PGL3(k)).

9.6.2. Example. The Klein quartic x3y + y3z + z3x = 0 has 168 automorphisms.

9.6.3. Definition. A curve admitting a degree 3 cover of P1 is called trigonal.

9.6.4. Proposition. Every non-hyperelliptic genus 3 curve is trigonal.

9.7. Genus 4. The canonical embedding i maps a genus 4 curve C as a sextic curve in P3. We claim
that this is in bijection with regular complete intersections of a quadric surface and a cubic surface.

By Riemann-Roch,

h0(C, i∗O(2)) = h0(C,ω⊗2
C ) = degω⊗2

C − g + 1 = 12− 4 + 1 = 9,

while h0(P3,O(2)) =
-
5
2

.
= 10, so the pullback

H0(P3,O(2)) → H0(C, i∗O(2))

has a nontrivial kernel. The kernel (which is H0(P3, IC/P3⊗O(2)) from the closed subscheme exact sequence)
is a quadric surface that contains C.

Now, this quadric surface Q is given by some quadratic form which can be represented by a matrix. We
may as well diagonalize it (assuming char k ∕= 2). Its rank determines the shape of Q:

• rank 1: double plane
• rank 2: two planes
• rank 3: cone
• rank 4: regular quadric.

The first two cases cannot happen, i.e. C does not lie in a hyperplane, because H0(P3,O(1)) → H0(C,ωC)
is injective. So we conclude that Q is irreducible.

In addition, we claim that C cannot lie in two distinct quadric surfaces. Otherwise, by Bezout, their
intersection has degree 2 × 2 = 4 < 6, but C is contained in this intersection, hence must have a larger
degree.

So we ask, does C lie in a cubic surface? Repeating the same calculation, we see that

dimker(H0(P3,O(3)) → H0(C, i∗O(3))) ≥ 5.

Since we require the cubic surface to not contain Q, a 4-dimensional subspace is forbidden, so there exists
at least one cubic surface K not containing Q. Now, K and Q share no components, so K ∩Q is a complete
intersection, containing C as a closed subscheme. By Bezout’s theorem, K∩Q has degree 6. By a calculation
on Hilbert polynomials, K ∩ Q has genus 1 −

-
3
3

.
+

-
3−2
3

.
+

-
3−3
3

.
−

-
3−5
3

.
= 4. Since the genus and degree

completely determine the Hilbert polynomial (which has degree 1), we conclude that C = K ∩Q.
Conversely, any regular complete intersection of a quadric Q and a cubic K is a curve C of genus 4 and

degree 6. Then C does not lie inside a hyperplane, because otherwise (say it lies inside H), then H ∩Q is a
degree 2 curve containing C, a degree 6 curve, which is impossible. Thus, OC(1) has degree 6 and at least
4 sections, so it must be equal to ωC . This means that C is canonically embedded.

9.8. Genus 5. We can mimic the genus 4 case: the dualizing sheaf ωC has degree 2g−2 = 8 and g = 5
sections, so it canonically embeds C as a degree 8 curve in P4. By Riemann-Roch,

h0(C,ω⊗2
C ) = degω⊗2

C − g + 1 = 16− 5 + 1 = 12,

while h0(P4,O(2)) =
-
4+2
4

.
= 15. So

dimker(H0(P4,O(2)) → H0(C,ω⊗2
C )) ≥ 3.

Then there exist 3 linearly independent quadrics containing C. (However, we will see later that not all
genus 5 curves are canonically embedded as the complete intersection of 3 quadrics; the exceptional ones are
precisely the trigonal curves.)
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Conversely, suppose C is the regular complete intersection of 3 quadrics. Then its genus is given by the
inclusion-exclusion formula:

g = 1−
0
4

4

1
+ 3 ·

0
4− 2

4

1
− 3 ·

0
4− 4

4

1
+

0
4− 6

4

1
= 5.

Also, C has degree 23 = 8 by Bezout’s theorem. To show it is canonically embedded, it suffices to show
OC(1) has at least 5 sections, i.e. it does not lie in a plane. Suppose it does, then C is a closed subscheme of
the complete intersection of two quadrics and a plane, which is a curve of degree 22 = 4. But C has degree
8 > 4, so it cannot be contained in a curve of degree 4, a contradiction. So OC(1) has degree 8 and at least
5 sections, so it must be isomorphic to ωC , as desired.

Unfortunately, this stops working for genus g ≥ 6:

9.8.1. Proposition. Any canonical genus g curve, where g ≥ 6, is not a complete intersection.

10. Differentials

In this section we take another familiar object in differential geometry (differential forms) and transport
it to schemes.

As motivation, consider the case where U is an open set in Rn. Then we have a map d : C∞(U) → Ω1(U),

mapping f %→
$n

i=1
∂f
∂xi

dxi, which satisfies d(fg) = f(dg) + (df)g. On any smooth manifold M , we have
the same construction on every coordinate patch, which glue together. More generally, for a smooth map
M → N , we have the notion of a sheaf of relative differential forms.

The corresponding algebraic version is the “cotangent sheaf”.

10.1. Affine case. We start from the simplest (affine) case.

10.1.1. Definition. Let i : B → A be a map of rings. The module of derivations is an A-module M , and a
map of abelian groups d : A → M (not a map of A-modules!) such that:

• i(B) ⊂ ker d;
• d(aa′) = a(da′) + (da)a′.

Note that then d is a map of B-modules.

10.1.2. Definition. The module of Kähler differentials (ΩA/B , d) is the universal such module: given any
module of derivation (M,d′), there exists a unique map of A-modules p : ΩA/B → M , such that p ◦ d = d′.
It is constructed as

ΩA/B = pr
,

a∈A

Ada
J
〈d(i(b)), d(a+ a′)− d(a)− d(a′), d(aa′)− ad(a′)− d(a)a′〉.

Note that if A is a finitely generated algebra over B by a1, . . . , an, then ΩA/B is a finitely generated
module over A by da1, . . . , dan. It is even finitely presented when A is.

10.1.3. Example. Let A = B[x1, . . . , xn], then ΩA/B =
#n

i=1 Adxi, with df(x1, . . . , xn) =
$n

i=1
∂f
∂xi

dxi.

10.1.4. Example. Let A = B[x, y]/(f(x, y)). Then

ΩA/B =
Adx⊕Ady

(∂f∂xdx+ ∂f
∂y dy)

.

Say A = k[x, y]/(xy), then ΩA/k = (Adx⊕ Ady)/(ydx+ xdy). Its rank at all points (x, y) ∕= (0, 0) is 1, but
the rank jumps to 2 at (0, 0). This already indicates that ΩA/B captures smoothness information.

10.1.5. Lemma. Let T ⊂ B, S ⊂ A be multiplicatively closed sets such that i(T ) ⊂ S, then

ΩS−1A/T−1B = S−1ΩA/B .

10.1.6. Lemma. Let C → B → A be maps of rings. Then

A⊗ ΩB/C → ΩA/C → ΩA/B → 0

is exact, where the first map is given by a⊗ db %→ ad(i(b)) and the second map is da %→ da.

Remark. In manifolds: let M
π−→ N → {∗} be smooth, then 0 → TM/N → TM → π∗TN → 0 is exact.

Dualize to get a similar expression as in lemma 10.1.6.
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Remark. If the maps of SpecA → SpecB → SpecC are smooth, then the sequence in lemma 10.1.6 is
short exact (the leftmost map is injective).

10.1.7. Lemma. Let C → B → A be maps of rings, where A = B/I. Then we can continue the exact
sequence to the left:

I/I2
δ−→ A⊗ ΩB/C → ΩA/C → 0

where I/I2 is a B/I = A-module, and δ : i %→ 1⊗di; note that it is well-defined because δ(ii′) = i⊗di′+i′⊗di ∈
I ⊗ ΩB/C , hence is zero.

Remark. In the differential-geometric picture: M → N is an embedded submanifold, and we have an
exact sequence

0 → TM → TN |M → normal bundle → 0.

So I/I2 is called the conormal sheaf of SpecA ↩→ SpecB.
In general, there is a way to extend the right exact sequence into a long exact sequence, analogous to

sheaf cohomology. The difficulty is that we’re starting with a sequence of rings, which is not an abelian
category. This is called André–Quillen homology.

10.2. The cotangent sheaf. Let π : X → Y be a morphism of schemes. Define the cotangent sheaf
ΩX/Y , a sheaf of OX -modules, by gluing together on affine opens. The tangent sheaf TX/Y = Ω∨

X/Y .

There is another way to define this. In the affine case, let B → A be a ring map. Consider

I = ker(A⊗B A
a⊗a′ +→aa′

−−−−−−−→ A),

which is generated by tensors of the form a ⊗ 1 − 1 ⊗ a. Then one can show that I/I2, which is an
A = A⊗B A/I-module, is just ΩA/B , with d : A → I/I2 sending a %→ (a⊗ 1− 1⊗ a) (mod I2). We can use

this to directly define ΩX/Y , as the sheaf I/I2 where I is the ideal sheaf of ∆ : X → X ×Y X.
The analogous versions of lemmata 10.1.6 and 10.1.7 are then:

10.2.1. Lemma. Let X
f−→ Y

g−→ Z be maps of schemes, then we have an exact sequence

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

10.2.2. Lemma. Let X
f−→ Y

g−→ Z be maps of schemes, where f is a closed immersion. then we have an
exact sequence

I/I2 → f∗ΩY/Z → ΩX/Z → 0,

where I is the ideal sheaf of f , and I/I2 is the conormal sheaf.

The following proposition justifies the importance of Ω.

10.2.3. Proposition. Suppose X is a scheme over k, and p ∈ X(k). Then

i∗pΩX/k = T∨
p = m/m2

is the Zariski cotangent space at p.

Proof. When X = SpecA, a k-point is a maximal ideal m ⊂ A with A/m = k. So it suffices to show
ΩA/k ⊗A k ∼= m/m2. Taking the dual, we have to show

Hom(m/m2, k) ∼= Hom(ΩA/k ⊗A k, k).

The RHS is Hom(ΩA/k, k) by tensor-hom adjunction, and by the universal property this is just k-derivations

d : A → k. This necessarily kills k and m2, so induces a map m/m2 → k. Conversely, any map m/m2 → k
extends to a k-derivation d : A → k. □

10.2.4. Example. Let X = P1
k, and consider ΩP1/k, which is a line bundle. In fact, by taking an affine

chart A1 = Spec k[x] and a rational section dx of the line bundle, because

dx = d(1/x−1) =
1

(x−1)2
d(x−1),

we conclude that ΩP1/k
∼= O(−2) ∼= ωP1 . In fact, this is true for all smooth projective curves.
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10.2.5. Example. In the case X = Pn
k , we have a map

OX
x0,...,xn−−−−−→ O(1)⊕(n+1)

and dualizing it we get the Euler sequence

(∗) 0 → ΩPn/k → O(−1)⊕(n+1) x0,...,xn−−−−−→ OX → 0.

(Intuition: C× → Cn+1\0 π−→ Pn, which gives 0 → 〈
$

xi
∂

∂xi
〉 →

#
C ∂

∂xi
→ π∗TPn → 0.)

Proof. Write (∗) as a map of graded modules: let S = k[x0, . . . , xn], then S(−1) shifts the indexing
toward the left by 1. Then let M be the kernel

(∗∗) 0 → M → S(−1)⊕(n+1) → S → 0

where the latter map is given by ei %→ xi (ei is the generator of each copy of S(−1), which has degree

1). To calculate IM on each D(xi), we localize (∗∗) at xi and take the degree 0 component. It is a free
k-vector space spanned by 1

xi
(ej − xj

xi
ei), and we take each of these to d(xj/i), which are free generators of

the sections of ΩPn/k over D(xi). It suffices then to check that these isomorphisms glue together to show

that ΩPn/k
∼= IM . □

The canonical bundle KPn/k :=
Kn

ΩPn/k can then be calculated as O(−n− 1), which is just the sheaf
ωPn/k appearing in Serre duality. This will be true for all smooth projective varieties.

10.3. Smoothness. Recall the definition of smoothness over a field: X → Spec k is smooth of dimen-
sion d if it can be covered with affine charts Spec k[x1, . . . , xn]/(f1, . . . , fr) where the Jacobian matrix has
corank d at all points. We now make an equivalent, cleaner definition:

10.3.1. Definition. Let X be a k-scheme, then X is smooth of dimension d if X is locally of finite type, of
pure dimension d, and ΩX/k is locally free of rank d.

10.3.2. Theorem (conormal exact sequence for smooth varieties). Let i : X ↩→ Y be smooth k-varieties of
dimension d, e. Then

0 → I/I2 → i∗ΩY → ΩX → 0

is exact, and I/I2 is locally free of rank e − d. (Recall this is not usually left exact.) Conversely, if Y is
smooth, I/I2 is locally free, and the above sequence is exact, then X is smooth.

The normal sheaf is NX/Y = (I/I2)∨. When X ↩→ Y is a (Weil) divisor, the conormal sheaf I/I2 is
denoted by OX(−X), by which we really mean OY (−X)|X .

10.3.3. Proposition (adjunction formula). Let i : X ↩→ Y be a divisor, then

ωX = i∗(ωY ⊗OY (X)).

Proof. By the conormal exact sequence, we see that

i∗KY = i∗(

dimYL
ΩY ) =

1L
(I/I2)⊗

dimY−1L
ΩX = i∗OY (−X)⊗KX ,

and we know KX = ωX for smooth projective varieties. □
10.4. Invariants. We can use ΩX/k and

Kq
ΩX/k = Ωq

X/k to define invariants, such as the Hodge

numbers
hp(X,Ωq

X/k).

What’s interesting is that for p = 0 we get birational invariants:

10.4.1. Theorem. Let X,Y be smooth projective varieties that are birationally isomorphic. Then h0(X,Ωq
X/k) =

h0(Y,Ωq
Y/k).

This works not just for
Kq

, but for any covariant tensor operation.

10.4.2. Definition (plurigenera). The rth plurigenus of a smooth projective k-variety X is h0(X,K⊗r
X ).

10.4.3. Definition (Kodaira dimension). By asymptotic Riemann-Roch, h0(X,K⊗r
X ) is eventually polyno-

mial in r. The Kodaira dimension κ(X) is the degree of this polynomial (defined to be −1 if the polynomial
is identically zero).
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10.5. Riemann-Hurwitz theorem.

10.5.1. Theorem. Let π : X → Y be a finite separable morphism of regular projective curves, of pure degree
n. Then

2g(X)− 2 = n(2g(Y )− 2) + degR,

where R is the ramification divisor.

As an application, we may count the number of tangent lines from a point p ∈ P2 to a degree d plane
curve C ⊂ P2. (The answer is d2 − d.)

11. Flatness

The idea is to capture “nice families of schemes”.

11.1. Algebra.

11.1.1. Definition. Let X be a scheme, F ∈ QCoh(X), then F is flat if Fx is flat over OX,x (or equivalently,
affine locally instead of stalkwise).

Let f : X → Y be a morphism, then it is flat if for x ∈ X, y = f(x) ∈ Y , OY,y → OX,x is flat.

11.1.2. Example. Closed embeddings in general will not be flat. For example, Spec k
0−→ A1 is not flat,

because k is not a flat k[x] module: take k[x]
[x]−→ k[x].

11.1.3. Lemma. Let 0 → N1 → N2 → N3 → 0 be a short exact sequence of A-modules, where N3 is flat.
Then for any A-module M ,

0 → N1 ⊗M → N2 ⊗M → N3 ⊗M → 0

is exact.

Proof. Tor1(N3,M) = 0. □
Geometrically: suppose 0 → E1 → E2 → E3 → 0 are QCoh on Y , where E3 is flat. Then for any morphism

f : X → Y , pulling back to 0 → f∗E1 → f∗E2 → f∗E3 → 0 is also exact.

11.1.4. Lemma. Suppose 0 → M1 → M2 → M3 → 0, then:

• If M2,M3 are flat, so is M1;
• If M1,M3 are flat, so is M2.

11.1.5. Lemma. Suppose 0 → M1 → · · · → Mn → 0 is an exact complex. If M2, . . . ,Mn are flat, then so
is M1.

11.1.6. Lemma. Suppose 0 → M1 → · · · → Mn → 0 is an exact complex, where all Mi are flat. The for
any N , 0 → M1 ⊗N → · · · → Mn ⊗N → 0 is exact.

11.1.7. Proposition. Let (A,m, k) be a local Noetherian ring. Then any finitely generated, flat A-module
is free.

Proof. By Nakayama, we can pick lifts of generators of M ⊗A k to get

0 → K → A⊕r → M → 0.

Since M is flat, tensoring with k gives an exact sequence

0 → K ⊗A k → k⊕r → M ⊗ k → 0,

but k⊕r ∼= M ⊗ k, so K ⊗A k = 0, so K = 0 by Nakayama. □
11.1.8. Theorem. Suppose for any finitely generated ideal I ⊂ A, Tor1(M,A/I) = 0. Then M is flat.

11.1.9. Corollary. Let A be a PID. Then M is flat iff M is torsion-free.

11.1.10. Corollary. Let π : X → C be dominant, where X is integral and C is a regular curve. Then π is
flat.

Proof. It suffices to check that OX,x are torsion free. But since π is dominant, this is automatically
true. □
11.1.11. Example. The resolution of a node is not flat.
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11.2. Geometry. Assume all schemes are locally Noetherian or something.

11.2.1. Theorem. Let f : X → Y be a flat morphism. Given x ∈ X, y = f(x) ∈ Y , then

dimx(Xy) = dimx X − dimy Y.

Here dimx means local dimension, i.e. dimension of the local ring at x.

Proof. Use induction on dimy Y . We may replace Y by SpecOY,y and X by X ×Y SpecOY,y. The
base case dimY = 0 is easy, since then Xy = X (as topological spaces) and dimXy = dimX− 0. In general,
suppose dimY = n. Pick t ∈ mY ⊂ OY,y a non-zero-divisor. By flatness (which is just torsion-free over
local ring), the image of t under f# : OY,y → OX,x is also a non-zero-divisor. By Krull’s principal ideal
theorem, every irreducible component of V (t) ↩→ Y has codimension 1, and so is every irreducible component
of V (f#(t)) ↩→ X. We are then done by inductive hypothesis. □
11.2.2. Theorem. Let X → Y be projective, F ∈ Con(X) flat over Y . Then the map

y %→ χ(F|Xy
)

is locally constant.

Remark: conversely, let X ↩→ Pn × Y → Y , F ∈ Con(X), and Y is reduced. If the Hilbert polynomials
pF|Xy

(t) are independent of the choice of y ∈ Y , then F is flat over Y .

Proof. Reduce to Y = SpecA. It is enough to show that χ(F(m)|Xy ) is independent of Y for m

sufficiently large. By Serre vanishing, pick m large enough so that Hk(X,F(m)) = 0 for k ≥ 1. Then the
augmented Čech complex associated to F(m)

0 → H0(X,F(m)) → C0(X,F(m)) → · · · → Cn(X,F(m)) → 0

is a long exact sequence, and since F is flat over Y , all but the first term are flat over A. Then so is
H0(X,F(m)). Since it is flat and finitely presented, it is projective (locally free).

Now, to restrict it to Xy, it is enough to tensor this Čech complex with κ(y), which by flatness
gives another exact complex. We then conclude that Hk(Xy,F(m)|Xy

) = 0 for k ≥ 1, and is equal to

H0(X,F(m))⊗A κ(y) for k = 0. This number is dependent of y since H0(X,F(m)) is locally free. □
11.2.3. Corollary. Let X ↩→ Pn×Y → Y be flat, and Y is connected. Then the Hilbert polynomials pXy

(t)
are independent of the choice of y ∈ Y .

11.2.4. Corollary. Let C × Y → Y be a flat morphism, where C is a projective curve and Y is connected.
Let L be a line bundle on C × Y . Then degL|C×{y} is independent of y ∈ Y .

Suppose we have a family of schemes, parametrized by one parameter t ∕= 0. We would like to define
a limit at t = 0. In other words, if we have a scheme lying over, say, A1 − {0}, we would like to uniquely
extend it to be over A1.

11.2.5. Theorem (uniqueness of flat limits). Let A be a DVR, K = FracA. Let η be the generic point of
SpecA. Let X be a Noetherian scheme over SpecA. Given a closed subscheme Zη ↩→ Xη of the generic

fiber, consider its scheme-theoretic closure Z = Zη ↩→ X. Then this is the unique closed subscheme Z ↩→ X
that is flat over SpecA, and restricts to Zη on Xη.



CHAPTER 8

Riemannian Geometry

1. Curvature

1.1. Riemannian metrics. Let M be a smooth manifold. We will use Einstein summation notation
throughout: unless otherwise specified, an index repeated once in superscript and once in subscript is assumed
to be summed over.

1.1.1. Definition. A Riemannian metric g on M is a smooth (0, 2)-tensor field that is a positive-definite
symmetric bilinear form TpM × TpM → R for each p ∈ M .

1.1.2. Definition. A smooth manifold M equipped with a Riemannian metric g is called a Riemannian
manifold.

In a coordinate chart x = (x1, . . . , xn) : U → Rn, where U ⊂ M , g takes the form

g = gijdx
idxj

where gij = g( ∂
∂xi ,

∂
∂xj ). Given another coordinate chart =x, the tensor transforms like

=gij =
∂xk

∂=xi

∂xℓ

∂=xj
gkℓ.

Given an immersion f : M → N , if g is a Riemannian metric on N , f∗g is naturally a metric on M . In
particular, submanifolds of Rn naturally inherit its metric.

1.1.3. Proposition. Any smooth manifold admits a Riemannian metric.

Proof. Pick a partition of unity (possible since smooth manifolds are assumed to be paracompact) to
glue together local Euclidean metrics. □
1.1.4. Definition. In any local coordinate x1, . . . , xn, consider the inverse matrix (gij) := (gij)

−1, and
define the inverse metric g−1 as a (2, 0)-tensor as g−1(dxi, dxj) = gij .

Proof. To see g−1 is coordinate-independent, let =x be another system of coordinates. Let Aj
i = ∂#xj

∂xi

and (A−1)ℓk = ∂xℓ

∂#xk . By the transformation rule of (0, 2)-tensors, (=gij) = A−1(gkℓ)(A
−1)t. So under this basis,

=g−1(d=xi, d=xj) = =gij = ((=gkℓ)−1)ij = (At(gkℓ)
−1A)i,j .

Note also that d=xi =
$

j
∂#xi

∂xj dx
j , so g−1(d=xi, d=xj) =

$
k,ℓ

∂#xi

∂xk
∂#xj

∂xℓ g
−1(dxk, dxℓ). But this is exactly the

same as (At(gkℓ)
−1A)i,j . So we have shown that g−1 = =g−1 is indeed coordinate-independent. □

1.1.5. Definition. Given a metric, we can define:

• For v ∈ TpM , define |v| =
6
gp(v, v).

