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CHAPTER 1

Fields and Galois Theory



CHAPTER 2

Lie Groups and Lie Algebras

1. Finite-dimensional Lie algebras

1.1. Basic definitions.

1.1.1. Definition. Let F' be a field. A Lie algebra over F' is a F-vector space L, together with a skew-
symmetric bilinear map [, | : L x L — L, satisfying Jacobi’s identity.

For this section, Lie algebras will be assumed to be finite-dimensional.

1.1.2. Definition. A Lie subalgebra M C L is a subspace closed under the Lie bracket. An ideal I C L is
a subspace satisfying that for every x € I, y € L, [z,y] € I.

1.1.3. Example. Here are some standard constructions:
e There is a homomorphism of Lie algebras ad : L — gl(L) called the adjoint representation, given
by z = (y = [z, y]).
e For any Lie algebra L, [L, L] C L is an ideal.
e The center Z ={x € L:[x,L] =0} C L is an ideal. It is the kernel of the adjoint representation.
e Let M C L be a