• For v, w ∈ TpM , define their angle θ by gp(v, w) = |v||w| cos θ.
• For α ∈ T ∗

pM , define |α| =
6
gp(α,α) (here we used the inverse metric, which is commonly and

abusively also written as g).
• In general, g defines a positive definite symmetric bilinear form on TpM

⊗r ⊗ T ∗
pM

⊗s for any (r, s).
• For a smooth curve γ : [a, b] → M , define its length

L(γ) =

: b

a

|γ′(t)|dt.

• For an open set U ⊂ M with coordinates x : U → Rn, define its volume

Vol(U) =

:

x(U)

7
det(gij)dx1 . . . dxn.

135
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Given a metric g, we can have a natural correspondence between vector fields (upper indices) and 1-forms
(lower indices), as follows.

1.1.6. Definition. Define a map : : Γ → Γ∗, sending V %→ g(V,−). Similarly, we have ; : Γ∗ → Γ, sending
α %→ g−1(α,−).

In coordinates, this is given by

Vi := (V 8)i = V kgki,

αi := (α4)i = αkg
ki.

Similarly, we can raise/lower indices for arbitrary tensors.

1.1.7. Example. Let f ∈ C∞(M). Its gradient ∇f := (df)4. In local coordinates, this is ∇f = gij ∂f
∂xi ∂j .

1.2. Affine connections.

1.2.1. Definition. An affine connection on a smooth manifold M is a map ∇ : Γ(M) × Γ(M) → Γ(M),
(X,Y ) %→ ∇XY , satisfying:

• C∞(M)-linearity in X;
• R-linearity in Y ;
• Leibniz rule in Y , i.e. ∇X(fY ) = X(f)Y + f∇XY for f ∈ C∞(M).

For example, the directional derivative in Rn is an affine connection.
Warning: affine connections are generally not (1, 2)-tensors!
The data of an affine connection, in local coordinates, is encoded in the Christoffel symbols Γk

ij , which
are smooth functions on the coordinate patch.

1.2.2. Definition. Let x = (x1, . . . , xn) be a local coordinate, then define the Christoffel symbols Γk
ij so

that

∇∂i(∂j) = Γk
ij∂k.

For X = Xi∂i, Y = Y j∂j , we then have

∇XY = Xi(∂iY
j)∂j +XiY jΓk

ij∂k.

One can interpret the first term as the “naive guess” of the directional derivative, and the second term as a
compensation term to account for the manifold’s own geometry.

Note that the value of ∇XY at a point p only depends on X(p), but depends on Y on a neighborhood
of p.

We may extend ∇X(−) to act on any tensor (not just vector fields), by the principle

∇X(T ⊗ S) = (∇XT )⊗ S + T ⊗ (∇XS).

For example,

• ∇X(f) = X(f) = df(X) for functions;
• ∇X(α)(Y ) = X(α(Y ))− α(∇XY ) for 1-forms.

The general formula is, for an (r, s)-tensor T , ∇T is an (r, s+ 1)-tensor:

(∇T )(α1, . . . ,αr, V0, V1, . . . , Vs) := (∇V0
T )(α1, . . . ,αr, V1, . . . , Vs)

= V0(T (α1, . . . ,αr, V1, . . . , Vs))−
r!

p=1

T (. . . ,∇V0(αp), . . . )

−
s!

q=1

T (. . . ,∇V0(Vq), . . . ).
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1.3. Parallel transport. Let γ : [a, b] → M be a smoothly immersed curve. Let Γ = Γ(γ∗TM) denote
the space of vector fields along γ, i.e. smooth functions V : [a, b] → TM such that V (t) ∈ Tγ(t)M .

Define D : Γ → Γ in local coordinates x by

(DV )(t) = (∂tV
i(t) + (∂tγ

j(t))V k(t)Γi
jk)∂i|γ(t)

where V (t) = V i(t)∂i|γ(t), and γi(t) = xi(γ(t)). We call this the covariant derivative of V along γ.
This satisfies the following:

(1) For any vector field W on M such that W (γ(t)) = V (t), we have

(DV )(t) = (∇γ′(t)W )(γ(t)).

To see this, expand the RHS in local coordinates:

(∇γ′(t)W )(γ(t)) = ∂tγ
i(t) ·∇∂i(W

j∂j)(γ(t))

= ∂tγ
i(t) · (W jΓk

ij∂k + ∂iW
j∂j)(γ(t))

= ∂tγ
i(t)W j(γ(t))Γk

ij(γ(t))∂k + ∂t(W
j ◦ γ)(t)∂j

= ∂tγ
i(t)V j(t)Γk

ij(γ(t))∂k + ∂tV
j(t)∂j

which, after re-indexing, is the same as what we defined.
(2) For smooth function f on [a, b], D(f · V )(t) = f ′(t)V (t) + f(t)(DV )(t).

1.3.1. Definition. A vector field V along γ is parallel if DV = 0. Equivalently, a vector field W on M is
parallel if ∇γ′W = 0.

Note from the coordinate expression that being parallel is a system of n linear ordinary differential
equations for n functions (at least locally, where coordinate charts exist), so it is uniquely solved along the
curve. In particular, specifying V (a) gives us a unique V (b) which deserves to be called the parallel transport
of V (a) along γ.

1.4. The Levi–Civita connection. An affine connection ∇ on a smooth manifold, equipped with a
metric tensor g (a nondegenerate symmetric smooth (0, 2)-tensor field) is called

• symmetric if ∇XY −∇Y X = [X,Y ]. (In local coordinates, this means Γk
ij = Γk

ji.)
• metric-compatible if X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ). (This means that the derivative
“misses” g.)

1.4.1. Theorem. There exists an unique affine connection on a Riemannian manifold (M, g) satisfying the
two conditions above. This is called the Levi–Civita connection.

Proof. Using metric compatibility, we get

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ),

Y (g(X,Z)) = g(∇Y X,Z) + g(X,∇Y Z),

Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY ).

Adding 1 and 2 and subtracting 3, and using symmetry:

X(g(Y, Z)) + Y (g(X,Z))− Z(g(X,Y )) = 2g(∇XY, Z)− g([X,Y ], Z) + g([X,Z], Y ) + g([Y, Z], X).

This is called the Koszul formula. Note that since g is non-degenerate, this uniquely determines ∇XY , hence
uniquely determines the connection. □

In local coordinates, the Christoffel symbols can be shown to be

Γk
ij =

1

2
gkp(∂igjp + ∂jgip − ∂pgij).

This shows that the Levi–Civita connection is intrinsic to (M, g).
Recall that any affine connection can be extended to act on arbitrary tensors.

1.4.2. Definition. We say a tensor T on M is parallel if ∇T = 0.



1. CURVATURE 138

1.4.3. Example. Consider the (0, 2)-tensor g, then

(∇V0g)(V1, V2) = V0(g(V1, V2))− g(∇V0(V1), V2)− g(V1,∇V0(V2)),

so ∇g = 0 means precisely metric compatibility.

1.4.4. Example. For V = V i∂i, α = αidx
i, and T = T j

i dx
i ⊗ ∂j , the component functions of ∇V , ∇α, ∇T

are

∇iV
j = ∂iV

j + V kΓj
ik

∇iαj = ∂iαj − αkΓ
k
ij

∇iT
k
j = ∂iT

k
j + T p

j Γ
k
ip − T k

q Γ
q
ij .

The general rule can be derived similarly. Note that ∇i is not the same as ∂i.

1.5. The Riemann curvature tensor. Let (M, g) be a Riemannian manifold, and let ∇ be the
Levi–Civita connection.

1.5.1. Definition. The Riemann curvature tensor is a (1, 3)-tensor R : Γ× Γ× Γ → Γ, defined as

R(X,Y )Z = ∇Y (∇XZ)−∇X(∇Y Z) +∇[X,Y ]Z.

Commonly, this is also viewed as a (0, 4)-tensor via definition 1.1.6, i.e.

R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

1.5.2. Exercise. Check that R is actually a tensor, i.e. C∞(M)-linear in X,Y, and Z.

1.5.3. Example. On Euclidean space with the usual inner product, ∇ is just the covariant derivative, and
it is clear that R vanishes. So Euclidean space is “flat” in the sense that there is no curvature.

In local coordinates, we can write R(∂i, ∂j)∂k = Rijk
ℓ∂ℓ, or as a (0, 4)-tensor R(∂i, ∂j , ∂k, ∂ℓ) = Rijkℓ =

Rijk
pgpℓ. So it seems like we need n4 parameters to specify the curvature tensor on an n-manifold, but

proposition 1.5.5 below shows that there is a lot of redundancy, and in fact R has only D(n) = 1
12n

2(n2 − 1)
algebraically independent components. When n = 2, D(n) = 1, and this is precisely the Gauss curvature for
a surface, which also coincides with the scalar curvature (??). When n = 3, D(n) = 6, and this is specified

by the n(n+1)
2 = 6 components of the Ricci curvature (definition 1.6.5).

1.5.4. Exercise. Verify that Rijk
ℓ can be expressed only in terms of the metric components g, i.e. it is

intrinsic to the Riemannian manifold.

1.5.5. Proposition. We have the following identities:

(1) R(X,Y, Z,W ) = −R(Y,X,Z,W );
(2) R(X,Y, Z,W ) = R(Z,W,X, Y );
(3) R(X,Y, Z,W ) = −R(X,Y,W,Z);
(4) (First Bianchi identity) R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0;
(5) (Second Bianchi identity) (∇XR)(Y, Z)W + (∇Y R)(Z,X)W + (∇ZR)(X,Y )W = 0.

1.5.6. Proposition. The second Bianchi identity can be also written as

(∇XR)(Y, Z,W, V ) + (∇Y R)(Z,X,W, V ) + (∇ZR)(X,Y,W, V ).

In coordinates: ∇iRjkℓm +∇jRkiℓm +∇kRijℓm = 0, where ∇iRjkℓm = (∇∂iR)(∂j , ∂k, ∂ℓ, ∂m) and so on.

This just follows from the metric-compatibility of ∇.

1.6. Sectional, Ricci, and scalar curvature. Let (M, g) be a Riemannian manifold, and R its
Riemann curvature tensor.

1.6.1. Definition. Let p ∈ M , and σ ⊂ TpM a two-dimensional subspace. The sectional curvature is
defined as

K(p,σ) =
R(v, w, v, w)

g(v, v)g(w,w)− g(v, w)2

for any basis {v, w} of σ. This does not depend on the specific basis chosen.
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For example, when M is a surface, σ = TpM is the only choice, and it turns out that K(p) = K(p,σ) is
precisely the Gauss curvature.

1.6.2. Exercise. If (M, g) has constant sectional curvature k (for all p, for all σ ⊂ TpM), then

R(X,Y, Z,W ) = k(g(X,Z)g(Y,W )− g(X,W )g(Y, Z)).

1.6.3. Example. The sphere Sn ⊂ Rn+1 with radius r with the Euclidean metric has constant sectional
curvature k = 1/r2. The hyperbolic upper-half plane H = {(x, y) ∈ R2 : y > 0} with metric 1

y2 (dx ⊗ dx +

dy ⊗ dy) has constant sectional curvature k = −1.

1.6.4. Lemma. Let V be an n-dimensional vector space, and g a symmetric bilinear form on V .

• Let T : V → V be a linear map, then TrT =
$n

i=1 g(Tei, ei) = gijg(T∂i, ∂j), where ei is any
orthonormal basis.

• Let T : V × V → R be a bilinear form, treated as a linear map V → V by raising index. Then its
trace TrT =

$n
i=1 T (ei, ei) = gijT (∂i, ∂j).

1.6.5. Definition. For X,Y ∈ TpM , the Ricci curvature

Ric(X,Y ) = Tr(Z %→ R(X,Z)Y ) =

n!

i=1

R(X, ei, Y, ei)

where e1, . . . , en is any orthonormal basis for TpM .

Note that due to symmetry of R, this is the only nonzero trace of R, and Ric(X,Y ) = Ric(Y,X). In
local coordinates Ricik = Ric(∂i, ∂k) = Ripk

p = gjℓRijkℓ. Note also that

Ric(ei, ei) =
!

j ∕=i

R(ei, ej , ei, ej)

is (n− 1) times the average sectional curvature of all 2-planes containing ei.

1.7. Cartan formalism. Let (M, g) be a Riemannian manifold, p ∈ M , and E1, . . . , En an orthonormal
frame of vector fields defined on some neighborhood U of p. Let ωi be the dual frame of 1-forms.

1.7.1. Definition. The connection 1-forms ωj
i are defined by ∇XEi = ωj

i (X)Ej . The curvature 2-forms

Ωj
i are defined by R(X,Y )Ei = Ωj

i (X,Y )Ej .

1.7.2. Proposition. These differential forms satisfy the following:

(1) They are son-valued, i.e. ωj
i = −ωi

j and Ωj
i = −Ωi

j.

(2) dωi = ωj ∧ ωi
j.

(3) dωj
i = Ωj

i − ωk
i ∧ ωj

k.
(4) ωj ∧ Ωi

j = 0.

(5) dΩj
i = ωj

k ∧ Ωk
i − ωk

i ∧ Ωj
k.

Proof. (1) ωj
i (X) = g(∇XEi, Ej) = −g(Ei,∇XEj) = −ωi

j(X) by metric compatibility of ∇. Anti-

symmetry of Ωj
i follows from (3).

(2) dωi(Ek, Eℓ) = Ekδ
i
ℓ − Eℓδ

i
k − ωi[Ek, Eℓ] = −ωi(∇Ek

Eℓ −∇Eℓ
Ek) = −ωi(ωj

ℓ (Ek)Ej − ωj
k(Eℓ)Ej) =

ωi
k(Eℓ) − ωi

ℓ(Ek), where the second step uses symmetry of ∇. On the other hand, (ωj ∧ ωi
j)(Ek, Eℓ) =

δjkω
i
j(Eℓ)− δjℓω

i
j(Ek) = ωi

k(Eℓ)− ωi
ℓ(Ek), which is identical to dωi(Ek, Eℓ).

(3) Similar to (2), this is just a computation.
(4)(5) follows from (2)(3) by applying d again and using d2 = 0. □

1.8. Application: Chern–Gauss–Bonnet theorem.
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2. Geodesics

2.1. The geodesic equation. Geodesics are the curves that naturally flow with the curvature on a
Riemannian manifold. In other words, its tangent vector field should be parallel along the curve itself.
Physically it is a free particle constrained to move on the manifold, with some initial position and velocity,
but no external force.

2.1.1. Definition. Let I ⊂ R be an interval. A curve γ : I → M is a geodesic if ∇γ′γ′ = 0.

2.1.2. Exercise. Show that:

(1) Let V (t) = V i(t)∂i be a vector field along any curve γ, then ∇γ′V = (∂tV
i(t))∂i.

(2) Geodesics have constant speed, i.e. ∂t|γ′(t)| = 0.

2.1.3. Example. Geodesics in Rn with the Euclidean metric are straight lines. Geodesics in Sn with the
round metric are great circles. Geodesics in the upper-half plane model of hyperbolic space are half-circles
centered on the x-axis and vertical lines. But in general geodesics can be quite complicated.

In local coordinates x = (x1, . . . , xn), we can write γi = xi ◦ γ, and for a vector field V along γ we can
write V = V i(t)∂i. Then ∇γ′V = 0 becomes the parallel transport equation

(2.1.4) 0 = (∂tV
k + Γk

ijV
i∂tγ

j)∂k.

In particular, plugging in V = γ′ gives the geodesic equation

(2.1.5) 0 = (∂2
t γ

k + Γk
ij∂tγ

i∂tγ
j)∂k.

Both of them are systems of ordinary differential equations, so we have the following:

2.1.6. Theorem (Existence, uniqueness and smooth dependence of geodesics). The following are true:

(1) (Existence) For any p ∈ M , v ∈ TpM , there exists a maximal existence time tp,v ∈ (0,∞], and a
geodesic γp,v : [0, tp,v) → M with γp,v(0) = p, γ′

p,v(0) = v.
(2) (Uniqueness) If γ1 : I1 → M and γ2 : I2 → M are geodesics, and there exists t ∈ I1 ∩ I2 such that

γ1(t) = γ2(t), γ
′
1(t) = γ′

2(t), then γ1 = γ2 on I1 ∩ I2.
(3) (Smooth dependence) The map (p, v) %→ tp,v is lower-semicontinuous, meaning that the preimage of

(c,∞] is open for any c ∈ R; the map (p, v, t) %→ γp,v(t) is smooth in all entries, when defined.

2.1.7. Exercise. Show that geodesics are homogeneous, i.e. for a ∈ R, γp,v(at) = γp,av(t) whenever defined.

2.1.8. Example. Consider R2−{(1, 0)} with the Euclidean metric. Suppose we start from a point p = (0, y)
with initial velocity v = ∂x. Then tp,v = ∞ for all y ∕= 0, but tp,v = 1 for y = 0. So this space is not
“geodesically complete” since not all geodesics exist forever. Coincidentally, this space is not complete in
the sense of metric spaces either. Could these be related?

2.1.9. Exercise (Geodesics exit every compact set). Let p ∈ M , v ∈ TpM , such that tp,v < ∞. Let K ⊂ M
be compact, then there exists tK < Tp,v such that γp,v(t) ∈ M\K for all t ∈ (tK , tp,v).

2.2. The exponential map.

2.2.1. Definition. For each p ∈ M , define Op ⊂ TpM by Op = {v ∈ TpM : tp,v > 1}. It is open and
star-shaped. Define O =

3
p Op ⊂ TM ; it is open.

2.2.2. Definition (Exponential map). Let exp : O → M be defined by (p, v) %→ γp,v(1). It is smooth by
theorem 2.1.6.

2.2.3. Definition (Distance function). Let (M, g) be a Riemannian manifold, we define for p, q ∈ M :

d(p, q) = inf
γ

L(γ),

where the infimum is taken among all piecewise smooth curves γ : [0, 1] → M , with γ(0) = p, γ(1) = q.

2.2.4. Proposition. The function d : M ×M → R is a metric on M . In other words, it satisfies d(p, q) ≥ 0
(with equality iff p = q), d(p, q) = d(q, p), and d(p, q) + d(q, r) ≥ d(p, r) for any p, q, r ∈ M .

To prove this (in particular the first part), we need to develop some theory about the exponential map.
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2.2.5. Lemma. For any p ∈ M , the exponential map expp : Op → M is a local diffeomorphism at 0 ∈ TpM .

Proof. It suffices to show d(expp)0 : TpM = T0(TpM) → TpM is invertible. In fact, it is the identity:

d(expp)0(v) =
d
dt

//
t=0

expp(tv) =
d
dt

//
t=0

γp,v(t) = v by definition. □

2.2.6. Proposition (Normal coordinates). Let p ∈ M . There exist coordinates x = (x1, . . . , xn) for some
neighborhood U of p, such that gij(x) = δij +O(x2).

Proof. Let e1, . . . , en be an orthonormal frame at p, then in a neighborhood U of p the functions
xi(expp(v)) = 〈v, ei〉 are well-defined coordinates. Since d(expp)0 = id, g(∂i, ∂j)(p) = δij . Furthermore, in
these coordinates, the straight lines through p are geodesics, so they satisfy the geodesic equation

∂2
t γ

k + Γk
ij∂tγ

i∂tγ
j = 0

so Γk
ij(p) = 0. Then ∂kgij(p) = g(∇k∂i, ∂j)(p) + g(∂i,∇k∂j)(p) = 0, which implies gij(x) = δij +O(x2). □

In preparation for Gauss’s lemma, consider a smooth map F : (−ε, ε) → [0, 1] → M , thought of as a
family of curves (this idea is important later in the variational theory of geodesics). Let Fs = dF(s,t)∂s,
Ft = dF(s,t)∂t be vector fields along F (i.e. sections of F ∗TM).

2.2.7. Lemma. ∇FsFt = ∇FtFs. In other words, [Fs, Ft] = 0.

Proof. Around p ∈ imF , choose local coordinates xi. Let F i(s, t) = xi(F (s, t)). Then Ft(s, t) =
∂tF

i(s, t)∂i and Fs(s, t) = ∂sF
j(s, t)∂j , so

∇FsFt = ∇Fs(∂tF
i(s, t)∂i) =

∂2F i

∂s∂t
∂i + ∂tF

i∇Fs∂i =
∂2F k

∂s∂t
∂k + ∂tF

i∂sF
j∇∂j∂i,

which is symmetric in s and t since [∂i, ∂j ] = 0. □
Consider the special case where F is a variation through geodesics: let p ∈ M , v ∈ Op, w ∈ TpM , then

for ε small enough, t(v + sw) ∈ Op for s ∈ (−ε, ε), t ∈ [0, 1]. Let F (s, t) = expp(t(v + sw)).

2.2.8. Theorem (Gauss’s lemma). For any s, t, |Ft(s, t)| = |v + sw| and 〈Fs, Ft〉(0, t) = t〈v, w〉.

Commonly, this lemma is also written as 〈d(expp)v(v), d(expp)v(w)〉 = 〈v, w〉, i.e. expp is a radial isom-
etry. This just follows from the second equation by plugging in t = 1.

2.2.9. Theorem (Hopf–Rinow). Let (M, g) be a Riemannian manifold. Among the following, (1)—(4) are
equivalent, and all imply (5):

(1) There exists p ∈ M such that expp is defined on all of TpM ;
(2) M satisfies the Heine–Borel property, i.e. any closed and bounded subset (of course, with respect to

the distance function d) is compact.
(3) (M,d) is complete as a metric space, i.e. every Cauchy sequence converges.
(4) For all p ∈ M , expp is defined on all of TpM .
(5) For any p, q ∈ M , there exists a geodesic γ from p to q, such that L(γ) = d(p, q).

2.2.10. Remark. If any of (1)—(4) is satisfied, call M complete. It is not true that (5) is also equivalent:
consider say the open interval.

2.2.11. Corollary. Closed (i.e. compact without boundary) manifolds are complete.

2.3. Variational theory.

2.3.1. Definition. A variation of a curve α : [a, b] → M is a smooth map F : (−ε, ε)× [a, b] → M such that
F (0, t) = α(t). It is proper if F (s, 0) = α(a) and F (s, 1) = α(b) for all s. Often we write αs(t) = F (s, t).

2.3.2. Definition. The energy of a piecewise smooth curve α : [a, b] → M is E(α) = 1
2

; b

a
|α′(t)|2dt. Note

that unlike length, it is not invariant under reparametrization.

2.3.3. Exercise. For any piecewise smooth curve α : [a, b] → M , we have the inequality

d(α(a),α(b)) ≤ L(α) ≤
6
2(b− a)E(α).

2.3.4. Definition. Define the variation field as V (t) = Fs(0, t) ∈ Γ(α∗TM). Define the acceleration field
as X(t) = (∇FsFs)(0, t) ∈ Γ(α∗TM).
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2.3.5. Proposition (First and second variation of energy). Let α be a smooth curve, and F a variation.

(1) d
dsE(αs)

//
s=0

= 〈V (t),α′(t)〉
//b
t=a

−
; b

a
〈V (t),∇α′(t)α

′(t)〉dt.
(2) d2

ds2E(αs)
//
s=0

= 〈X(t),α′(t)〉
//b
a
−
; b

a
〈X(t),∇α′(t)α

′(t)〉dt+
; b

a
(|∇α′(t)V (t)|2 −R(α′, V,α′, V ))dt.

2.3.6. Corollary. For a proper variation F of a smooth curve α,

(1) d
dsE(αs)

//
s=0

iff α is a geodesic.

(2) If α is a geodesic, then d2

ds2E(αs)
//
s=0

= I(V, V ), where I is the index form

I(Y,W ) =

: b

a

(〈∇α′Y,∇α′W 〉 −R(α′, Y,α′,W ))dt.

2.3.7. Definition. Let α : [a, b] → M be a geodesic. A vector field V along α is called a Jacobi field if any
of the following equivalent conditions hold:

(1) V arises as a variation of α through geodesics. More precisely, there exists a variation F of α such
that each αs is a geodesic, and V is the variation field of F .

(2) ∇α′∇α′V +R(α′, V )α′ = 0.

2.3.8. Remark. Suppose V is a Jacobi field, then

I(V, V ) =

: b

a

(|∇α′V |2 + 〈∇α′∇α′V, V 〉)dt

=

: b

a

∇α′(〈∇α′V, V 〉)dt = 〈∇α′V, V 〉
//b
a
=

1

2
(
∂

∂t
|V |2)

//b
a
.

2.3.9. Proposition. Suppose V is a Jacobi field along α : [a, b] → M from p to q, such that V (a) = 0 and
(∇α′V )(a) = w ∈ TpM . Then V (t) = d(expp)tv(tw), where v = α′(a).

Finally, we discuss conjugate points and stability.

2.3.10. Definition. A geodesic α : [a, b] → M is stable (with fixed endpoints) if for all vector fields V along
α with V (a) = V (b) = 0, I(V, V ) ≥ 0.

2.3.11. Exercise. If α is length-minimizing, then it is stable.

2.3.12. Definition. We say t0 ∕= t1 ∈ [a, b] are conjugate points along α, if there exists a nonzero Jacobi
field V along α with V (t0) = V (t1) = 0.

2.3.13. Proposition. Let α : [a, b] → M be a geodesic, then α is unstable iff there exists τ ∈ (a, b) such
that α(a),α(τ) are conjugate.

Proof. (⇐=): suppose there exists τ ∈ (a, b) such that α(a),α(τ) are conjugate points. Let V (t) be

the nontrivial Jacobi field along α that vanishes at a and τ . Define the piecewise smooth vector field =V along

α by =V (t) = V (t) for a ≤ t ≤ τ and =V (t) = 0 for τ ≤ t ≤ b. Then

I(=V , =V ) =

: τ

a

(|∇α′V |2 −R(α′, V,α′, V ))dt = 〈(∇α′V )(t), V (t)〉
//τ
t=a

= 0.

So, assuming stability, for any vector field X along α with X(a) = X(b) = 0, we have that 0 ≤ I(=V +sX, =V +

sX) = 2sI(=V ,X) + s2V (X,X). Note that d
ds

//
s=0

I(=V + sX, =V + sX) = 2I(=V ,X). If I(=V ,X) ∕= 0 then there

exists s (with small absolute value) such that I(=V + sX, =V + sX) < I(=V , =V ) = 0, which contradicts stability.

So I(=V ,X) = 0. On the other hand, since V is a Jacobi field, R(α′, V,α′, X) = −〈∇α′∇α′V,X〉, so

0 = I(=V ,X) =

: τ

a

(〈∇α′V,∇α′X〉+ 〈∇α′∇α′V,X〉)dt = 〈(∇α′V )(t), X(t)〉
//τ
t=a

= 〈(∇α′V )(τ), X(τ)〉

for any X vanishing at a and b. Since X(τ) can be any vector, we conclude that (∇α′V )(τ) = 0. But
since V is a Jacobi field, it is uniquely determined by V (τ) and (∇α′V )(τ), which are both zero, so V ≡ 0,
contradiction.

(=⇒): suppose α is unstable, then the first (smallest) eigenvalue of the Jacobi operator (acting on the
completion of the space of all smooth vector fields along α which vanish at endpoints)

L : V %→ ∇α′∇α′V −R(α′, V )α′
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is negative. Let λ1(τ) denote the smallest eigenvalue when L is restricted to act on vector fields along α|[a,τ ]
(which vanish at endpoints). Then λ1(b) < 0, and λ1 is non-increasing on (a, b] (because for τ1 < τ2, if a

vector field V along α|[a,τ1] satisfies LV = λV , then the vector field =V along α|[a,τ2] which is equal to V on

[a, τ1] and zero on [τ1, τ2] satisfies L=V = λ=V ). So, it is enough to show that λ1(τ) is positive for τ close to
a, and conclude by intermediate value theorem that there exists τ where L has a zero eigenvalue (i.e. Jacobi
field), so that α(a),α(τ) are conjugate.

Now, for any smooth vector field V along α|[a,τ ], vanishing at endpoints, we have
: τ

a

|∇α′V |2dt ≥
: τ

a

|∂t|V ||2dt ≥ π2

(τ − a)2

: τ

a

|V |2dt

where the first step by Kato’s inequality and the second step by Wirtinger’s inequality. Also, for any point

p ∈ im(α), the quantity R(α′,V,α′,V )(p)
|V (p)|2 by some absolute constant not depending on V (p) by compactness,

and by compactness again there is a constant K such that R(α′, V,α′, V )(p) ≤ K · |V (p)|2 for any V and p.
So : τ

a

R(α′, V,α′, V )dt ≤ K ·
: τ

a

|V |2dt.

Together, we get I(V, V ) ≥ ( π2

(τ−a)2 −K)
; τ

a
|V |2dt. So, the Rayleigh quotient

λ1(τ) = inf
V ∕=0

I(V, V ); τ

a
|V |2dt

≥ π2

(τ − a)2
−K

is positive for τ sufficiently close to a. This completes the proof. □

2.4. Segment domain, cut locus, injectivity and conjugacy radii. Let (M, g) be a complete
Riemannian manifold.

2.4.1. Definition. Let p ∈ M . The segment domain of p is

seg(p) = {v ∈ TpM : d(p, expp(v)) = |v|}.
In other words, it is the set of tangent vectors whose geodesic is minimizing. Clearly, it is a closed and
star-shaped set.

Define also seg◦(p) = {tv : v ∈ seg(p), 0 ≤ t < 1}. One of the main results in this subsection is that
seg◦(p) is just the interior of seg(p).

2.4.2. Definition. Let p ∈ M . The cut locus is cut(p) = M\ expp(seg◦(p)).

2.4.3. Proposition. Suppose v ∈ TpM\ seg◦(p). Then at least one of the following two things happen:

• d(expp)v is singular;
• there exists w ∕= v, w ∈ seg(p), such that expp(v) = expp(w).

2.4.4. Theorem. We have the following:

(1) d(expp)v is invertible for all v ∈ seg◦(p).
(2) If v ∈ seg◦(p) and w ∈ seg(p), and expp(v) = expp(w), then v = w.
(3) seg◦(p) is open.
(4) The exponential map expp : seg◦(p) → M\ cut(p) is a diffeomorphism.

This motivates the following definitions:

2.4.5. Definition. The injectivity radius of p is

inj(p) = sup{R : expp |B0(R) is a diffeomorphism}.
The conjugacy radius of p is

conj(p) = sup{R : expp |B0(R) is nonsingular}.

By definition, inj(p) ≤ conj(p). The two can differ in general: consider the flat torus (as a quotient of
R2), then some geodesics will close up, and expp is non-injective without ever becoming singular.

Finally, here are two results we state without proof. The second one is not easy.
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2.4.6. Proposition. Let p ∈ M , q ∈ cut(p) ∕= ∅, such that d(p, q) = d(p, cut(p)). Then either q is conjugate
to p along a geodesic from p to q, or there exists exactly 2 minimizing geodesics from p to q which close up
to form a loop.

2.4.7. Theorem (Klingenberg’s estimates). The following estimates for the injective radius hold:

• If n is even and M is orientable, and 0 ≤ sec ≤ 1, then inj(M) ≥ π.
• If n ≥ 3 and M is simply connected, and 1

4 ≤ sec ≤ 1, then inj(M) ≥ π.

3. Comparison geometry

3.1. Main theorems. We will be proving several theorems that deduce global topological information
of a Riemannian manifold from local curvature information.

3.1.1. Theorem (Bonnet–Myers). Let (M, g) be a complete n-dimensional Riemannian manifold, such that
there exists κ > 0 with Ric(V, V ) ≥ κ(n− 1)|V | for all vector fields V . Then every geodesic of length greater
than π/

√
κ is unstable. Consequently it is compact and has finite fundamental group.

3.1.2. Theorem (Synge). Let (M, g) be a closed n-dimensional Riemannian manifold with positive sectional
curvature. Then, if n is even and M is orientable, then M is simply connected; if n is odd, then M is
orientable.

3.1.3. Theorem (Preissmann). Let (M, g) be a closed n-dimensional Riemannian manifold with negative
sectional curvature. Then any nontrivial abelian subgroup of π1(M) is isomorphic to Z.

3.1.4. Theorem (Cartan–Hadamard). Let (M, g) be a complete, simply connected Riemannian manifold
with non-positive sectional curvature. Then for any p ∈ M , expp : TpM → M is a diffeomorphism.

3.1.5. Theorem (Space forms). Let (M, g) be a complete, simply connected Riemannian manifold with
constant sectional curvature κ ∈ {−1, 0, 1}. Then (M, g) is isometric to the hyperbolic space Hn, Euclidean
space Rn, or the sphere Sn, respectively.

3.2. Proof of the Bonnet–Myers theorem.

3.3. Proof of the Cartan–Hadamard theorem.

3.3.1. Definition. Let M be a Riemannian manifold, f ∈ C∞(M). Define its Hessian ∇2f = Hess(f) to
be a symmetric (0, 2)-tensor such that

(∇2f)(X,Y ) = g(∇X(∇f), Y ) = X(Y (f))− (∇XY )(f).

Recall that ∇f is the gradient (example 1.1.7) of f . In local coordinates,

Hess(f)(∂i, ∂j) = ∇i∇jf =
∂2f

∂xi∂xj
−∇k

ij

∂f

∂xk
.

3.3.2. Proposition. Let (M, g) be a complete Riemannian manifold. Let p ∈ M and define a function
ρ(x) = d(p, x), so that ρ2 is smooth on seg◦(p). For v ∈ seg◦(p), q = expp(v), w ∈ TqM , let α(t) = expp(tv),
and W the unique Jacobi field along α such that W (0) = 0 and W (1) = w. Then,

• ∇( 12ρ
2)(q) = α′(1).

• ∇2( 12ρ
2)q(w,w) = I(W,W ) = 1

2
∂
∂t

//
t=1

|W |2,

3.3.3. Corollary. Let w0, w1 ∈ TqM such that w0 is parallel to d(expp)v(v) = α′(1), and w1 is orthogonal

to it. Then ∇2( 12ρ
2)q(w0, w0) = |w0|2 and ∇2( 12ρ

2)q(w0, w1) = 0.

3.3.4. Theorem (Rauch comparison theorem). Let (M, g) be a Riemannian manifold with sec ≤ µ. Let
α : [0, ℓ] → M be a unit-speed geodesic, and V a Jacobi field along α which is orthogonal to α′. Suppose
f : [0, ℓ] → R solves f ′′(t) + µf(t) = 0 with initial condition f(0) = |V (0)| and f ′(0) = d

dt

//
t=0

|V (t)|. Then

t %→ |V (t)|
f(t) is non-decreasing for t ∈ (0, ℓ). In particular, |V (t)| ≥ f(t).

3.3.5. Corollary. Let (M, g) be a Riemannian manifold with sec ≤ µ. Let α : [0, ℓ] → M be a unit-speed
geodesic, such that α(0) and α(ℓ) are conjugate along α. Then µ > 0 and ℓ ≥ π/

√
µ.

3.3.6. Theorem.
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3.3.7. Corollary (Hessian comparison). Let (M, g) be a Riemannian manifold with sec ≤ µ. Let F (t) be
an antiderivative to f(t). For any p ∈ M , we have the following estimate on on M\ cut(p):

∇2F (ρ) ≥ F ′′(ρ)g.

3.3.8. Remark. Equivalently, we can write this as ∇2ρ ≥ ctµ(ρ)(g − dρ⊗ dρ).

3.3.9. Definition. Define the divergence of a vector field V ∈ Γ(TM) by

div(V ) =

n!

i=1

g(∇eiV, ei) ∈ C∞(M)

for any orthonormal basis ei of TpM . In coordinates, div(V ) = ∇iV
i = ∂iV

i + Γi
ijV

j .

3.3.10. Definition. Define the Laplacian of f ∈ C∞(M) by ∆f = div(∇f). Call f harmonic if ∆f = 0.



CHAPTER 9

Étale cohomology

1. Flatness

1.1. Flat modules.

1.1.1. Proposition. Let A be a ring, M an A-module. TFAE:

(1) M is flat;

(2) TorAi (M,N) = 0 for any A-module N and i ≥ 1;

(3) TorAi (M,N) = 0 for any finitely generated A-module N and i ≥ 1;

(4) TorA1 (M,N) = 0 for any A-module N ;

(5) TorA1 (M,N) = 0 for any finitely generated A-module N ;

(6) TorA1 (M,A/I) = 0 for any ideal I ⊆ A;

(7) TorA1 (M,A/I) = 0 for any finitely generated ideal I ⊆ A;
(8) For any ideal I ⊆ A, the map I ⊗A M → M is injective;
(9) For any finitely generated ideal I ⊆ A, the map I ⊗A M → M is injective.

Proof. Obviously:

(1) (2) (4) (6) (8)

(3) (5) (7) (9).

The remaining implications:
(4) =⇒ (1): For any short exact sequence 0 → Q → P → N → 0, we have the Tor long exact sequence

· · · → TorA1 (M,N) → M ⊗Q → M ⊗ P → M ⊗N → 0,

so 0 → M ⊗Q → M ⊗ P → M ⊗N → 0 is exact.
(5) =⇒ (4): Let N be an A-module. We use the fact that N = lim−→N ′, where N ′ ranges among the

finitely generated submodules of N , ordered by inclusion. This is a filtered colimit, which is exact (AB5) and
commutes with left adjoints, such as tensor products. So for any short exact sequence 0 → Q → P → M → 0
that ends with M , tensoring with N is exact. Now we take P to be free (therefore flat), so TorA1 (N,P ) = 0.
Then the Tor exact sequence reads

· · · → 0 → TorA1 (N,M) → Q⊗N → P ⊗N → M ⊗N → 0,

so TorA1 (N,M) → Q is injective and its image is zero. So TorA1 (N,M) = 0 as desired.
(6) =⇒ (5): Consider a finitely generated N . Then there exists a filtration

0 = N0 ⊂ N1 ⊂ · · · ⊂ Nn = N,

where each Ni/Ni−1 is generated by one element, i.e. isomorphic as A-module to A/I for some ideal I.

Induct on i and we wish to show TorA1 (M,Ni) = 0. The base case i = 1 is clear. For the induction step, we
have the exact sequence

0 → Ni−1 → Ni → Ni/Ni−1 → 0,

and by the Tor long exact sequence, TorA1 (M,Ni) = 0.
(7) =⇒ (6): Use the fact that A/I = lim−→A/I ′ where I ′ ranges among the finitely generated ideals

contained in I, ordered by inclusion. Then we can mimic the argument in the implication (5) =⇒ (4). □

1.1.2. Proposition. Let M be flat, then tensoring with M commutes with intersections. □
1.1.3. Proposition (flatness and localizations). Let A be a ring, S ⊂ A a multiplicative subset. Then:

146
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(i) S−1A is flat over A;
(ii) Let M be flat over A, then S−1M is flat over S−1A;
(iii) Suppose A → B is a ring homomorphism that sends S to a subset of a multiplicative subset T ⊆ B,

and let N be a B-module. If N is flat over A, then T−1N is flat over S−1A;
(iv) Suppose A → B is a ring homomorphism, and N is a B-module. If Nm is flat over A for every

maximal ideal m ⊂ B, then N is flat over A.

Proof. (iii) Notice that T−1N ⊗A • = T−1(N ⊗A •) is an exact functor, so T−1N is flat over A. So
S−1T−1N = T−1N is flat over S−1A.

(iv) Injectivity is a local property. □

1.1.4. Proposition (flatness and torsion-free). Let A be a ring.

(i) If a ∈ A is a non-zerodivisor, and M is a flat A-module, then M → M given by m %→ am is
injective; in particular, if A is a domain, then M is torsion-free.

(ii) Let A be a Dedekind domain, then any torsion-free A-module is flat.

Proof. (i) Because a is not a zero-divisor, the map A → Aa is injective, and so is M → M ×A Aa

since M is flat. Suppose am = 0 for some m ∈ M , then m %→ m ⊗ 1 = am ⊗ a−1 = 0, so m = 0 as well by
injectivity.

(ii) Suppose M is torsion-free. It suffices to show that Mm is flat over Am for every maximal ideal
m ⊂ A, i.e. we may assume that A is a DVR. Let I ⊆ A be any ideal, then I is principal, say generated by
r, and the map A → I given by 1 %→ r is an isomorphism of A-modules. So M → I ⊗A M , m %→ r ⊗m is
an isomorphism. Composing this with the natural map f : I ⊗A M → M , r ⊗m %→ rm, gives us the map
M → M , m %→ rm, which is injective since M is torsion-free. So f is injective as well, which shows that M
is flat. □

1.2. Flat morphisms.

2. Faithfully flat descent

2.1. Faithfully flat morphisms.

2.1.1. Proposition. Let A be a ring, M an A-module. TFAE:

(1) The functor N %→ M ⊗N is exact and faithful;
(2) Any sequence N ′ → N → N ′′ is exact iff M ⊗N ′ → M ⊗N → M ⊗N ′′ is exact;
(3) M is flat, and M ⊗N = 0 implies N = 0;
(4) M is flat, and M/mM ∕= 0 for any maximal ideal m of A. □
If any of the following holds, we say M is faithfully flat over A.

2.1.2. Corollary. Let A → B be a map of local rings that maps the maximal ideal of A into the maximal
ideal of B. Then if a nonzero, finitely generated B-module M is flat over A, it is faithfully flat over A.

2.1.3. Proposition. Let A → B be a map of rings. If there exists a B-module M faithfully flat over A,
then SpecB → SpecA is onto.

Proof. The fiber over p ⊂ A is SpecB⊗A Ap/pAp. Since M ⊗A Ap/pAp is faithfully flat over Ap/pAp,
it is a nonzero B ⊗A Ap/pAp-module, so B ⊗A Ap/pAp ∕= 0. □

2.1.4. Corollary. Let A → B be a map of rings. Suppose there exists a finitely generated B-module M
faithfully flat over A, whose support is SpecB. Then for any p ∈ SpecA, if q is minimal among those
containing pB, then qc = p.

Proof. By corollary 2.1.2, Mq is faithfully flat over Aqc . By proposition 2.1.3, SpecBq → SpecAqc is
onto. Then by minimality of q, qBq is the preimage of pAqc , so p = qc as desired. □

2.1.5. Proposition. Let φ : A → B be a map of rings. TFAE:

(1) B is faithfully flat over A;
(2) B is flat over A, and φ∗ : SpecB → SpecA is surjective;
(3) B is flat over A, and for any maximal m ⊂ A, there exists a maximal n ⊂ B with m = nc;
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(4) B is flat, and for any A-module M , M → M ⊗A B is injective;
(5) For any ideal I of A, I ⊗A B → B is injective, and φ−1(IB) = I.
(6) φ is injective and cokerφ is flat over A.

Proof. It is clear that (1) =⇒ (2) =⇒ (3).
(3) =⇒ (1): It suffices to show that B/mB ∕= 0 for any maximal m of A. Pick n ⊂ B such that nc = m,

then there is a surjection B/mB → B/n ∕= 0.
(1) =⇒ (4): Since B is faithfully flat, it suffices to show M ⊗A B → M ⊗A B⊗A B is injective. But this

has a left inverse M ⊗A B ⊗A B → M ⊗A B given by m⊗ b1 ⊗ b2 %→ m⊗ b1b2.
(4) =⇒ (5): Since A/I → (A/I)⊗A B = B/IB is injective, φ−1(IB) ⊆ I, so φ−1(IB) = I.
(5) =⇒ (3): We know B is flat, and φ−1(mB) = m, so any maximal ideal n containing mB pulls back to

nc = m.
(4) =⇒ (6): Putting M = A, we see that φ is injective. Let M be any A-module. The long exact

sequence reads

(∗) 0 → TorA1 (B,M) → TorA1 (cokerφ,M) → M → M ⊗A B.

Since B is flat, TorA1 (B,M) = 0. Since M → M ⊗A B is injective, we conclude that

TorA1 (cokerφ,M) = 0,

which implies that cokerφ is flat.
(6) =⇒ (4): This time (∗) tells us that TorA1 (B,M) = 0 and M → M ⊗A B is injective. □

2.1.6. Proposition (faithful flatness and completions). Let A be Noetherian, and let I ⊂ A be an ideal.

Then the I-adic completion )A is flat over A, and it is faithfully flat iff I ⊆ rad(A). □
2.1.7. Proposition. Let A be a ring, I ⊂ A an ideal, and M an A-module. If either

• I is nilpotent, or
• A is Noetherian, I ⊂ rad(A), and M is finitely generated,

then TFAE:

(1) M is free;

(2) M/IM is free over A/I, and TorA1 (M,A/I) = 0;
(3) M/IM is free over A/I, and

(M/IM)⊗A/I

M

N
,

n≥0

In/In+1

O

P →
,

n≥0

InM/In+1M

is an isomorphism.

Proof. □
2.2. The Amitsur complex.

2.3. Descent data, and stacks.

2.4. Descent of quasicoherent sheaves.

3. Quasi-finite morphisms

3.1. Finite morphisms.

3.1.1. Proposition (finite implies proper). Any finite morphism f : Y → X is separated, finite type, and
universally closed.

Proof. Properness is affine-local on the target, so assume X,Y are affine. Then the first two require-
ments are obvious; the third follows from the going-up theorem and the fact that finite morphisms are stable
under base change. □
3.1.2. Proposition. Let f : X → Spec k be finite type, then TFAE:

(1) X = SpecA where A is Artinian;
(2) X is finite and discrete;
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(3) X is discrete;
(4) f is finite.

Proof. (1) =⇒ (2): Artinian rings have finitely many prime ideals, and all primes are maximal.
(3) =⇒ (2): Discrete plus quasicompact implies finite.
(2) =⇒ (4): For any affine open SpecA ⊆ X, A is Noetherian and has dimension 0, so A is Artinian,

so it is uniquely the product of Artinian local rings. So X is affine (OX(X) is the product of the Artinian
local rings corresponding to each point of X).

(4) =⇒ (1): Say X = SpecA. Then A is a finitely generated k-module, so dimA = tr deg FracA = 0, so
A is Artinian. □

3.2. Quasifinite morphisms.

3.2.1. Definition. A morphism of schemes f : Y → X is quasifinite if it is finite-type and has finite
fibers. An A-algebra B is quasifinite if it is finite-type and for all prime ideals p ⊂ A, B ×A κ(p) is a finite
κ(p)-module (i.e. SpecB → SpecA is quasifinite).

Since finite morphisms have finite fibers, finite implies quasifinite.

3.2.2. Proposition. Quasifiniteness is stable under composition and base change, and any immersion is
quasifinite. □

It follows that any open subscheme of a finite morphism is quasifinite. Conversely:

3.2.3. Theorem (Zariski’s main theorem, Grothendieck’s form: EGA IV3, Thm 8.12.6). Let X be quasi-
compact, then any separated, quasifinite morphism f : Y → X factors into Y → Y ′ → X, where Y → Y ′ is
an open embedding, and Y ′ → X is finite.

3.2.4. Corollary (proper and quasifinite implies finite). Let X be quasicompact, then any proper, quasifinite
morphism f : Y → X is finite.

Proof. Let f = g ◦ f ′ where f ′ : Y → Y ′ is an open immersion and g : Y ′ → X is finite. Since g is
finite, it is separated (proposition 3.1.1), so ∆g is a closed immersion, which is proper. So ∆g and f are
both proper, so by cancellation theorem, f ′ is proper as well, so its image is closed. Therefore, f ′ is a closed
immersion, hence finite as well, so f is finite. □
3.2.5. Exercise. Let f : Y → X be separated and finite type, X irreducible. If the fiber over the generic
point η ∈ X is finite, then there is a nonempty open U ⊆ X such that f is finite over U .

Proof. (TODO) □
3.3. Zariski’s main theorem.

4. Unramified morphisms

In the next three sections, we introduce three classes of morphisms of schemes: unramified, smooth,
and étale morphisms. They correspond respectively to the notions of immersions, submersions, and lo-
cal isomorphisms in differential geometry. As is usual, we use our geometric intuition to guide algebraic
definitions.

4.1. Module of differentials. Given a ring homomorphism A → B, we may naturally define a B-
module ΩB/A, whose classical analogy is the (relative) cotangent bundle on SpecB.

4.1.1. Definition. The module of Kähler differentials of a ring map A → B is a B-module ΩB/A together
with an A-derivation d : B → ΩB/A, defined equivalently by any of the following:

(1) universal property: it represents the covariant functor ModB → Set which sendsM %→ DerA(B,M).
(2) construction: it is the free B-module generated by symbols db, for b ∈ B, modulo the submodule

generated by da (a ∈ A), d(b+ b′)− db− db′, and d(bb′)− bdb′ − b′db.

(3) diagonal: it is I/I2 where I = ker(B ⊗A B
b⊗b′ +→bb′−−−−−−→ B), and d : B → I/I2 is given by b %→

1⊗ b− b⊗ 1.

4.1.2. Example. Some common and useful examples:
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• If A → B is a quotient map or a localization, ΩB/A = 0.
• If B = A[x1, . . . , xn], then ΩB/A

∼=
#

i B dxi.
• If B = A[x1, . . . , xn]/(f1, . . . , fm) then ΩB/A

∼= (
#

i B dxi)/〈df1, . . . , dfm〉. In particular, ΩB/A is
finitely presented (resp. finitely generated) as a B-module if B is finitely presented (resp. finitely
type) as an A-algebra.

• If L/K is a finite separable field extension, then ΩL/K = 0.

4.1.3. Example (Elliptic curves). Consider the affine plane curve y2 = x3 + ax + b over an algebraically
closed field k. Let A = k[x, y]/(y2 − x3 − ax− b) be its coordinate ring. The module of differentials is

ΩA/k =
kdx⊕ kdy

〈2ydy − (3x2 + a)dx〉 .

Consider the distinguished opens D(3x2 + a) and D(2y) which cover SpecA if 4a3 − 27b2 ∕= 0 (i.e. the curve
is nonsingular). On each of them, ΩA/k is isomorphic to a free rank 1 module.

4.1.4. Proposition (Pullback of differentials). Let A → B, A → A′ be ring maps, and let B′ = A′ ⊗A B.
Then ΩB′/A′ ∼= ΩB/A ⊗B B′ as B′-modules.

In particular, taking A′ = S−1A for a multiplicative subset S, we have ΩS−1B/A
∼= ΩS−1B/S−1A

∼=
S−1ΩB/A.

4.1.5. Proposition (Cotangent exact sequence). Let A → B → C be ring maps. Then there is a natural
exact sequence of C-modules

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0.

4.1.6. Proposition (Conormal exact sequence). In the above situation, suppose the map B → C is a
quotient map with kernel I. Then there is a natural exact sequence of C-modules

I/I2 → ΩB/A ⊗B C → ΩC/A → 0,

where the first map is induced by d : B → ΩB/A.

4.1.7. Proposition (Fiber at rational point). Let B be a k-algebra, and m ⊂ B a maximal ideal with residue
field k. Then ΩB/k ⊗B k ∼= m/m2.

4.2. Unramified ring maps.

4.2.1. Definition. Let A → B be a ring map. Say B is formally unramified over A if any of the following
equivalent conditions hold:

(1) for any A-algebra R and an ideal I ⊂ R, such that I2 = 0, the natural map HomA(B,R) →
HomA(B,R/I) is injective;

(2) in condition (1), replace I2 = 0 with I nilpotent;
(3) the module of differentials ΩB/A = 0.

Intuitively, being formally unramified means that the map on tangent spaces is injective, i.e. tangent
vectors lift uniquely: take R = k[ε]/(ε2) and I = (ε) for example.

Proof. (1) =⇒ (3): Consider the A-algebra B⊕ΩB/A, with (x1, y1)(x2, y2) := (x1x2, x1y2+x2y1), and
map A → B ⊕ΩB/A given by a %→ (a, 0). In this ring, ΩB/A is an ideal of square zero, and the quotient ring
is B. But there are two lifts of the identity B → B to A-algebra homomorphisms B → B⊕ΩB/A: one maps
b %→ (b, 0), the other b %→ (b, db). So db = 0, and ΩB/A is trivial.

(3) =⇒ (1): Any A-derivation of B is zero. Suppose f, g : B → R both lift the same B → R/I, then
f − g lands in I. In fact, since I2 = 0, it is an A-derivation B → I, so it is zero. □

4.2.2. Proposition (Formally unramified is a local property). Let A → B be a ring map. The following
are equivalent:

(1) A → B is formally unramified.
(2) For all primes q ⊂ B, A → Bq is formally unramified.
(3) For all primes q ⊂ B, and p = q ∩A, Ap → Bq is formally unramified.
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4.2.3. Definition. Let A → B be a ring map. Say it is unramified if it is formally unramified and of finite
presentation (following EGA). For a prime q ⊂ B, say it is unramified at q if there exists g ∈ B\q such that
A → Bg is unramified.

4.2.4. Remark. Some sources such as [1] use finite type instead of finite presentation hypotheses. In locally
Noetherian cases this of course doesn’t matter.

4.2.5. Definition. Suppose (A,m) and (B, n) are Noetherian local rings, and A → B is a local ring map
which is essentially of finite presentation (meaning that B is a localization of a finitely presented A-algebra).
We say A → B is an unramified local ring map if n = mB and B/n is a finite separable extension of A/m.

4.2.6. Proposition. Let A be a Noetherian ring, and A → B a finitely presented ring map. Let q ⊂ B be
a prime and p = q ∩A. Then it is unramified at q iff Ap → Bq is an unramified local ring map.

Proof. (=⇒) There exists g ∈ B\q such that A → Bg is unramified. Then q′ = qBg is a prime ideal, and
(Bg)q′ = Bq. By pullback of differentials (proposition 4.1.4), κ(p) → Bg ⊗A κ(p) = (A\p)−1Bg/p(A\p)−1Bg

is unramified.
(⇐=) □

4.3. Local structure theory.

4.4. Unramified morphisms.

4.4.1. Definition. A morphism of schemes f : Y → X is unramified if it is locally of finite presentation
and for all y ∈ Y , the local ring map OX,f(y) → OY,y is unramified.

5. Smooth morphisms

5.1. Smooth ring maps.

5.2. Smooth morphisms.

6. Étale morphisms

6.1. Étale ring maps.

6.1.1. Definition. A ring homomorphism A → B is étale if it is finitely presented, unramified, and flat.

6.1.2. Example (Étale over a field). An étale k-algebra, where k is a field, is a finite product of finite
separable extensions of k.

6.1.3. Example. A standard étale map is a map of form A → B = (A[x]/P )Q, where P (x) ∈ A[x] is
a polynomial and Q ∈ A[x]/P such that P ′(x) is a unit in the localization. It is clearly flat and finitely
presented, and it is unramified because ΩB/A = (Ω(A[x]/P )/A)Q = (A[x]/(P, P ′))Q = 0.

6.1.4. Definition. A local ring homomorphism A → B is local étale (in EGA IV, étale essentiellement) if
B ≃ Cp (over A) for some étale A-algebra C and prime ideal p above the maximal ideal m ⊂ A.

6.1.5. Proposition. Let A → B be local étale. Then B is

(1) regular,
(2) reduced,
(3) Cohen-Macaulay, or
(4) integrally closed,

if and only if A is.

6.1.6. Remark. The same does not hold for the property of being an integral domain.
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6.2. Étale morphisms.

6.2.1. Definition. A locally finitely presented morphism f : X → Y is called étale if one of the following
equivalent conditions hold:

• f is flat and unramified.
• (functorial description) For each affine scheme Y ′ → Y and each closed subscheme Y ′

0 of Y ′ defined
by a nilpotent ideal sheaf, HomY (Y

′, X) → HomY (Y
′
0 , X) is a bijection.

6.2.2. Proposition. The following facts are true about étale morphisms:

• Open immersions are étale;
• If f : X → Y and g : Y → Z are étale, then so is g ◦ f ;
• If f : X → X ′ and g : Y → Y ′ are étale over S, then so is f ×S g : X ×S Y → X ′ ×S Y ′.
• If g : Y → Z and g ◦ f : X → Z are étale, then so is f .

Proof. (TODO) □

7. Henselian rings

7.1. Henselian rings.

7.1.1. Definition (for proof, see [1], chapter 1). A local ring (A,m, k) is Henselian if it satisfies the following
equivalent conditions:

(1) (Finite algebra decomposes) For any finite A-algebra B, the canonical map B →
%

n Bn is an
isomorphism, where n runs through all (finitely many, since B is semilocal) maximal ideals of B.

(2) (Hensel’s lemma) Suppose a monic F ∈ A[x] has image f ∈ k[x] which factors as f = gh, where
g, h are coprime monic polynomials in k[x], then F = GH for monic G,H ∈ A[x] whose images are
g, h.

(3) (Quasifinite implies finite) For any A-algebra B, if B = Cp for some finitely generated A-algebra
C and p above m, and if A → B is quasifinite (B/mB is finite over k), then B is finite over A.

(4) (Geometric meaning) Let X = SpecA, x ∈ X the closed point, then for any étale X-scheme Y and
y ∈ Yx a κ(x)-point, there exists a unique section X → Y mapping x %→ y.

A Henselian ring A is strictly Henselian if k is separably closed.

7.1.2. Example. Here are some naturally-occuring examples of (strictly) Henselian rings:

• fields;
• any ring with a unique prime ideal;
• more generally, a local ring A is Henselian iff Ared is;
• complete Noetherian local rings;
• the ring of convergent power series over R or C.

More examples can be obtained from Henselization (section 7.2).

7.1.3. Remark (Intuition about Henselian rings). There is an analogy: local rings are to Zariski topology
as strictly Henselian rings are to étale topology, as Henselian rings are to Nisnevich topology.

7.1.4. Theorem. Let (A,m, k) be a Henselian local ring. The map B %→ B/mB gives an equivalence between
the category of finite étale algebras over A and the category of finite étale algebras over k.

7.2. Henselization. Let (A,m, k) be any local ring, and fix a local homomorphism φ : A → K, where
K is a field. Consider the set of all diagrams

A B

K

φ

where A → B is local-étale (definition 6.1.4) with trivial residue field extension, and B → K is local. A map
between two such diagrams is given by a local homomorphism B1 → B2 that commutes with the rest of the
diagram.

7.2.1. Proposition (EGA IV.18.6.3). The following are true:
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(1) There is at most one map between any two such diagrams;
(2) For any two objects, one can find an object which both objects map to.

Consequently, this poset actually forms a filtered category. So we get a filtered colimit =A = lim−→B, with

local homomorphisms A → =A and =A → k.

7.2.2. Proposition. The ring =A is Henselian, and is strictly Henselian if K is separably closed.

7.2.3. Proposition. The local ring map A → =A is faithfully flat.

7.2.4. Proposition. The ring =A is

(1) regular,
(2) reduced,
(3) Cohen-Macaulay, or
(4) integrally closed,

if and only if A is.

7.2.5. Definition (Henselization). When φ : k → K is an isomorphism, =A = Ah is called the Henselization

of A. When K is separably closed, =A = Ash is called a strict Henselization of A.

7.2.6. Proposition (Properties of Henselization). The following are true:

(1) For any Henselian ring B, the map Homloc(A
h, B) → Homloc(A,B) is bijective.

(2) For any strictly Henselian ring B with residue field ℓ and a fixed embedding ℓ → K, the map
Homloc(A

sh, B) → Homloc(A,B) is bijective. Here the maps are assumed to respect their residue
field embeddings into K.

(3) mAh is the maximal ideal of Ah, and the residue field map k → Ah/mAh is an isomorphism.
(4) mAsh is the maximal ideal of Ash, and the residue field map k → Ash/mAsh is a separable closure

of k in K.

7.2.7. Example. Let X be a scheme, P : SpecΩ → X a geometric point. Then OX,P is the strict
Henselization of OX,x with respect to κ(x) ↩→ Ω.

8. Abelian categories

8.1. Additive categories.

8.1.1. Definition. An additive category is a category C where:

• Finite products and coproducts exist;
• A zero object exists;
• For any objects A,B ∈ C , Hom(A,B) has the structure of an abelian group, and composition of
morphisms is bilinear.

8.1.2. Proposition. In an additive category, A⊕B is isomorphic to A×B. □
8.1.3. Definition. A functor F : C → C ′ between additive categories is an additive functor if F (u+ v) =
F (u) + F (v) for morphisms u, v.

8.1.4. Proposition. Additive functors send the zero object to the zero object.

Proof. An object A ∈ C in an additive category is the zero object if and only if idA = 0A, and both
are preserved by an additive functor. □
8.1.5. Definition (kernel, cokernel, image, coimage). Given u : A → B in an additive category C , the kernel
ker(u), if it exists, is an equivalence class of monomorphisms ker : ker(u) → A, such that any C → A → B
is zero iff C → A factors through ker(u) → A. It is unique if it exists.

Similarly, the cokernel coker(u) can be defined, and is a quotient object of B.
Finally, define the image im(u) = ker(coker(u)), and the coimage coim(u) = coker(ker(u)).

8.1.6. Proposition. If both im(u) and coim(u) exist, then there is a natural morphism

u : coim(u) → im(u),

such that u : A → B factors through A ↠ coim(u)
u−→ im(u) ↩→ B. □
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8.2. Abelian categories.

8.2.1. Definition. An abelian category C is an additive category that satisfies:

• (AB1) All kernels and cokernels exist;
• (AB2) For any u : A → B, u : coim(u) → im(u) is an isomorphism.

8.2.2. Proposition. For an object A ∈ C in an abelian category, the set of subobjects of A are in bijection
with the set of quotient objects of A, given by:

[u : B ↩→ A] %−→ [A ↠ coker(u)],

[v : A ↠ B] %−→ [ker(v) ↩→ A].

Further, the subobjects of A form a lattice: for A1, A2 ↩→ A,

A1 ∪A2 = im(A1 ⊕A2 → A),

A1 ∩A2 = ker(A → A/A1 ×A/A2),

and similarly do the quotient objects of A. □
8.2.3. Proposition. A map u : A → B is mono iff ker(u) = 0, and u is epi iff coker(u) = 0. □
8.2.4. Proposition. In an abelian category, mono and epi together implies isomorphism. □
8.2.5. Proposition. The sequence 0 → A → B → C is exact iff

0 → Hom(M,A) → Hom(M,B) → Hom(M,C)

is exact for all M . □
8.2.6. Proposition. Let C be any category, C ′ be an abelian category, then Hom(C ,C ′) is an abelian
category (with exactness pointwise). □
8.2.7. Theorem (Freyd-Mitchell embedding theorem). Let C be a small abelian category, then there exists
a unital ring R (not necessarily commutative) and a fully faithful exact functor F : C → R-Mod.

8.3. Injective objects.

8.3.1. Definition (injective objects). In an abelian category C , an object M is injective if the contravariant
functor A %→ Hom(A,M) is exact. (It is automatically left exact; right exactness is the same as saying that
for any subobject A′ ↩→ A, any morphism A′ → M extends to A → M .)

8.3.2. Definition (enough injectives). An abelian category C has denough injectives if for each A ∈ C ,
there exists a mono A ↩→ M , where M is injective.

8.4. Grothendieck categories.

8.4.1. Definition. A collection of objects {Zi}i∈I in C is a family of generators if for each A ∈ C , B ↩→ A,
B ∕= A, there exists i ∈ I and a morphism Zi → A that does not factor through B.

8.4.2. Definition. A Grothendieck category C is an abelian category that has a family of generators, and
satisfies the following two axioms:

• (AB3) Arbitrary coproducts exist.
• (AB5) Assume AB3, and filtered colimits of short exact sequences are exact. Equivalently, for a
filtered family of subobjects Ai ↩→ A, lim−→Ai =

$
Ai.

8.4.3. Proposition. Suppose C is an abelian category that satisfies (AB3). TFAE:

(1) {Zi} is a family of generators;
(2) Z =

"
i Zi is a generator;

(3) For each A ∈ C , there exists an epi
#

Z ↠ A.

8.4.4. Theorem (Grothendieck). Let C be a Grothendieck category, then C has enough injectives.

8.4.5. Example. Ab, R-Mod, Sh(X), QCoh(V ), etc.

8.4.6. Proposition. Let C be any category, C ′ be an abelian category.

(i) If C ′ satisfies (AB5), then so does Hom(C ,C ′).
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(ii) If C ′ satisfies (AB3) and has generators, then so does Hom(C ,C ′).

Proof. Item (i) is not hard to show pointwise. For (ii), given any object Z ∈ C ′ and A ∈ C , define an
object ZA ∈ Hom(C ,C ′) by

B %→
Q

Hom(A,B)

Z,

with the obvious morphisms. Then observe that HomHom(C ,C ′)(ZA, F ) ∼= HomC ′(Z,F (A)) naturally. From
this, it is not hard to show that if Z is a generator of C ′, then the ZA’s form a family of generators for
Hom(C ,C ′). □

8.5. Derived functors.

8.5.1. Definition (∂-functors). Let C be abelian, C ′ additive. A (covariant) ∂-functor C → C ′ is:

• a system of additive functors T i : C → C ′ (i ≥ 0), and
• connecting morphisms δ : T i(A′′) → T i+1(A′), for every i ≥ 0 and each short exact 0 → A′ → A →
A′′ → 0 in C ,

satisfying:

• Given a map of short exact sequences

0 A′ A A′′ 0

0 B′ B B′′ 0,

the diagram

T i(A′′) T i+1(A′)

T i(B′′) T i+1(B′)

δ

δ

commutes;
• Given an exact sequence 0 → A′ → A → A′′ → 0, the sequence

0 → T 0(A′) → T 0(A) → T 0(A′′)
δ−→ T 1(A′) → . . .

is a chain complex.

When C ′ is abelian as well, the ∂-functor is called exact if the above chain complex is exact.

8.5.2. Definition. Amorphism of two ∂-functors T i, T ′i is a system of natural transformations f i : T i → T ′i

that commute naturally with ∂.

8.5.3. Definition (universal). A ∂-functor T = (T i) : C → C ′ is universal if for each ∂-functor T ′ = (T ′i)
and each natural transformation f0 : T 0 → T ′0, there is a unique extension to a morphism of ∂-functors
T → T ′.

8.5.4. Definition (effaceable). An additive covariant functor F : C → C ′ is effaceable if for each object
A ∈ C , there is a monomorphism u : A → M in C such that F (u) = 0.

8.5.5. Proposition. Let C be an abelian category with enough injectives, then F : C → C ′ is effaceable iff
F (M) = 0 for all injective M . □
8.5.6. Theorem. Let C ,C ′ be abelian categories, and T = (T i) : C → C ′ be an exact ∂-functor. Then
if each T i is effaceable for i > 0, then T is universal. If, in addition, C has enough injectives, then the
converse is also true.

8.5.7. Definition (right derived functors). Let F : C → C ′ be a left exact additive covariant functor
between abelian categories. Then its right derived functors RiF (i ≥ 0) is the (unique) universal exact
∂-functor extending F .

8.5.8. Theorem. When C has enough injectives, right derived functors exist for every left exact additive
covariant functor F .
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Proof. For A ∈ C , consider an injective resolution

0 → A → M0 → M1 → M2 → . . .

Then RiF (A) is defined as the ith cohomology of

0 → F (M0) → F (M1) → F (M2) → . . . .

This is functorial and does not depend on the particular injective resolution chosen, because any two reso-
lutions extending the same map are chain homotopic. Also, RiF (M) = 0 for i > 0 and M injective, because
of the injective resolution 0 → M → M → 0, which shows that (RiF ) is universal.

It remains to check that this is exact. Given a short exact sequence 0 → A′ → A → A′′ → 0, take
injective resolutions 0 → A′ → M ′i and 0 → A′′ → M ′′i, then we can construct an injective resolution
0 → A → M i, where M i = M ′i ⊕M ′′i, such that 0 → M ′i → M i → M ′′i → 0 is exact (horseshoe lemma).
Applying F , each 0 → F (M ′i) → F (M i) → F (M ′′i) → 0 is then exact as well, which gives a desired long
exact sequence. □

We will see this construction in a different light in section 12.

9. More categorical constructions

9.1. Group objects.

9.2. Spectral sequences.

9.2.1. Proposition (five-term exact sequence). For a cohomological spectral sequence Ep,q
2 =⇒ Ep+q, the

sequence

0 → E1,0
2 → E1 → E0,1

2 → E2,0
2 → E2

is exact.

9.2.2. Theorem (Grothendieck spectral sequence). Let C ,C ′ be abelian categories with enough injectives,
and C ′′ another abelian category. Let F : C → C ′, G : C ′ → C ′′ be left exact covariant additive functors,
and suppose F maps injective objects to G-acyclic objects (ones for which RiG is zero for i > 0). Then for
each A ∈ C , there is a spectral sequence

Ep,q
2 = RpG(RqF (A)) =⇒ Ep+q = Rp+q(G ◦ F )(A),

and this is functorial in A.

Proof. (TODO) □

9.3. Limits and colimits.

9.3.1. Proposition. If an abelian category satisfies (AB3), then it has arbitrary colimits, and colimit is
right exact. □

9.3.2. Proposition. Right (resp. left) adjoints commute with limits (resp. colimits). □

9.3.3. Definition (pseudofiltered and filtered). A category I is pseudofiltered if it satisfies:

• (PS1) Each i → j, i → j′ can be extended to j → k, j′ → k, such that the square commutes;
• (PS2) Each f, g : i → j can be extended to h : j → k such that h ◦ f = h ◦ g.

It is filtered if for any two objects j, j′, there exists an object k and morphisms j → k, j′ → k.

9.3.4. Definition. A full subcategory B of a category A is final if any object A ∈ A has a morphism
A → B, where B ∈ B.

9.3.5. Proposition. Let F : I → C be a functor where I satisfies (PS1), and J be a final subcategory
of I . Then the natural map

lim−→F → lim−→F |J
is an isomorphism. In particular, if I has a final object ∞, then lim−→F ∼= F (∞).
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9.4. Sites.

9.4.1. Definition (sites). A site consists of:

• a category C ;
• a collection cov(C ) of coverings, i.e. families of morphisms {Ui → U}i∈I ,

satisfying:

• Given a covering {Ui → U}i∈I , and any morphism V → U , the fiber products Ui ×U V exist and
{Ui ×U V → V }i∈I is a covering as well;

• If {Ui → U}i∈I and {Uij → Ui}j∈Ji are covering families, then so is {Uij → U}i∈I,j∈Ji ;
• Any isomorphism {V → U} is a covering.

9.4.2. Definition (morphisms of sites). A morphism of sites (C , cov(C )) → (C ′, cov(C ′)) is a functor F of
categories, such that:

• For any covering {Ui → U} in cov(C ), {F (Ui) → F (U)} ∈ cov(C ′);
• Given a covering {Ui → U}i∈I , and any morphism V → U , the maps f(Ui×UV ) → f(Ui)×f(U)f(V )
are isomorphisms.

10. Sheaves on sites

10.1. Definition (sheaves on sites). Let D be a category that admits arbitrary products. A D-valued
presheaf on a site (C , cov(C )) is a contravariant functor F : C op → D . It is a sheaf if for every covering
{Ui → U},

0 → F (U) →
2

i

F (Ui) ⇒
2

i,j

F (Ui ×U Uj)

is exact. (This makes sense when D = Set,Ab, R-Mod, etc.)
A morphism of (pre)sheaves is a natural transformation of functors.

Fix a site T = (C , cov(C )). The category of abelian presheaves on T is denoted by P, and the category
of abelian sheaves on T is denoted by S , which is a full subcategory of P.

10.2. Definition (universal effective epi). Let C be a category with fiber products. An epi f : U → V is
an effective epimorphism if for any Z,

0 → Hom(V, Z) → Hom(U,Z) ⇒ Hom(U ×V U,Z)

is exact. It is an universal effective epimorphism if any pullback is effective as well.
More generally, a family of effective epimorphisms is a family {Ui → V } such that for any Z,

0 → Hom(V, Z) →
2

i

Hom(Ui, Z) ⇒
2

i,j

Hom(Ui ×V Uj , Z)

is exact. It is a family of universal effective epimorphisms if any pullback is effective as well.

10.3. Proposition. Let {Ui → U}, {Uij → Ui} be families of universal effective epimorphisms, then so is
{Uij → U}. □

10.4. Definition (canonical topology). Let C be a category with fiber products. The canonical topology is
a site whose coverings are the families of universal effective epimorphisms.

10.5. Proposition. With the canonical topology, every representable presheaf of sets (ones of form U %→
Hom(U,Z)) is a sheaf. Moreover, the canonical topology is the finest topology in which all representable
presheaves of sets are sheaves. □

10.1. Canonical topology on the category of left G-sets. Let C be the category of left G-sets
with G-maps as morphisms, and equip it with the canonical Grothendieck topology.

10.1.1. Proposition. A family {Ui → U} is in cov(C ) iff the images of Ui cover U . □
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10.1.2. Proposition. The category of left G-sets is in equivalence with the category of sheaves of sets on
C , where the equivalence is given by

S %→ Hom(•, S)
F (G) ←! F

where F (G) is a left G-set by: for x ∈ F (G), gx is defined as the image of x under the morphism F (G) →
F (G) induced by the map G → G, h %→ hg.

Proof. The key part is constructing isomorphisms

F (H) → HomC (H,F (G))

functorial in H. Consider the covering {φh : Gh → H}, where each Gh is a copy of the G-set G, and φh

maps 1G to h. Since F is a sheaf,

0 → F (H) →
2

h∈H

F (Gh) ⇒
2

h1,h2∈H

F (Gh1 ×H Gh2)

is exact. It is not hard to verify that, for an element (xh)h ∈
%

F (Gh),

(xh)h ∈ im(F (H) →
2

F (Gh)) =⇒ xgh = gxh =⇒ (xh)h ∈ ker(
2

F (Gh) →
2

F (Gh1 ×H Gh2)),

so all implications are reversible. This gives a natural isomorphism between F (H) and its image in
%

F (Gh),
which is the set of G-maps H → F (G). □

10.1.3. Corollary. The category of left G-modules is in equivalence with the category of sheaves of abelian
groups on C . □

10.2. Canonical topology on the category of continuous G-sets. Let G be a profinite group.

10.2.1. Proposition. The open normal subgroups H of G form a neighborhood basis of 1, and G ∼= lim←−G/H.

A continuous G-set is a G-set U whose action G× U → U is continuous (U equipped with the discrete
topology).

10.2.2. Proposition. TFAE:

(1) U is a continuous G-set;
(2) For every u ∈ U , Stab(u) is open;
(3) U =

"
UH , where H ranges among open normal subgroups of G.

Consider the category C of continuous G-sets and G-maps, with the canonical topology. As before:

10.2.3. Proposition. A family {Ui → U} is in cov(C ) iff the images of Ui cover U . □

10.2.4. Proposition. The category of continuous G-sets is in equivalence with the category of sheafs of sets
on C , where the equivalence is given by

U %→ Hom(•, U)

lim−→F (G/H) ← ! F

where lim−→F (G/H) is a continuous G-set as usual.

Proof. We will repeatedly use the argument in Proposition proposition 10.1.2. The nontrivial part is
to give a natural isomorphism F (U) ∼= HomG(U, lim−→F (G/H)).

First, using the covering {UH → U}, we may identify F (U) ∼= lim←−F (UH).

Next, fix an open normal subgroup H. Using the covering {G/H → UH} sending 1 to each element in
UH , we may identify

F (UH) ∼= HomG/H(UH , F (G/H)}.
Next, we wish to show that

(∗) HomG/H(UH , F (G/H) ∼= HomG(U
H , lim−→

H′⊆H

F (G/H ′)).
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This is because, given a fixed H ′ ⊂ H, {G/H ′ → G/H} is a covering, so F (G/H) is identified with

F (G/H ′)H/H′
, so the map F (G/H) → lim−→F (G/H ′) identifies F (G/H) with lim−→F (G/H ′)H , which proves

(∗). Putting everything together:

F (U) ∼= lim←−F (UH)

∼= lim←−HomG/H(UH , F (G/H))

∼= lim←−HomG(U
H , lim−→F (G/H ′))

∼= HomG(lim−→UH , lim−→F (G/H ′))

∼= HomG(U, lim−→F (G/H)),

as desired. □
10.2.5. Corollary. The category of continuous G-modules is in equivalence with the category of sheafs of
abelian groups on C .

10.3. Functors fp and fp. Let f : T → T ′ be a functor between the underlying categories of two
sites. (It does not have to be a morphism of sites, aka a continuous functor.) Let P,P ′ be the categories
of abelian presheaves on F, F ′.

10.3.1. Definition. Given an abelian presheaf F ′ on T ′, we may define an abelian presheaf fpF ′ on T by
U %→ F ′(f(U)). This is an additive, exact functor fp : P ′ → P that commutes with colimits.

10.3.2. Proposition. The functor fp has a left adjoint fp : P → P ′.

Proof. First, we define the presheaf fpF . Let U ′ ∈ T ′, then consider the category IU ′ of pairs (U,φ)
where U ∈ T and φ : U ′ → f(U) is a morphism. Define

fpF (U ′) = lim−→F (U)

where the colimit is taken across all (U,φ) as above. Let φ′ : U ′ → V ′ be a morphism, there is an induced
functor IV ′ → IU ′ , hence a morphism fpF (V ′) → fpF (U ′).

It remains to show that
Hom(fpF,G

′) ∼= Hom(F, fpG′)

functorially, which is routine. □
10.3.3. Corollary. If fp is exact, then fp maps injectives to injectives. □
10.3.4. Corollary. If F ∈ P is represented by Z ∈ T , i.e. F (U) = Hom(U,Z), then fpF is represented by
f(Z). □
10.3.5. Example. Taking T the site with only one object and one arrow, and T ′ any site, let i : T → T ′

map the singular object to U ∈ T ′. Then P = Ab, and ip : P ′ → P maps F to F (U). Conversely, given
an abelian group A and V ∈ T ′, ipA(V ) =

#
Hom(V,U)(A). This is exact, so we conclude that if F is an

injective sheaf, then F (V ) is injective for all V ∈ T ′.

10.4. Sheafification. Let T be a site, P be the category of abelian presheaves on T , and S be the
category of abelian sheaves. Let i : S → P be the embedding functor.

10.4.1. Theorem. The functor i has a left adjoint, the sheafification functor P → S .

Proof. Consider a functor ∤: P → P, sending

F %→ F ∤ : F ∤(U) = Ȟ0(U,F ).

it is routine to verify that F ∤ is an abelian presheaf, ∤ is indeed a functor, and there is a canonical morphism
F → F ∤. Now, observe that any morphism F → G, where G is a sheaf, factors uniquely as F → F ∤ → G.
Uniqueness can be seen by noting that if F → G is the zero map, then so are the induced maps H0({Ui →
U}, F ) → H0({Ui → U}, G) = G(U), and we can simply pass to the colimit.

This finishes the proof of adjointness, provided that F ∤ is a sheaf. Unfortunately, this is not always true,
but it is indeed true that (F ∤)∤ =: F 4 is a sheaf, which we prove in the next proposition. Intuitively, the
correct functor should replace a global section with the collection of local sections that agree locally on their
overlaps, hence the need to sheafify in two steps. □



10. SHEAVES ON SITES 160

10.4.2. Proposition. A presheaf F is separated if F (U) →
%

F (Ui) is injective for each covering {Ui →
U}. Then:

(i) If F is any presheaf, F ∤ is separated.
(ii) If F is separated, then F ∤ is a sheaf, and F → F ∤ is an monomorphism.

Proof. Item (i) is routine. For (ii), we first show that F → F ∤ is a monomorphism, i.e. F (U) =
H0({U → U}, F ) → Ȟ0(U,F ) is injective. In fact, it suffices to show that for any refinement of coverings
{Vj → U} → {Ui → U}, H0({Ui → U}, F ) → H0({Vj → U}, F ) is injective. Say s is in the kernel.

Consider the covering {Vj ×U Ui → U} and refinement maps {Vj ×U Ui → U} pr2−−→ {Ui → U}, and

{Vj ×U Ui → U} pr1−−→ {Vj → U} → {Ui → U}. By lemma 11.1.7, the two induce the same maps in H0, so s
is mapped to 0 in H0({Vj ×U Ui → U}, F ). This map is given by the restriction of

2
F (Ui) →

2
F (Vj ×U Ui),

which is injective since F is separated.
Now, we show that F ∤ is a sheaf. Suppose s = (si) ∈

%
i F

∤(Ui) is in the kernel. Pick representing
elements si ∈ H0({Uik → Ui}, F ). Then we have that the images of si, sj in H0(Ui ×U Uj , F ) agree,
so they agree in some common refinement of {Uik ×U Uj → Ui ×U Uj} and {Ujl ×U Ui → Ui ×U Uj}.
In fact, by the injectivity proven in the above paragraph, this means that they agree in any common
refinement, such as H0({Uik ×U Ujl → Ui ×U Uj}, F ) ⊆

%
k,l F (Uik ×U Ujl). Now, define the element

t ∈ H0({Uik → U}, F ) ↩→ F ∤(U) by ti = si ∈
%

k F (Uik), which lies in the kernel by the above reasoning.

This shows that F ∤ is a sheaf. □
10.4.3. Corollary. An abelian presheaf F is a sheaf iff for each covering {Ui → U}, there is a refinement
{U ′

j → U} such that

(∗) 0 → F (U) →
2

F (U ′
j) →

2
F (U ′

j1 ×U U ′
j2)

is exact.

Proof. The coverings which satisfy (∗) then forms a final subcategory of all coverings, so the colimit
restricted to these coverings is the same as the colimit over all coverings. So F → F ∤ is an isomorphism, so
F is a sheaf. □

10.5. The category of abelian sheaves.

10.5.1. Theorem. The category S of abelian sheaves on a site T is a Grothendieck category, and therefore
has enough injectives.

Proof. First, S is an additive category as a full subcategory of P that contains 0.
Next, we construct the kernels and cokernels of a morphism F → G. The kernel K = K4 is constructed

pointwise and can be easily verified to be a sheaf. The cokernel C4 is defined to be the sheafification of the
presheaf cokernel C, and this satisfies the universal property by the adjunction.

The image I4 is defined similarly by sheafifying the presheaf image I. Since 0 → I → G → C → 0 is
exact, so is 0 → I4 → G4 → C4 (left exactness of Ȟ0). So I4 = ker(coker(F 4 → G4)) in S . To show that
this is isomorphic to the coimage J4, let J be the presheaf coimage. Then u : J → I is an isomorphism. So
u4 : J4 → I4, which coincides with the natural map from coimage to image, is an isomorphism.

Next, we show that S satisfies (AB3). Let Fi be a family of sheaves, and let F be their pointwise,
presheaf direct sum. Again by the adjunction, F 4 is the sheaf direct sum.

Next, we show that S satisfies (AB5). Let Ai ↩→ B be a filtered family of subobjects, and we wish
to show

$
Ai = lim−→Ai. Let A =

$
Ai in P, then A4 =

$
Ai in S , since sheafification commutes with

direct sums and images. In the AB5 category P, there is a unique extension A → B. This induces a unique
extension A4 → B, once again by the adjunction. This shows (AB5).

Finally, we show that S has a set of generators. In fact, since the presheaves ZU ∈ P generate P,
given a monomorphism of sheaves A ↩→ B, there exists ZU → B that does not factor through A. Then the

induced Z4
U → B does not factor through A either. So Z4

U is a set of generators. □
10.5.2. Proposition. The sheafification functor ; : P → S is exact.

Proof. As a left adjoint, it is clearly right exact. Also, i ◦ ; is left exact, thus so is ;. □
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10.6. Functors fs and fs. Let f : T → T ′ be a map of sites. Define P,S ,P ′,S ′. Define the two
functors fs, f

s as:

fs = ;′ ◦ fp ◦ i : S → S ′,

fs = ; ◦ fp ◦ i′ : S ′ → S .

It is clear that fs = fp ◦ i′.

10.6.1. Proposition. fs is left adjoint to fs. If, moreover, fs is exact, then fs maps injectives to injectives.
□

10.6.2. Example (direct and inverse image). Let T, T ′ be the sites of open sets of two topological spaces
X,X ′, and let π : X ′ → X be a continuous map, which induces a map of sites f : T → T ′. Then fs is called
the direct image functor, and fs the inverse image functor.

10.6.3. Example (G-sets). Let T, T ′ be the canonical topologies on the category of left G,G′-sets. Let
π : G′ → G be a homomorphism of groups, which induces a map of sites f : T → T ′. Denote π∗ = fs,π∗ = fs.
Identifying abelian sheaves with G-modules, we can write explicitly

π∗(A
′) = HomG′(G,A′)

as a G-module by (ga)(h) = a(hg), and

π∗(A) = A

as a G′-module (cf. corollary 10.3.4). In the case G′ ⊆ G, the module π∗(A
′) = HomG′(G,A′) is called the

co-induced G-module CoIndGG′ A. The adjunction then translates to half of Frobenius reciprocity.

10.6.4. Example (continuous G-sets). Let G,G′ be profintie groups, and T, T ′ be the canonical topologies
on the category of smooth left G,G′-sets. Let π : G′ → G be a smooth homomorphism of groups, which
induces a map of sites f : T → T ′. Denote π∗ = fs,π∗ = fs. Identifying abelian sheaves with continuous
G-modules, we can write explicitly

π∗(A
′) = Homcts

G′ (G,A′) = lim−→HomG′(G/H,A′)

and

π∗(A) = A.

10.6.5. Proposition. Suppose T, T ′ have final objects and finite fiber products, and f : T → T ′ preserves
them. Then fs is exact.

Proof. It is sufficient to show fp is left exact, i.e. given a fixed U ′ ∈ T , the functor P → Ab,
F %→ fpF (U ′), is left exact. Let I be the category of pairs (U,φ), where φ : U ′ → f(U) is a morphism in T ′.
Then fpF (U ′) = lim−→(U,φ)

F (U) taken over the category Iop, so it suffices to show that Iop is pseudofiltered.

In fact, it is filtered, and this follows from the assumptions on final objects and fiber products. □

Consequently, in all three examples above, fs maps injective objects to injective objects.

11. Cohomology of sheaves

11.1. Čech cohomology. Let T be a site, P the abelian category of presheaves of abelian groups on
T . It satisfies (AB5) and has generators, so it has enough injectives, so right derived functors exist for every
left exact covariant additive functor F : P → Ab. Also, exactness is verified pointwise.

11.1.1. Proposition. All colimits exist in P and are constructed pointwise. Colimits are additive and right
exact, and are exact if they are pseudofiltered (AB5).

11.1.2. Definition. Let {Ui → U} be a covering. Define a functor

H0({Ui → U}, •) : P → Ab

F %→ ker(
2

F (Ui) ⇒
2

F (Ui ×U Uj)).

Then it is left exact and additive, so we may define RqH0({Ui → U}, •) =: Hq({Ui → U}, •), the q-th Čech
cohomology group associated to {Ui → U} with values in F .
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11.1.3. Theorem. Let C•({Ui → U}, F ) be the Čech cochain, then its q-th cohomology group can be
canonically identified with Hq({Ui → U}, F ).

Proof. It is sufficient to show that the q-th cohomologies =Hq({Ui → U}, F ) of C•({Ui → U}, F ) form

a universal ∂-functor extending H0 = =H0, which in turn follows from each =Hq being effaceable, for q ≥ 1,
i.e. kills all injective objects. Let F be an injective sheaf. Let ZU : V %→

"
Hom(V,U) Z be the generators of

P, which satisfy Hom(ZU , F ) ∼= Hom(Z, F (U)) ∼= F (U). Then

Cq({Ui → U}, F ) ∼= Hom(
,

i0,...,iq

ZUi0×U ···×UUiq
, F ).

Since F is injective, it suffices to show that the complex

(∗) · · · →
,

i,j

ZUi×UUj
(V ) →

,

i

ZUi
(V ) → 0

is exact, for all V . Fix an arbitrary map φ : V → U , we denote S =
3

i Homφ(V, Ui), where Homφ(V, Ui)
consists of morphisms that commute with φ and Ui → U . Then to show (∗) is exact, it suffices to show that

· · · →
,

S×S

Z →
,

S

Z → 0

is exact. But the identity on this chain complex is null-homotopic, so its homology groups are all zero, i.e.
is exact. □

11.1.4. Definition. A refinement map of coverings {U ′
j → U}j∈J → {Ui → U}i∈I consists of a map

ε : J → I of index sets, and U -morphisms fj : U
′
j → Uε(j).

Each refinement map induces a map of Čech cohomology groups in the opposite direction, which is
∂-functorial. Thus we may define:

11.1.5. Definition (Čech cohomology). Let U be an object, F ∈ P an abelian presheaf. Then the q-th
Čech cohomology of U with values in F is defined as

Ȟq(U,F ) = lim−→
{Ui→U}

Hq({Ui → U}, F ).

11.1.6. Theorem. The functor F %→ Ȟ0(U,F ) is left exact and additive, and its right derived functors are
Ȟq(U,F ).

Proof. It is sufficient to show that lim−→ takes exact sequences of functors of form Hq(•, F ) to exact
sequences in Ab. To do this, we first prove the following lemma:

11.1.7. Lemma. Let (f, ε), (g, η) be two refinement maps {U ′
j → U} → {Ui → U}, then they induce the

same maps

Hq({Ui → U}, F ) → Hq({U ′
j → U}, F ).

Proof. Let h :
%

F (Ui0 ×U Ui1) →
%

F (Uj) be the “homotopy” map induced by maps Uj → Uε(j) ×U

Uη(j). Then the maps f0, g0 :
%

F (Ui) → F (U ′
j) satisfy f0 − g0 = h ◦ d, so they induce the same map in the

zeroth cohomology, so they induce the same map in all cohomologies by universality. □

Back to the theorem: the lemma tells us that instead of taking the colimit across the category of coverings
with all refinement maps as morphisms, we may as well consider the poset of all coverings, ignoring the
different refinement maps. This is now a filtered category: given coverings {Ui → U}, {U ′

j → U}, by the
axioms of a site, {Ui ×U U ′

j → U} is a covering as well. So taking the colimit is now exact and we are
done. □
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11.2. Sheaf cohomology. Let T be a site, S the abelian category of sheaves of abelian groups on T .
It satisfies (AB5) and has generators, so it has enough injectives, so right derived functors exist for every
left exact covariant additive functor F : S → Ab. In particular, consider the section functor ΓU : S → Ab
given by F %→ F (U), which is left exact.

11.2.1. Definition. Define the q-th sheaf cohomology

Hq(U,F ) := RqΓU (F ).

11.2.2. Example (group cohomology). Let G be a group, A a left G-module, and e the one-element left
G-set. Then Γe(HomG(•, A)) = HomG(e,A) ∼= AG. So

Hq(e,HomG(•, A)) ∼= Hq(G,A)

is the usual group cohomology. Conversely, given any G-set X, we may write it as the disjoint union of
G-orbits Xi, then Xi

∼= G/Hi as G-sets. Then

Hq(X,HomG(•, A)) ∼=
2

i

Hq(G/Hi,HomG(•, A)) ∼=
2

i

Hq(Hi, A).

11.3. Čech-to-derived functor spectral sequence. Let T be a site, P the category of abelian
presheaves on T , and S the category of abelian sheaves on T . The composition functor

S
i−→ P

Ȟ0(U,•)−−−−−→ Ab

is equal to ΓU . For F ∈ S , let Hq(F ) := Rqi(F ) be the derived functors of i.

11.3.1. Proposition. For each U ∈ T , we have, canonically,

Hq(F )(U) = Hq(U,F ).

Proof. Taking q = 0, we have H0(U,F ) = F (U) = H0(F )(U), so it is sufficient to show that Hq(•, F )
(which are easily verified to be presheaves on T ) form a universal ∂-functor S → P. But both exactness
and effaceability follow from the definition. □

11.3.2. Proposition. For each abelian sheaf F , Hq(F )∤ = 0 for q ≥ 1.

Proof. We know Hq(F )∤ → Hq(F )4 is a monomorphism, so it suffices to show that Hq(F )4 = 0 for
q ≥ 1. Apply the Grothendieck spectral sequence to the composition of functors idS = ; ◦ i. □

11.3.3. Theorem (Čech-to-derived functor spectral sequence). Let F be an abelian sheaf.

(i) For each covering {Ui → U}, there is a spectral sequence

Ep,q
2 = Hp({Ui → U},Hq(F )) =⇒ Hp+q(U,F );

(ii) For each U ∈ T , there is a spectral sequence

Ep,q
2 = Ȟp(U,Hq(F )) =⇒ Hp+q(U,F ).

Proof. To apply the Grothendieck spectral sequence, we have to show that injective sheaves are G-
acyclic in the category of presheaves, where G = H0({Ui → U}, •) or Ȟ0(U, •). Because ; is exact, i maps
injectives to injectives (corollary 10.3.3), which are G-acyclic for any additive left exact functor. □

We get edge morphisms Hp({Ui → U}, F ) → Hp(U,F ) and Ȟp(U,F ) → Hp(U,F ).

11.3.4. Corollary. Let {Ui → U} be a covering, and F an abelian sheaf such that

Hq(Ui0 ×U · · ·×U Uir , F ) = 0

for all q ≥ 1. Then the edge morphisms Hp({Ui → U}, F ) → Hp(U,F ) are isomorphisms for all p ≥ 0.

Proof. The given data implies that Hp({Ui → U},Hq(F )) = 0 for all p ≥ 0, q ≥ 1, so the edge
morphisms are isomorphisms. □

11.3.5. Proposition. The edge morphism Ȟp(U,F ) → Hp(U,F ) is isomorphic for p = 0, 1 and injective
for p = 2.



11. COHOMOLOGY OF SHEAVES 164

Proof. Using proposition 11.3.2, the five-term exact sequence rewrites as:

0 → Ȟ1(U,F ) → H1(U,F ) → 0 → Ȟ2(U,F ) → H2(U,F )

which proves the proposition. □
11.4. Flasque sheaves.

11.4.1. Definition. An abelian sheaf F on a site T is flasque (or flabby) if for all q ≥ 1 and all coverings
{Ui → U}, Hq({Ui → U}, F ) = 0.

11.4.2. Proposition. The following are true about flasque sheaves:

(i) Let 0 → F ′ → F → F ′′ → 0 be exact in S . If F ′ is flasque, then it is exact in P.
(ii) Let 0 → F ′ → F → F ′′ → 0 be exact in S . If F ′, F are flasque, then so is F ′′.
(iii) If F ⊕G is flasque, so is F .
(iv) Injective abelian sheaves are flasque. □

11.4.3. Corollary. For an abelian sheaf F , TFAE:

(1) F is flasque;
(2) For all q ≥ 1, Hq(F ) = 0.

Proof. (1) =⇒ (2): Let 0 → F → M0 f0

−→ M1 f1

−→ M2 f2

−→ . . . be an injective resolution in S , we
wish to show it is exact in P. Split it into short exact sequences:

0 → F → M0 → ker(f1) → 0

0 → ker(f1) → M1 → ker(f2) → 0

. . .

Then by induction, each of ker(f i) are flasque, and all these short exact sequences are exact in P as well.
Thus the long sequence is exact in P too.

(2) =⇒ (1): By corollary 11.3.4, the edge morphisms Hq({Ui → U}, F ) → Hq(U,F ) are isomorphisms.
□

11.4.4. Corollary. Flasque resolutions can be used to compute sheaf cohomology.

Proof. The key is that flasque sheaves are i-acyclic, by the previous corollary. So suppose we have
an acyclic resolution 0 → F → M i. This splits into short exact sequences 0 → Ki → M i → Ki+1 → 0,
where Ki = ker(M i → M i+1). Its long exact sequence reads 0 → Hq(Ki+1) → Hq+1(Ki) → 0, since M i

are acyclic. So by induction, Hq(F ) ∼= Hq(K0) ∼= H1(Kq−1), which by the long exact sequence

0 → Kq−1 → Mq−1 → Kq → H1(Kq−1) → 0

is equal to Kq/ im(Mq−1 → Kq) ∼= Hq(0 → M i) in the category of presheaves. □
11.4.5. Example. Every abelian sheaf is flasque iff i : S → P is exact. This occurs, for example, when T
is the site of sets with the canonical topology.

11.5. The Leray spectral sequence. Let f : T → T ′ be a map of sites, then fs : S ′ → S is left
exact, so right derived functors Rqfs exist.

11.5.1. Proposition. The following diagram commutes:

S ′ S

P ′ P.

Rqfs

Hq

fp

4

In other words, given an abelian sheaf F ′ on T ′, RqfsF ′ is the sheafification of the presheaf U %→ Hq(f(U), F ′)
on T .

Proof. Applying the Grothendieck spectral sequence to fs = (;◦fp)◦ (i′), we have a spectral sequence

Ep,q
2 = Rp(; ◦ fp)(Hq(F ′)) =⇒ Rp+qfsF ′.

For p > 0, Ep,q
2 = 0 since ; ◦ fp is exact. So (fpHq(F ′))4 = E0,q

2 = RqfsF ′. □
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11.5.2. Proposition. The functor fs maps flasque objects in S ′ to flasque objects in S . (Contrast this
with the fact that if fs is exact, then fs maps injectives to injectives.) □

11.5.3. Corollary. Let T ′′ g−→ T
f−→ T ′ be maps of sites, then fs maps flabby sheaves to gs-acyclic sheaves.

□

Consequently, we can apply the Grothendieck spectral sequence:

11.5.4. Theorem (Leray spectral sequence). Let T ′′ g−→ T
f−→ T ′ be maps of sites, and F ′ an abelian sheaf

on T ′. Then there is a spectral sequence

(∗) Ep,q
2 = Rpgs(RqfsF ′) =⇒ Rp+q(fg)s(F ′).

In particular, taking T ′′ to be the site with one object ∗ and one morphism, and let g map ∗ to U ∈ T , the
Leray spectral sequence reads

(∗∗) Ep,q
2 = Hp(U,RqfsF ′) =⇒ Hp+q(f(U), F ′).

The edge morphisms read

Ep,0
2 = Hp(U, fsF ′) →Hp(f(U), F ′)

Hq(f(U), F ′) → Rqfs(F ′)(U) = E0,q
2

The latter can be interpreted as the sheafification map in proposition 11.5.1.

11.5.5. Example. Let π : G′ → G be a homomorphism of groups, U = {e} the one-element G-set, and
identify the category of G′-modules with the category of abelian sheaves on TG′ . Then given a G′-module
A′, (∗∗) reads

Ep,q
2 = Hp(G,Rqπ∗(A

′)) =⇒ Hp+q(G′, A′).

Here π∗ is the functor as in example 10.6.3.

11.5.6. Example (Hochschild-Serre spectral sequence). Let H ⊴ G be a normal subgroup, and π : G →
G/H the natural homomorphism. Then for each left G-module A,

π∗A = HomG(G/H,A) ∼= AH ,

so Rqπ∗(A) = Hq(H,A), where we identify A with the abelian sheaf HomG(•, A). Then the Leray spectral
sequence in the previous example reads

Ep,q
2 = Hp(G/H,Hq(H,A)) =⇒ Hp+q(G,A).

The edge morphisms Hp(G/H,AH) → Hp(G,A) are called inflations, and the edge morphisms Hq(G,A) →
Hq(H,A)G/H are called restrictions. The five-term exact sequence reads

0 → H1(G/H,AH) → H1(G,A) → H1(H,A)G/H → H2(G/H,AH) → H2(G,A),

where the second-to-last map is also called the transgression.

11.5.7. Example (Shapiro’s lemma). Let π : H → G be an inclusion. Then π∗ is exact, so Ep,q
2 = 0 for

q ≥ 1. Consequently, the edge morphism Hp(G,CoIndGH(A)) → Hp(H,A) is an isomorphism.

11.5.8. Example (Tate cohomology). (TODO: example 3.7.11 in Tamme)

11.6. Localization. Let T be a site, Z ∈ T an object, then there is naturally a site T/Z on the category
of Z-objects. The map i : T/Z → T is then a map of sites.

11.6.1. Lemma. The functor is is exact.

Proof. We know from proposition 11.5.1 that RqisF = (ipHq(F ))4. From proposition 11.3.2, Hq(F )4 =
0, so it suffices to show that ip commutes with ∤, which is easy to check. □

11.6.2. Corollary. There are natural isomorphisms

Hp(U → Z, isF ) ∼= Hp(U,F )

given any abelian sheaf F on T , and any object U → Z in T/Z.
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Proof. Applying the Leray spectral sequence, we get

Ep,q
2 = Hp(U → Z,RqisF ) =⇒ Hp+q(U,F ).

But Rqis = 0 when q ≥ 1, so the edge morphism Hp(U → Z, isF ) → Hp(U,F ) is isomorphic. □

11.6.3. Example. Let TG be the canonical topology on left G-sets. Let H ≤ G be a subgroup, then the left

cosets G/H is an object in T , and in fact the functor TG/(G/H) → TH given by [A
φ−→ G/H] %→ φ−1(1GH)

is an equivalence of sites.

11.7. Comparison lemma.

11.7.1. Theorem (comparison lemma). Let i : T ′ → T be a map of sites, satisfying that:

• i is fully faithful (and therefore T ′ is equivalent to a full subcategory of T );
• A covering {Ui → U} of T , where all Ui and U are in T ′, is a covering in T ′;
• Each object U ∈ T admits a covering {Ui → U}, where Ui ∈ T ′.

Then is and is are quasi-inverses.

Proof. We will show that the unit η : idS ′ → is ◦ is and the counit ε : is ◦ is → idS are natural
isomorphisms. (TODO) □

11.7.2. Corollary. Let i : T ′ → T be a map of sites, satisfying that:

• i is fully faithful;
• Any covering {Ui → U} of U ∈ T ′, where Ui ∈ T , admits a refinement {U ′

j → U} where U ′
j ∈ T ′.

Then η : idS′ → is ◦ is is a natural isomorphism, and is is exact.

Proof. The proof of exactness of is is similar to lemma 11.6.1, since the second condition tells us that
ip commutes with ∤. □

11.7.3. Corollary. Let i : T ′ → T be a map of sites, satisfying the two conditions in the previous corollary.
Let U ∈ T ′ and F, F ′ be abelian sheaves on T, T ′, then we have natural isomorphisms

Hp(T ′;U, isF ) → Hp(T ;U,F )

and

Hp(T ′;U,F ′) → Hp(T ;U, isF
′).

Proof. The former comes from the Leray spectral sequence

Ep,q
2 = Hp(T ′;U,RqisF ) =⇒ Hp+q(T ;U,F ).

Since is is exact, the edge morphisms Hp(T ′;U, isF ) → Hp(T ;U,F ) are isomorprhisms.
The latter comes from the composite

Hp(T ′;U,F ′) → Hp(T ′;U, isisF
′) → Hp(T ;U, isF

′)

where the two maps are both isomorphisms by the previous corollary. □

11.7.4. Example. Let G be a profinite group, TG the canonical topology on continuous G-sets, and T ′
G the

canonical topology on finite continuous G-sets. Then it is easy to see that i : T ′
G → TG satisfies the three

conditions in the comparison lemma theorem 11.7.1: each continuous G-set U can be covered by the orbits
Gu for u ∈ U , which are finite since the stabilizer of u is open.

11.8. Noetherian topology.

11.8.1. Definition. Let T be a site. An object U is quasicompact if for any cover {Ui → U}i∈I , there exists
a finite subset I ′ ⊆ I such that {Ui → U}i∈I′ is still a cover.

We call T Noetherian if every object is quasicompact.

11.8.2. Example. Let X be a topological space, and T the site of open sets. Then X is a Noetherian space
iff T is Noetherian.

Let T be a site. Then we may define a site T f allowing only the finite coverings. Let i : T f → T be the
identity map. Clearly, is is fully faithful.
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11.8.3. Proposition. Let T be Noetherian. Then the following are true:

(i) is is an equivalence of categories.
(ii) There are δ-functorial isomorphisms Hq(T f ;U, isF ) ∼= Hq(T ;U,F ) for any abelian sheaf F on T .
(iii) Flasque sheaves on T can be checked on finite covers.

Let T be a site, and Fi a family of abelian sheaves on T indexed by some category I. There are natural
morphisms

(∗) lim−→Hq(U,Fi) → Hq(U, lim−→Fi)

which are not isomorphisms in general. However:

11.8.4. Theorem. If T is Noetherian and I is pseudofiltered, then the map (∗) is an isomorphism.

Proof. (TODO) □

For example, we obtain that lim−→ commutes with arbitrary direct sums.

12. Derived categories

12.1. The category of cochain complexes up to homotopy. Let us first consider a concrete
example. Let A be an abelian category, and denote by K(A) the following category:

• objects: cochain complexes (X•, d•);
• morphisms: maps of complexes up to homotopy. This means that HomK(A)(X,Y ) is the abelian
group of maps X → Y of chain complexes quotient the subgroup of maps that are null-homotopic.

This forms an additive category (in general not abelian).
Let X[1] denote the complex given by X[1]n = Xn+1, with the sign of the differential flipped ; denote the

functor X %→ X[1] by T . It is an additive automorphism. Be careful that for a chain map f : X → Y , the
sign of T (f) is not flipped; only the differentials are.

12.1.1. Definition. Let u : X → Y be a map of chain complexes. Define the mapping cone C(u) of u by:
Cn(u) = Xn+1 ⊕ Y n, with differential d(xn, yn−1) = (−dxn, u(xn) + d(yn−1)).

12.1.2. Definition. A distinguished triangle is a 6-tuple (X,Y, Z, u, v, w), where X
u−→ Y

v−→ Z
w−→ X[1],

that is isomorphic (in K(A)) to one of the form (X,Y,C(u), u, i, p).

Note there are obvious maps Y
i−→ C(u)

p−→ X[1]. It is not hard to check that p : C(u) → X[1] is
isomorphic to the mapping cone of i : Y → C(u), and u : X → Y is isomorphic to the mapping cone of
−p[−1] : C(u)[−1] → X. So (X,Y, Z, u, v, w) is distinguished iff (Y, Z, T (X), v, w,−T (u)) is.

We also define the full subcategory of bounded complexes: K+(A),K−(A),Kb(A) are the complexes
(isomorphic to ones that are) bounded below, above, and on both sides, respectively.

12.2. Triangulated categories.

12.2.1. Definition. Let C be an additive category. Let T : C → C be an additive automorphism, called
the translation functor. In addition, suppose there is collection of 6-tuples (X,Y, Z, u, v, w) called triangles,

where X
u−→ Y

v−→ Z
w−→ T (X). Together, this data is called a triangulated category if the following are

satisfied:

• (TR1) Every 6-tuple as above isomorphic to a triangle is a triangle itself. For every morphism
u : X → Y , there is a triangle of form (X,Y, Z, u, v, w). The 6-tuples (X,X, 0, idX , 0, 0) are
triangles.

• (TR2) The 6-tuple (X,Y, Z, u, v, w) is a triangle iff (Y, Z, T (X), v, w,−T (u)) is.
• (TR3) Given the solid arrows (rows represent triangles), there exists a (not necessarily unique) h
making the diagram commute. (J. P. May observed that this axiom and the “if” part of (TR2) are
actually redundant; but (TR3) itself is very often used.)

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

u v w

u′ v′ w′

f g T (f)h
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• (TR4) “Verdier’s octahedral axiom”: in the following diagram, suppose we are given all solid lines
(collinear points represent triangles), then there exist f, g (the dotted maps) making the diagram
commute, and forming a triangle together with T (j) ◦ i. (This axiom relates the distinguished
triangles formed from u, v, and v ◦ u. Two more common ways of drawing this diagram are shown:
the “braid” version and the original octahedral version.)

T (X)

Z ′

Y

X Z Y ′ T (X)

X ′

T (Y )

T (Z ′)

v

i

g

j
f

T (u)

u

v◦u

T (j)◦i
T (j)

X Z X ′ T (Z ′)

Y Y ′ T (Y )

Z ′ T (X)

u v

v◦u

j

i

T (u)

T (j)

T (j)◦i

f

g

Y ′

Z ′ X ′

X Z

Y

u v

v◦uj

[1]

[1]

[1]

f g

T (j)◦i

i

If all but (TR4) are satisfied, C is said to be pretriangulated. It is a consequence of the first three axioms
that for any triangle (X,Y, Z, u, v, w), the composition v ◦ u = 0. In addition, using exercise 12.2.5 and the
five lemma, it is easy to see that in (TR3), if f, g are isomorphisms, then so is h. Consequently, the triangle
in (TR1) based at any u : X → Y is unique as well (but up to non-unique isomorphism).

12.2.2. Exercise. The previously mentioned category of cochain complexes, K(A), is triangulated.

12.2.3. Definition. An additive functor F : C → C ′ between triangulated categories is a covariant ∂-
functor if it commutes with TC , T

′
C and maps triangles to triangles. A contravariant ∂-functor F commutes

with TC , T
−1
C′ and maps triangles to triangles.

12.2.4. Definition. An additive functor H : C → A from a triangulated category to an abelian category is
a (covariant) cohomological functor if for any triangle (X,Y, Z, u, v, w), the sequence

· · · → H(TnX) → H(TnY ) → H(TnZ) → H(Tn+1X) → . . .

is exact. Notice it suffices to require H(X) → H(Y ) → H(Z) to be exact.

12.2.5. Exercise. For any triangulated category C and object X, HomC(X,−) and HomC(−, X) are both
cohomological functors. In addition, for C = K(A), H0(−) is also a cohomological functor.

12.3. Localization. Let C be a category. Let S be a collection of morphisms in C, satisfying:

• (MS1) S is closed under composition, and contains all identity maps;

• (MS2) Any diagram X
s−→ Y ← Z, such that s ∈ S, can be completed to

W Z

X Y

t

s
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where t ∈ S; and the same statement holds for all arrows reversed.
• (MS3) For any two morphisms f, g : X → Y , there exists s ∈ S such that f ◦ s = g ◦ s if and only
if there exists t ∈ T such that t ◦ f = t ◦ g.

Such a collection S is called a multiplicative system.

12.3.1. Proposition. There exists a category CS, called the localization of C with respect to S, and a
functor Q : C → CS, satisfying the following universal property:

(1) For any s ∈ S, Q(s) is an isomorphism.
(2) Any functor F : C → D, such that the images of elements in S are isomorphisms, uniquely factors

through Q.

Further, CS is an additive category if C is.

Proof. One defines CS as having the same objects as C, but define

HomCS
(X,Y ) = lim−→

s:X′→X
s∈S

HomC(X
′, Y ) = lim−→

t:Y→Y ′

t∈S

HomC(X,Y ′).

To see this equality, and to define the composition of morphisms (and showing it is well-defined) relies on
using (MS1) through (MS3). □

Now, let C be a triangulated category, with translation functor T . Suppose S satisfies, in addition, that
S is compatible with the triangulation, meaning that:

• (MS4) For s ∈ S, T (s) ∈ S.
• (MS5) In the situation of (TR3), if f, g ∈ S, then so is h.

12.3.2. Proposition. In this situation, CS admits a unique structure of a triangulated category such that
Q : C → CS is a ∂-functor, and it satisfies the corresponding universal property with respect to ∂-functors
F : C → D mapping S to isomorphisms.

Proof. Declare a triangle in CS to be one isomorphic to the image of a triangle in C. It is clear
that (TR1) and (TR2) hold. For an illustration of the general level of such arguments, let us verify (TR3).
Let (X,Y, Z, u, v, w), (X ′, Y ′, Z ′, u′, v′, w′) be two triangles in CS . Without loss of generality, they lie in
the image of C. Let f : X → X ′, g : Y → Y ′ be morphisms in CS . The key step is to find morphisms
f ′, g′, u1, s, t in C, where s, t ∈ S, in the diagram which commutes in C

X X1 X ′

Y Y1 Y ′

u

f ′
s

g′ t

u′u1

with f = s−1 ◦ f ′, g = t−1 ◦ g. By definition f is represented by a pair (f ′ : X → X1, s : X ′ → X1). By
(MS2) we may find Y ′

1 along with maps α : X1 → Y ′
1 , β : Y ′ → Y ′

1 such that β ∈ S and β ◦ u′ = α ◦ s. Now,
β ◦ g : Y → Y ′

1 is a morphism in CS , and therefore is represented by some (δ : Y → Y ′′
1 , γ : Y ′

1 → Y ′′
1 ) with

γ ∈ S. The picture looks like this:

X X1 X ′

Y Y ′
1 Y ′

Y ′′
1

f ′
s

β

u u′α

δ
γ

Now, in CS , we have γ ◦ α ◦ f ′ = γ ◦ β ◦ u′ ◦ f = γ ◦ β ◦ g ◦ u = δ ◦ u, i.e. the left pentagon commutes in
CS . Therefore, it commutes in C once we post-compose by another map η : Y ′′

1 → Y1 in S. Finally, we let
g′ = η ◦ δ, u1 = η ◦ γ ◦α, and t = η ◦ γ ◦ β, completing the key step. Now, we may extend u1 : X1 → Y1 to a
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triangle (X1, Y1, Z1, u1, v1, w1) in C, and by (MS5) we can extend this to the commutative diagram

X Y Z T (X)

X1 Y1 Z1 T (X1)

X ′ Y ′ Z ′ T (X ′)

f ′

s

u v w

u′ v′ w′

T (f ′)

T (s)

u1 v1 w1

g′

t

h′

r

where r ∈ S. Let h = r−1 ◦ h, and we get a map of triangles as desired. □

12.4. The derived category. We now return to the example of K(A), for an abelian category A.
Let S be the collection of quasi-isomorphisms of chain complexes, i.e. ones that induce isomorphism on
homology.

12.4.1. Proposition. The collection S satisfies axioms (L1) through (L5).

12.4.2. Definition. The derived category D(A) of A is the triangulated category K(A) localized at S.

12.4.3. Example. Let 0 → X
u−→ Y

v−→ Z → 0 be a short exact sequence of cochain complexes. In the
present context, this is a triangle in D(A): the map w : Z → X[1] is represented by p : C(u) → X[1] and a
map C(u) → Z, given by Xn+1 ⊕ Y n ∋ (x, y) %→ v(y) ∈ Zn, which is a quasi-isomorphism.

We also define full subcategoriesD+(A), D−(A), Db(A) of complexes isomorphic to ones that are bounded
below, above, and on both sides, respectively. By the following proposition (proof left as exercise), they can
also be equivalently defined as the localization of K+(A),K−(A),Kb(A) with repsect to quasi-isomorphisms.

12.4.4. Proposition. Let C be a category, S a multiplicative system, D a full subcategory of C such that
S ∩D is a multiplicative system in D. Then, the natural map DS∩D → CS is fully faithful, as long as one
of the two following conditions hold:

• For any morphism s : Y → X in S, with X ∈ D, there exists a morphism f : Z → Y such that
Z ∈ D and s ◦ f ∈ S;

• For any morphism s : X → Y in S, with X ∈ D, there exists a morphism f : Y → Z such that
Z ∈ D and f ◦ s ∈ S.

Now, we give an alternative description of D+(A).

12.4.5. Lemma. Let I be a chain complex bounded below, consisting of injective objects. Let X be an exact
(i.e. acyclic) complex. Then any map f : X → I is null-homotopic.

12.4.6. Lemma. Let I be a chain complex bounded below, consisting of injective objects. Let Y be another
chain complex, and let s : I → Y be a quasi-isomorphism. Then it has a left homotopy inverse.

Proof. Consider the mapping cone X of s. By the previous lemma, the map p : X → I[1] is null-
homotopic. Let h be the homotopy, which splits into two sequences of maps a : In+1 → In and b : Y n → In.
The equality dh + hd = p implies that b is a map of complexes Y → I, and b ◦ s is homotopic to the
identity. □

12.4.7. Lemma. Suppose the abelian category A has enough injectives. Then any X ∈ K+(A) admits a
quasi-isomorphism to a chain complex bounded below consisting of injective objects.

Proof. Say Xn = 0 for n < 0. Let In = 0 for n < 0. Pick a mono f0 : X0 ↩→ I0 where I0 is injective.
Suppose we have constructed I0, . . . , In−1. Pick a mono (In−1/ im(In−2))

3
Xn−1 Xn ↩→ In (recall pushouts

exist in any abelian category as a coequalizer), and let d : In−1 → In, fn : Xn → In be the obvious maps.
This satisfies the required properties, and in addition fn are mono. □

Let I be the additive subcategory of injective objects of A. We analogously define K+(I). There is a
natural functor K+(I) → K+(A) → D+(A). By lemma 12.4.6 and proposition 12.4.4, one sees that this is
in fact fully faithful. Then, by lemma 12.4.7, we have:

12.4.8. Proposition. Suppose A has enough injectives, then there is an equivalence K+(I) ≃ D+(A).
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12.5. Derived functors, according to Verdier. Let F : A → B be an additive functor between
abelian categories. It naturally extends to a functor F : K(A) → K(B). However, if F is not exact, this
does not obviously extend to a functor D(A) → D(B).

Instead, using proposition 12.4.8, we may use the composition

RF : D+(A)
∼−→ K+(I) → K(A)

F−→ K(B) → D(B).

This is called the derived functor of F . It is a covariant δ-functor (definition 12.2.3).
By construction, the nth cohomology of the complex RF (M), where M ∈ A is viewed as embedded

in D+(A), is precisely the nth right derived functor RnF (M). The classical construction of a long exact
sequence of right derived functors obtained from a short exact sequence of objects in A is then interpreted
in this light using example 12.4.3.

13. Étale sheaves

13.1. The étale site.

13.1.1. Definition. The (small) étale site Xét of X is defined by:

• underlying category: étale X-schemes
• coverings: surjective families.

Denote by PSh(Xét) and Sh(Xét) the category of abelian (pre)sheaves on Xét.

There is a map of sites ε : Xzar → Xét from the Zariski site to the étale site. Applying the Leray spectral
sequence, we get

Ep,q
2 = Hp

Zar(X,Rqεs(F )) =⇒ Hp+q
ét (X,F )

for each abelian sheaf F on Xét.

13.2. Direct and inverse image functors. Let f : X → Y be a morphism of schemes. Then this
induces a map of sites fét : Yét → Xét. So we may define

f∗ = (fét)
s : =Xét → =Yét

f∗ = (fét)s : =Yét → =Xét

which are called the direct image and inverse image, respectively. More explicitly:

(f∗F )(Y ′) = F (Y ′ ×Y X)

(f∗G)(X ′) = lim−→
(Y ′,φ)

G(Y ′)

where the colimit ranges through all X-morphisms φ : X ′ → Y ′ ×Y X, or equivalently, all Y -morphisms
X ′ → Y ′. In fact, f∗ is exact by proposition 10.6.5. So we conclude that:

13.2.1. Proposition. The following are true about f∗ and f∗:

(i) f∗ is left adjoint to f∗;
(ii) f∗ is left exact and maps injectives to injectives;
(iii) f∗ is exact and commutes with colimits. □

Let Y ′ ∈ Yét, F ∈ =Xét. The Leray spectral sequence reads:

Ep,q
2 = Hp

ét(Y
′, Rqf∗(F )) =⇒ Hp+q(Y ′ ×Y X,F ).

As in corollary 11.7.3, we obtain for F ∈ =Xét, G ∈ =Yét, natural morphisms

Hp
ét(Y

′, f∗F ) → Hp
ét(Y

′ ×Y X,F )

and
Hp

ét(Y
′, G) → Hp

ét(Y
′ ×Y X, f∗G)

obtained by composing Hp
ét(Y

′, G) → Hp
ét(Y

′, f∗f
∗G) → Hp(Y ′ ×Y X, f∗G).

In general, let f : X → Y , g : Y → Z be morphisms of schemes. Let F ∈ =Xét, then we have

Ep,q
2 = Rpg∗(R

qf∗(F )) =⇒ Rp+q(gf)∗(F ).

The edge morphisms can be easily read.
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13.2.2. Definition (base-change morphism). Let

X ′ Y ′

X Y

v′

f ′

v

f

be a commutative square of schemes. Let F be an abelian sheaf on Xét. We consider the composition

Rpf∗(F ) → Rpf∗(v
′
∗v

′∗F )

→ Rp(fv′)∗(v
′∗F ) = Rp(vf ′)∗(v

′∗F )

→ v∗(R
pf ′

∗v
′∗F ),

whose corresponding morphism under the adjunction is

v∗(Rpf∗(F )) → Rpf ′
∗(v

′∗(F )).

This is called the base change morphism, which is functorial in F .

13.2.3. Definition (restriction of a sheaf). Let f : X ′ → X be étale. Then X ′
ét is naturally identified with

Xét/X
′ as sites. Let F ∈ =Xét. Define F |X′ = f∗F as an abelian sheaf on X ′

ét; this is the restriction of F on
X ′

ét. It is not hard to see that F |X′(U) = F (U) for U → X ′ étale.

13.2.4. Corollary (cf. corollary 11.6.2). There are canonical isomorphisms

Hq(Xét;X
′, F ) ∼= Hq(X ′

ét;X
′, F/X ′).

13.3. The restricted étale site.

13.3.1. Definition. A morphism of schemes f : X → Y is finitely presented if it is locally finitely presented
and qcqs. Define the restricted étale site Xétfp as the category of finitely presented étale X-schemes, together
with surjective covers.

13.3.2. Proposition. Let X be quasicompact, then Xétfp is a Noetherian site.

Proof. Let X ′ → X be finitely presented and étale. Because X is quasicompact, so is X ′. Because
étale morphisms are open, if {Xi → X ′} cover X ′, a finite subset cover X. □

There is an obvious map of sites i : Xétfp → Xét. The functors is, is are also denoted res, ext.

13.3.3. Proposition. If X is quasi-separated, then res, ext are quasi-inverses.

Proof. To apply the comparison lemma, it suffices to show that for any étale X-scheme X ′, there exists
a cover by finitely presented étale X-schemes Xi.

Let f : X ′ → X be the structure morphism. Let x ∈ X ′ be a point, then there exists an affine open
neighborhood U = SpecA of f(x), whose preimage f−1(U) is covered by spectrums of finitely presented
A-algebras. One of these, say V ⊆ X ′, contains x. Then f |V : V → X is finitely presented, because it is the
composition V → U ⊆ X of a finitely presented morphism and a quasicompact (this uses X quasiseparated)
open immersion, which is also finitely presented. □

13.3.4. Corollary. Let X be qcqs, then Hq
ét(X, •) commutes with pseudofiltered colimits, e.g. direct sums.

13.4. The case X = Spec k. The setup is as follows. Let k be a field. Let k be the separable closure
of k, so that k/k is Galois. Let G = Gal(k/k). Let X ′ be a k-scheme, and X ′(k) the set of k-points of X,
which corresponds to pairs (x′ ∈ X ′,φ : κ(x′) ↩→ k). There is a natural G-action on X ′(k), and for an open

subgroup H ≤ G, X ′(k)H = X ′(k
H
), where k

H
/k is finite by infinite Galois theory. Furthermore, X ′(k) is

a continuous G-set, since X ′(k) =
"

H X ′(k
H
) (here κ(x)/k is finite by nullstellensatz).

13.4.1. Theorem. The functor X ′ %→ X ′(k) is an equivalence of sites (Spec k)ét and TG (with the canonical
topology).

This is not so surprising, since any étale k-algebra is the product of finitely many separable extensions
of k anyways.
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13.4.2. Corollary. There is an equivalence of categories between ˜(Spec k)ét and the category of continuous
G-modules, given by

F %→ lim−→F (G/H) = lim−→F (Spec k′)

as k′ ranges among the finite (normal) subextensions of k/k.

The RHS is also the stalk FP at the geometric k-point P = Spec k → Spec k, cf. section 13.11.

13.4.3. Corollary. Let F be an abelian sheaf on ˜(Spec k)ét, then there are ∂-functorial isomorphisms

Hq
ét(Spec k, F ) → Hq(G, lim−→F (Spec k′))

where the right side is Galois cohomology.

13.4.4. Corollary. Let k be separably closed, then F %→ F (Spec k) is an equivalence of categories ̂(Spec k)ét
and Ab, hence additive and exact.

13.5. Representable sheaves on Xét. Here is an important criterion for a Zariski sheaf to be an
étale sheaf.

13.5.1. Proposition. Let F be a presheaf of sets on Xét. Then to verify F is a sheaf, it suffices to verify
it for the following two types of coverings:

• {U ′
i → X ′}, where each map is an open embedding (i.e. “usual” coverings by open sets)

• {Y ′ → X ′}, a single surjective morphism of affine schemes. □

13.5.2. Theorem. The coverings in Xét are families of universal effective epimorphisms in the category of
X-schemes.

The converse is false; in other words, the étale topology is coarser than the canonical topology. However,
when X = Spec k, the two topologies agree.

Proof. The key part is to show that a surjective X-morphism of affine schemes is effective. This follows
from a general result in faithfully flat descent theory. □

13.5.3. Corollary. For each X-scheme Z, the functor X ′ %→ HomX(X ′, Z) is a sheaf of sets.

13.5.4. Proposition. Let f : Y → X be a morphism of schemes. If Z is an étale X-scheme, then

f∗ HomX(•, Z) → HomY (•, Z ×X Y )

is an isomorphism.

13.5.5. Definition (group schemes). A group scheme over a scheme X is an X-scheme G, together with
either of the following equivalent data:

• a contravariant functor Z %→ HomX(Z,G) from schemes over X to Grp;
• a triple of morphisms µ : G×X G → G, e : X → G, and i : G → G, satisfying associativity, identity,
and inverse axioms.

For a (commutative) group scheme G over X, let GX denote the sheaf on Xét represented by G, which
is a sheaf of (abelian) groups.

13.5.6. Example. Some examples of group schemes:

• the additive group Ga = SpecZ[t]×Z X, and the functor sends X ′ %→ OX′(X ′);
• the multiplicative group Gm = SpecZ[t, t−1]×Z X, and the functor sends X ′ %→ OX′(X ′)×;
• the n-th roots of unity µn = SpecZ[t]/(tn − 1)×Z X, sending X ′ %→ {s ∈ OX′(X ′) : sn = 1}.

We have the following exact sequence of abelian sheaves:

0 → µn → Gm
n−→ Gm

where the last map is raising to the n-th power.



13. ÉTALE SHEAVES 174

13.5.7. Example. The constant sheaf AX , given an abelian group A, is defined as the sheafification of the
abelian presheaf X ′ %→ A. Then one can verify that

AX(X ′) = HomX(X ′,
Q

A

X) = HomTop(X
′, A).

When the connected components of X ′ are open (e.g. X ′ is locally Noetherian), this is the same as
%

A
over its connected components, but in general this is not true. In addition, it is clear that Hom(AX , F ) ∼=
Hom(A,F (X)).

Consider the constant sheaf Z/(n)
X

on Xét. The isomorphisms Z/(n) → µn correspond to primitive

roots of unities in the global section of X. Note however that even if Z/(n) ∼ µn, the defining group schemes
are not necessarily isomorphic.

When n is invertible on X (equivalently, n is coprime to the characteristics of residue fields at every
point), we have that µn and Z/(n) are locally isomorphic, i.e. for every X ′, there exists a cover {X ′

i → X ′}
in Xét where µn|X′

i

∼= Z/(n)|X′
i
. In fact, given X ′ = SpecA, consider Y ′ = SpecB, B = A[x]/(xn−1). Then

Y ′ → X ′ is faithfully flat and unramified, hence an étale cover.

13.6. Étale cohomology of (Ga)X .

13.6.1. Proposition. Let M be a quasicoherent sheaf of OX-modules on X. Then

X ′ %→ Γ(X ′,M ⊗OX
O′

X)

is an abelian sheaf on Xét, denoted by Mét. □

The functor M %→ Mét, from the category of quasicoherent OX -modules to the category of abelian
sheaves on Xét, is additive and left exact (recall that X ′ → X is flat).

13.6.2. Theorem. Let M be a quasicoherent OX-module. The edge morphisms

Hp
Zar(X,M) → Hp

ét(X,Mét)

of the Leray spectral sequence

Ep,q
2 = Hp

Zar(X,Rqεs(Mét)) =⇒ Hp+q
ét (X,Mét)

are isomorphisms.

Proof. As usual, it suffices to show that Rqεs(Mét) = 0 for q ≥ 1, where ε : XZar → Xét.
Assume first X is affine. Let T be the full subcategory of Xét consisting of affine schemes. By the

comparison theorem, Hq(Xét;X,Mét) ∼= Hq(T ;X,Mét). We claim that Mét is flasque on T , which would
imply what we wanted. Since T is Noetherian, flasque sheaves can be checked on finite covers, which can
be further reduced to covers consisting of one single morphism {SpecB → SpecA}. In this case, M is an
A-module, so the Čech complex goes

0 → M → M ⊗A B → M ⊗A B ⊗A B → . . .

which is exact since A → B is faithfully flat (the Amitsur complex).
In general, let X be any scheme. For any X ′ → X étale,

Hq(Xét;X
′,Mét) ∼= Hq(X ′

ét;X
′,Mét|X′) ∼= Hq(X ′

ét;X
′, (M |X′)ét).

So (RqεsMét)|X′ = Rqεs(M |X′)ét. Taking X ′ to be affine opens of X, we have shown that RqεsMét is zero
when restricted to all affine opens, so it is zero. □

13.6.3. Corollary. If X is affine, then Hp
ét(X,Mét) = 0 for p ≥ 1. In particular, taking M = OX itself, we

have Hp
ét(X, (Ga)X) = 0.

13.7. The Artin-Schreier sequence. Let X be a scheme with prime characteristic p. This means
the following equivalent things:

• charΓ(X,OX) = p;
• charΓ(U,OX) = p for every open U ⊆ X;
• charOX,x = p at every point x ∈ X;
• X is an Fp-scheme.

https://math.stackexchange.com/questions/3178359/constant-sheaves-on-the-%C3%A9tale-site-of-a-scheme
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Consider the constant sheaf Z/(p) on Xét. The unit global section gives a morphism of sheaves

Z/(p) → Ga

which is easily verified to be injective. Let

F : Ga → Ga

be the Frobenius.

13.7.1. Theorem. The sequence

0 → Z/(p) → Ga
F−id−−−→ Ga → 0

is exact, where F − id is the map x %→ xp − x on each Ga(X
′) = OX′(X ′). This is called the Artin-Schreier

sequence on X.

Proof. Exactness in the middle: suppose s ∈ OX′(X ′) such that sp = s, then X ′ = V (sp − s) =
V (s(s− 1) . . . (s− p+ 1)) =

R
V (s− i), so each closed subscheme V (s− i) is open as well. So we conclude

that s is in the image of the constant sheaf.
Surjectivity: Consider s ∈ Ga(X

′) = OX′(X ′). It suffices to show that there is a cover {X ′
i → X ′} in

Xét, such that each si = s|X′
i
∈ OX′

i
(X ′

i) is of the form tpi − ti for ti ∈ OX′
i
(X ′

i). It suffices to show this for

X ′ = SpecA affine. Let Y ′ = SpecB, where B = A[t]/(tp − t − s). Since B is free over A, Y ′ → X ′ is flat
and surjective. It is unramified since (tp − t− s)′ = −1. This completes the proof. □

The Artin-Schreier sequence then gives the following long exact sequence:

0 → H0(X,Z/(p)) → H0(X,OX) → H0(X,OX)

→ H1(X,Z/(p)) → H1(X,OX) → H1(X,OX)

→ H2(X,Z/(p)) → . . .

from which we obtain:

13.7.2. Corollary. There is an exact sequence

0 → H0(X,OX)

(F − id)H0(X,OX)
→ H1(X,Z/(p)) → H1(X,OX)F → 0.

13.7.3. Corollary. When X = SpecA is affine of characteristic p,

Hq(X,Z/(p)) =

4
A/(F − id)A if q = 1;

0 if q ≥ 2.

13.7.4. Corollary (see here). Suppose k is separably closed of characteristic p, and X is a reduced, proper
k-scheme. Then

H1(X,Z/(p)) ∼= H1(X,OX)F .

13.8. Étale cohomology of (Gm)X .

13.8.1. Theorem (Hilbert’s Theorem 90). There is a canonical isomorphism

H1
ét(X,Gm) ∼= Pic(X),

where Pic(X) is the Picard group of X, i.e. H1
Zar(X,O×

X).

Proof. Using the five-term exact sequence associated to ε : XZar → Xét, it suffices to show that
R1εs(Gm)X = 0. (TODO) □

We remark that by the usual Hilbert 90, H1
ét(Spec k,Gm) = H1(Gal(k), (ksep)×) = 0. Another way to

view this is that the above theorem tells us that H1
ét(Spec k,Gm) ∼= Pic(Spec k), which is trivial because

Spec k is just a point.

13.8.2. Definition (Brauer group). The Brauer group of a field k is defined as

H2
ét(Spec k,Gm) = H2(Gal(k), (ksep)×).

https://math.stackexchange.com/questions/3917041/global-sections-of-integral-proper-k-scheme-is-finite-field-extension-of-k
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13.9. The Kummer sequence.

13.9.1. Theorem. Let X be a scheme, and n is invertible on X. Then there is an exact sequence

0 → µn → Gm
s +→sn−−−−→ Gm → 0,

called the Kummer sequence on X.

Proof. This is essentially the same as Artin-Schreier, except that we use the observation that SpecA[t]/(tn−
s) → SpecA is etale for any ring A in which n is invertible. □

Denote, for an abelian group A, nA = ker(a %→ na) and An = coker(a %→ na). Then we obtain from the
Kummer sequence that:

13.9.2. Corollary. There is an exact sequence

0 → H0(X,O×
X)n → H1(X,µn) → n Pic(X) → 0.

13.9.3. Corollary. If X = SpecA for A local in which n is invertible,

H1(X,µn) ∼= A×/(A×)n.

13.9.4. Corollary. Suppose k is separably closed with characteristic coprime to n, and X is a reduced,
proper k-scheme. Then

H1(X,µn) ∼= n Pic(X).

13.10. The sheaf of divisors on Xét. Let X be a Noetherian scheme, so that it has finitely many
irreducible components. Recall that K = K(X), the ring of rational functions on X, is defined as the set of
rational maps X → A1

Z, which has a natural ring structure. In this case, K(X) is naturally isomorphic to
the product

%
OX,η of stalks at the generic points of each irreducible component.

Let j : SpecK → X be the natural map, which induces a natural map of abelian sheaves (Gm)X →
j∗(Gm)K . If X has no embedded points (TODO: why necessary?), then j is dominant, then so are the
SpecK ×X X ′ → X ′ (étale implies open), so we conclude that (Gm)X → j∗(Gm)K is injective. Therefore,
we may define a sheaf DivX by the short exact sequence

0 → (Gm)X → j∗(Gm)K → DivX → 0.

Intuitively, these are formal sums of codimension-1 subschemes modulo the principal ones.
Applying the long exact sequence associated to ε : XZar → Xét, we obtain

0 → O×
X → K×

X → εs DivX → R1εs(Gm)X ,

where KX is the sheaf of rational functions on X: it is the sheafification of the presheaf mapping each open
U ⊆ X to S−1Γ(U,OX), where S is the set of elements in Γ(U,OX) that are non-zerodivisors in all OX,u,
u ∈ U . Because R1εs(Gm)X = 0, εs DivX is the usual sheaf of divisors in the Zariski topology.

If f : X ′ → X is also finite type, then X ′ is Noetherian and has no embedded components as well. In
this case, applying fs, we get DivX |X′ = Div |X′ .

By EGA IV, there is a canonical morphism

DivX →
,

x

(ix)∗Z

where x ranges among the points where the local rings have dimension 1. If X is regular, then this is an
isomorphism.

Since X is qcqs, étale cohomology commutes with direct sums, so

H1
ét(X,DivX) ∼=

,

x

H1
ét(X, (ix)∗Z).

13.10.1. Lemma. Let X be a scheme, x ∈ X, ix : Specκ(x) → X, then

H1
ét(X, (ix)∗A) = 0,

where A is any torsion-free abelian group.

Proof. The group H1
ét(X, (ix)∗A) injects into H1(Specκ(x), A) = H1(Gal(κ(x)), A), which is the group

of continuous maps f : Gal(κ(x)) → A, which there is none: suppose f−1(1A) = H is an open subgroup,
then [G : H] is finite, which contradicts with the fact that A has no torsion. □

https://stacks.math.columbia.edu/tag/01RR
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Consequently, H1
ét(X,DivX) = 0 for X a regular Noetherian scheme.

13.10.2. Lemma. Let X be a scheme, x ∈ X, ix : Specκ(x) → X, then

R1(ix)∗(Gm)κ(x) = 0.

Proof. This is the sheafification of H1(X ′ ×X Specκ(x), (Gm)κ(x)), which is zero by Hilbert 90. □

13.10.3. Corollary. Let X be a regular Noetherian scheme. There is an injection

H2
ét(X, (Gm)X) ↩→

2
Br(Ki),

where Ki runs through the fields of rational functions on each irreducible component.

Proof. This is just the composition

H2
ét(X, (Gm)X) ↩→ H2

ét(X, j∗(Gm)K) ↩→
2

H2(SpecKi, (Gm)Ki) =
2

Br(Ki),

where the first injection is because ofH1
ét(X,DivX) = 0, and the second is because of the previous lemma. □

13.10.4. Corollary. Let X be a regular algebraic curve over a separably closed field k, then

H2(X,Gm) = 0.

Proof. By Tsen’s theorem, Br(Ki) all vanish, therefore so does H2(X,Gm). □

13.10.5. Theorem (Tsen). Let K be a field of transcendental degree 1 over an algebraically closed field k.
Then K is C1 (meaning that any homogeneous polynomial of degree d with coefficients in K and at least
d+ 1 variables has a nontrivial zero). Consequently, Hq(Gal(K), (Ksep)×) = 0 for all q ≥ 1.

13.11. Stalks. Let x : SpecΩ → X be a geometric point of X, where Ω is separably closed. By
corollary 13.4.2, the category of abelian sheaves on (SpecΩ)ét is equivalent to Ab via F %→ F(SpecΩ).

13.11.1. Definition. The stalk of an abelian presheaf F ∈ PSh(Xét) at the geometric point x is the colimit

Fx = lim−→
U

F(U),

as U ranges over the directed set of étale neighborhoods of x. More precisely, we consider diagrams

SpecΩ

U X.

x

étale

These form a filtered category, because for any étale neighborhoods U and V , 1) there is at most one
morphism U → V if they are connected, and 2) U ×X V is also an étale neighborhood.

13.11.2. Example. Take F = OX , then the strict local ring of X at x is defined as the stalk OX,x. This
is simply the strict Henselization of the local ring OX,x where x is the underlying point of x.

13.11.3. Proposition. For any abelian presheaf F , we have

Fx := x∗(F#)(SpecΩ).

In particular, Fx ≃ F#
x .

13.11.4. Example. Let F be represented by an étale group scheme G, then x∗F is represented by G ×X

SpecΩ. So Fx = HomΩ(Ω, G×X Ω) = HomX(Ω, G), i.e. the stalk Fx consists of all Ω-points of G.

13.11.5. Proposition. The following are true about stalks:

(i) The functor F %→ FP from =Xét to Ab is exact.
(ii) If v : P ′ → P is a morphism of geometric points of X, then FP ′ ∼= FP .
(iii) Let f : X → Y be a map of schemes, then for any abelian sheaf F on Yét, (f

∗F )P ∼= FP .

Proof. (i) Both u∗ and ΓP are exact (corollary 13.4.4). Note that the isomorphism in (ii) is not
canonical. □
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There is a similar definition of stalks as a colimit: consider the category of “étale neighborhoods of P”,
which consists of pairs (X ′, u′), where X ′ is étale over X, and u′ : P → X ′ is an X-morphism. In fact, by
definition of the presheaf functor fp, we see that u∗F is the sheafification of the presheaf (uét)pF , which
maps P %→ lim−→(X′,u′)

F (X ′). Therefore, there is a canonical map

(∗) lim−→
(X′,u′)

F (X ′) → FP .

13.11.6. Proposition. The above map (∗) is an isomorphism.

Proof. In fact, it is clear that any abelian presheaf on Pét is a sheaf. □
13.11.7. Proposition. More generally, let G be any presheaf on Xét, then

lim−→
(X′,u′)

G(X ′) → G4
P

is an isomorphism.

Proof. It suffices to show the following: let f : T → T ′ be a map of sites, and G a presheaf on T . Then
(fpG)4 ∼= fs(G

4). This follows from adjunction. □
13.11.8. Proposition. Mono, epi, and isomorphisms between abelian sheaves on Xét can be checked at the
level of stalks at each point. □
13.11.9. Corollary. A global section s ∈ F (X) is zero iff it is zero at each stalk.

Proof. A global section is the same as a map of sheaves Z → F . □
13.11.10. Definition (support). Let s ∈ F (X), then its support is

Supp(s) = {x ∈ X : sx ∕= 0}.
This is Zariski-closed: suppose sx = 0, then there is an étale X-scheme X ′, with φ : X ′ → X, such that
s|X′ = 0. Then for any point y ∈ φ(X ′), which is a Zariski-open set, sy = 0.

The support of the sheaf F is the closure of

Supp(F ) = {x ∈ X : Fx ∕= 0}.

13.12. Godement resolution. This is a construction that came from sheaf theory on topological
spaces. Let F ∈ Sh(Xét), we will imbed F inside a flasque sheaf G0(F), defined as follows.

13.13. Geometric meaning of first cohomology. The first Čech cohomology provides “gluing data”
for geometric objects. If a class of objects on X satisfy étale descent, then it is classified by the first étale
cohomology of X with coefficients in the sheaf of “transition functions”. Here are two examples:

13.13.1. Definition. An OX,ét-module L is an étale line bundle if there exists an étale covering {Ui → X},
such that L|Ui

∼= OUi,ét.

Let Picét(X) be the group of isomorphism classes of étale line bundles, and let Pic(X) be the group of
isomorphism classes of (Zariski) line bundes.

13.13.2. Proposition. The natural map Pic(X) → Picét(X) is an isomorphism.

13.13.3. Corollary. We have Ȟ1(X,O×
X,ét)

∼= Pic(X).

13.13.4. Definition. Let F be a finite abelian group. An etale X ′ → X is an F -torsor if F acts on X ′,
and the map (

3
F X)×X X ′ → X ′ ×X X ′, given by (σ, x) %→ (σ(x), x), is an isomorphism.

13.13.5. Proposition. The set of isomorphism classes of F -torsors is naturally bijective to elements of
Ȟ1(X,FX).



CHAPTER 10

D-Modules

1. Modules over the Weyl algebra

All rings are associative and unital, but not necessarily commutative.

1.1. Weyl algebras.

1.1.1. Definition. Let R be a commutative ring. The Weyl algebra An(R) is the free associative R-
algebra generated by 2n indeterminates x1, . . . , xn, ∂1, . . . , ∂n, modulo the relations [xi, xj ] = [∂i, ∂j ] = 0,
[xi, ∂j ] = −δi,j .

In this section, we study (finitely generated) modules over the non-commutative ring An = An(k), where
k is a fixed field of characteristic 0.

1.1.2. Remark. To give a k[x1, . . . , xn]-module M the structure of a left An-module is just to give a
family of commuting k-linear endomorphisms d1, . . . , dn of M , such that di(xjm)− xjdi(m) = δi,jm for any
1 ≤ i, j ≤ n. Similarly, for M to be a right An-module is just to have di(xjm) − xjdi(m) = −δi,jm. Thus,
any left An-module can be made into a right An-module by flipping the sign of di, and vice versa.

1.1.3. Proposition. An(k) is a simple algebra, i.e. it has no nontrivial proper two-sided ideals.

1.2. Examples. To systematically study solutions to differential equations, consider the following for-
malism.

Let Pij ∈ An(k) be differential operators, and we wish to solve the system of linear partial differential
equations

$q
j=1 Pijuj = 0, where i = 1, . . . , p and uj are a certain class of functions on which An acts (say,

from the left). Consider the map of left An-modules f : Ap
n → Aq

n, mapping each generator ei (1 ≤ i ≤ p) to
(Pi1, . . . , Piq) ∈ Aq

n. Let M = coker f , then it is a finitely generated An-module. Then, for any An-module S
(the class of functions we allow ui to be), the k-vector space of solutions to the above system of differential
equations is precisely HomAn

(M,S).

1.2.1. Example. Consider the 1-dimensional case, and consider f(x) = ex. This solves (∂ − 1)f = 0, and
in fact the A1-module generated by f is isomorphic to A1/A1(∂ − 1).

Functions naturally give rise to left An-modules. Dually, distributions1 give rise to right An-modules.

1.2.2. Example. Consider the delta function δ0, which acts on test functions by f %→ f(0). Therefore it
satisfies the equation δ0x1 = · · · = δ0xn = 0, and in fact the right An-module generated by δ0 is isomorphic
to An/(x1, . . . , xn)An.

1.3. Filtered algebras and modules.

1.3.1. Definition. A filtered algebra over k is a k-algebra R along with a chain of k-subspaces

0 = F−1R ⊂ F0R ⊂ F1R ⊂ · · · ⊂ FnR ⊂ · · · ⊂ R,

such that R =
"
FiR, 1 ∈ F0R, and FiR · FjR ⊂ Fi+jR.

1.3.2. Definition. To every filtered algebra R with filtration F•R, one can associate a graded algebra

S = grR =
,

i≥0

FiR/Fi−1R.

It is clear that if [FiR,FjR] ⊂ Fi+j−1R, then S is commutative.

1Here, continuous linear functionals on compactly supported smooth functions on Rn, with the topology of uniform convergence
of all derivatives on compact sets.

179
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1.3.3. Example. On A = An there are two natural filtrations:

• The Bernstein filtration has FiA spanned by xαδβ , where |α|+ |β| ≤ j.
• The degree filtration has FiA spanned by xαδβ , where |β| ≤ j.

Both give rise to the graded algebra k[x1, . . . , xn, ∂1, . . . , ∂n], but the Bernstein filtration makes all variables
degree 1, while the degree filtration makes ∂’s degree 1 and x’s degree 0.

Let us now focus on left A-modules.

1.3.4. Definition. Let M be a left A-module. Fix a filtration F•A. A compatible filtration F•M is a chain
of subspaces

0 = F−1M ⊂ F0M ⊂ F1M ⊂ · · · ⊂ FnM ⊂ · · · ⊂ M,

such that M =
"
FiM , FiA · FjM ⊂ Fi+jM , and FiM are finitely generated F0A-modules. Similarly one

can form the associated graded module grM =
#

i≥0 FiM/Fi−1M , which is a graded module over grA.

1.3.5. Definition. A compatible filtration F•M is good if any of the following equivalent conditions hold:

(1) grM is finitely generated over grA.
(2) There exists j0 such that for all j ≥ j0 and i ≥ 0, FiA · FjM = Fi+jM .

1.3.6. Proposition. A left A-module M admits a good filtration iff M is finitely generated over A.

1.3.7. Proposition. Let F•M,G•M be two compatible filtrations, where F•M is good. Then there exists a
positive integer c such that for any index i ≥ 0, FiM ⊂ Gi+cM .

1.3.8. Proposition. The Weyl algebra A is left Noetherian.

Proof. Let M be a finitely generated A-module, and N a submodule. Since M is finitely generated,
we can consider a good filtration F•M . This induces a compatible filtration F•N by FiN = FiM ∩N . The
associated graded grN ⊂ grM is a grA-submodule, hence finitely generated; so the filtration is good, and
N is finitely generated over A. □

1.4. Dimension. For this subsection, let M be a finitely generated left A-module. Choose a good
filtration FjM , compatible with the Bernstein filtration. We will define a notion of dimension of M .

Let us first recall:

1.4.1. Theorem (Hilbert syzygy theorem). Every finitely generated graded S = k[x1, . . . , xn]-module has a
finite, graded, free resolution2 of length at most n.

In particular, we may apply this to grM associated to some good filtration F•M . Counting the dimension
(over k) of each graded piece shows that for j sufficiently large, dimk grj M = dimk(FjM/Fj−1M) is a
polynomial in j with rational coefficients, of degree at most 2n− 1. So dimk FjM is a polynomial in j with
degree at most 2n. This is the Hilbert polynomial χ(M,F•M, t), whose leading term is of form m

d! t
d. In fact,

although χ may in general depend on F•M , it is not hard to see that:

1.4.2. Exercise. The numbers d and m do not depend on the good filtration F•M we used.

1.4.3. Definition. Let d = d(M) be the dimension of M , and m = m(M) its multiplicity.

It is clear that d ≤ 2n. In fact there is also a surprising lower bound to dimension, which is certainly
not true for modules over commutative rings:

1.4.4. Theorem (Bernstein’s inequality). Let M ∕= 0, then d(M) ≥ n.

Proof. The key claim is that the action FB
i A → Homk(FiM,F2iM) is injective (B for Bernstein). This

places a lower bound dimk FiM · dimk F2iM ≥ dimk F
B
i M =

-
i+2n

i

.
, which gives the inequality. □

1.4.5. Definition. M is holonomic if M = 0 or d(M) = n.

1.4.6. Proposition. The following are true about holonomic modules:

(1) For a short exact sequence 0 → M ′ → M → M ′′ → 0 of finitely generated left A-modules, M is
holonomic iff both M ′ and M ′′ are.

2meaning that each term in the resolution is a direct sum of finitely many S[e]’s, and the maps are all degree 0 maps compatible
with the grading.
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(2) If M is holonomic, then it is both Noetherian and Artinian, and it has finite length.

1.4.7. Proposition (Dimension criterion for holonomicity). Let M be a left A-module (not necessarily
finitely generated a priori). Let F•M be a filtration compatible with the Bernstein filtration. Suppose there
exist constants a, b ≥ 1 such that

dimk FjM ≤ a

n!
jn + b(j + 1)n−1,

then M is holonomic (in particular finitely generated), with multiplicity at most a.

1.4.8. Example. The An-modules k[x1, . . . , xn] and An/An(x1, . . . , xn) are holonomic with multiplicity
1. The A1-module k[x, x−1] is holonomic with multiplicity 2. In fact, for any nonzero polynomial p ∈
k[x1, . . . , xn], the An-module M = k[x1, . . . , xn, p

−1] is holonomic.

1.5. Equality of dimensions. In the last subsection, we defined the dimension of a finitely generated
A-module M via the Hilbert polynomial of grM , using the Bernstein filtration. It is well-known that this
is the same as the dimension of Supp grM as a module over grA = k[x1, . . . , xn, ∂1, . . . , ∂n]. This latter
definition generalizes to the degree filtration as well, and it will be shown that these two dimensions agree.

Consider the general framework. Let R be a filtered algebra, whose associated graded algebra S is
a commutative Noetherian regular ring of dimension 2n. For example, R = An(k). Let M be a finitely
generated left R-module. Since M is finitely generated, it has a good filtration F•M , hence we have an
S-module grM . Consider

J(M) = rad(AnnS(grM)).

Even though AnnS(grM) may depend on the good filtration used (e.g. good filtrations of M = A1/A1(x)
corresponding to the generator 1 or ∂), we have:

1.5.1. Proposition. The radical ideal J(M) does not depend on the good filtration chosen.

1.5.2. Example. Consider the degree filtration on An. Then a finitely generated An-module M is finitely
generated over k[x1, . . . , xn] iff (∂1, . . . , ∂n) ⊂ J(M).

1.5.3. Definition. The characteristic variety of M is the closed subscheme cut out by J(M).

The main goal of this and the next subsection is to prove the following:

1.5.4. Theorem. Let d(M) = dimSupp grM = dimS/J(M) and j(M) = min{j ≥ 0 : ExtjR(M,R) ∕= 0}.
Then d(M) + j(M) = 2n.

1.5.5. Corollary. The dimension d(M) for Bernstein and degree filtrations agree: they are both 2n− j(M).

Note that ExtjR(M,R) can be given the structure of right R-modules.
The proof of theorem 1.5.4 proceeds in two main steps: (1) Prove the case where R is commutative; (2)

Compare Ext groups of M and grM using spectral sequences. We carry out step (1) now.

1.5.6. Lemma. Let M be a finitely generated module over a commutative Noetherian ring R, and let N be
an R-module. Let S be a multiplicative subset of R. Then for any k ≥ 0,

S−1(ExtkR(M,N)) ≃ ExtkS−1R(S
−1M,S−1N)

naturally.

1.5.7. Proposition. Let S be a commutative Noetherian regular ring of dimension 2n. Let M be a
finitely generated S-module. Then ExtjS(M,S) vanishes except possibly for 2n − d(M) ≤ j ≤ 2n, and

d(ExtjS(M,S)) ≤ 2n− j for all j ≥ 0.

Proof. First by lemma 1.5.6 we may localize at maximal ideals of S containing Ann(M), to assume
that S is a regular Noetherian local ring of dimension 2n. We use induction on d = d(M).

When d = 0, J(M) = m is the maximal ideal of S. Since m is finitely generated, mℓM = 0 for some
ℓ. By induction and the Ext long exact sequence for 0 → mℓM → mℓ−1M → mℓ−1M/mℓM → 0, we may
assume ℓ = 1. In this case, M is a finite-dimensional k = S/m-vector space, so we can reduce to the case
M = k. The Koszul complex for any 2n system of parameters for m is a resolution for k, and it can be used
to explicitly compute that ExtjS(k, S) = k for j = 2n, and zero otherwise. This proves the base case.
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For the induction step, it suffices to assume there exists f ∈ m which is a non-zero-divisor on M . By

Stacks 0B52, d(M/fM) = d(M)− 1. The long exact sequence for 0 → M
f−→ M → M/fM → 0 reads

· · · → Extj(M/fM) → Extj(M)
f−→ Extj(M) → Extj+1(M/fM) → · · ·

The first conclusion then follows from Nakayama lemma and the induction hypothesis. For the second
conclusion, since Extj(M)/f Extj(M) is a submodule of Extj+1(M/fM), we have

d(Extj(M)) ≤ 1 + d(Extj(M)/f Extj(M)) ≤ 1 + d(Extj+1(M/fM)) ≤ 2n− j.

This finishes the proof. □

1.5.8. Proposition. Under the above hypothesis, d(M) + j(M) = 2n.

Proof. By the above proposition, for j ≥ j(M), d(Extj(M)) ≤ 2n−j ≤ 2n−j(M) ≤ d(M), with strict

inequality for j > j(M). Suppose d(Extj(M)(M)) < d(M), so that if we let E =
#2n

j=2n−d(M) Ext
j(M), then

d(E) < d(M). So there exists an element f ∈ J(E)\J(M), and after inverting f , M ∕= 0 but all Ext groups

ExtjS(M,S) vanish (j ≥ 0), which is impossible. So d(M) = d(Extj(M)(M)) ≤ 2n − j(M), in other words
j(M) ≤ 2n− d(M). But j(M) ≥ 2n− d(M) by the above proposition, fo j(M) = 2n− d(M). □

Therefore, in the setting of theorem 1.5.4, we have d(grM) + j(grM) = 2n. By definition d(M) =
d(grM), so our next task is to compare Ext groups of M and grM . To do this we need to construct a free
resolution of M over R that also induces a corresponding resolution of grM over S:

1.5.9. Proposition. Let R be a filtered algebra, M a finitely generated left R-module with good filtration
F•M , then there exists a free resolution

(1.5.10) · · · → L2 → L1 → L0 → M → 0

where each Li is a finite direct sum of shifts R[e] with filtration FjR[e] = Fj+eR, and such that the induced

· · · → grL2 → grL1 → grL0 → grM → 0

is exact.

We also need a consistent way to take duals.

1.5.11. Proposition. Let L be a finitely generated left R-module with good filtration F•L. Then L∗ carries
a natural good filtration FjL

∗ = {f ∈ L∗ : f(FiL) ⊂ Fi+jR ∀i ≥ 0}. When L ≃ R[e], L∗ ≃ R[−e].

So, taking the dual of eq. (1.5.10), ExtjR(M,R) is the cohomology of this dual chain complex, and because

grL∗
j ≃ HomS(grLj , S), we have ExtjS(grM,S) is the cohomology of the associated graded complex of that

dual complex. So the problem reduces to comparing the cohomology of a filtered chain complex and that of
its associated graded complex.

1.6. Spectral sequence of a filtered complex. Let (K•, d) be a cochain complex of modules over a
fixed ring. Suppose each Kn is filtered by FjK

n, compatible with the differential, such that
"

j FjK
n = Kn

and
'

j(FjK
n + L) = L for every submodule L ⊂ Kn (for example if FjK

n = 0 for j ≪ 0 then certainly

this holds). There is a natural filtration

FjH
n(K) = im(Hn(FjK) → Hn(K))

under which it is not hard to see that

grj H
n(K) =

FjK
n ∩ ker(d)

Fj−1Kn ∩ ker(d) + FjKn ∩ im(d)

and

Hn(grj K) =
FjK

n ∩ d−1(Fj−1K
n+1)

Fj−1Kn + d(FjKn−1)
.

Our goal is to compute the first using the second.
The idea is to approximate FjK

n ∩ ker(d) by FjK
n ∩ d−1(Fj−ℓK

n+1) as ℓ ∈ N. More precisely, for
j, n ∈ Z and ℓ ∈ N, let

Zn
ℓ,j = FjK

n ∩ d−1(Fj−ℓK
n+1) ⊂ FjK

n

https://stacks.math.columbia.edu/tag/0B52
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and
Bn

ℓ,j = Zn
ℓ,j ∩ (Fj−1K

n + d(Fj+ℓ−1K
n−1)) = Zn

ℓ−1,j−1 + d(Zn−1
ℓ−1,j+ℓ−1),

and by construction the differential d induces differentials d : Zn
ℓ,j → Zn+1

ℓ,j−ℓ and d : Bn
ℓ,j → Bn+1

ℓ,j−ℓ, hence
they induce a degree −ℓ map of graded modules

d : En
ℓ → En+1

ℓ , where En
ℓ =

,

j

En
ℓ,j =

,

j

Zn
ℓ,j/B

n
ℓ,j .

For example, En
0 =

#
j FjK

n/Fj−1K
n = grKn. We can also define Zn

∞,j = FjK
n ∩ ker d and B∞,j =

Fj−1K
n ∩ ker(d) + FjK

n ∩ im(d) in the obvious way, so that En
∞ = grHn(K). So the cohomology of these

complexes En
j interpolate between Hn(grK) and grHn(K). In fact:

1.6.1. Lemma. Hn(E•
ℓ,j)

∼= Eℓ+1,j.
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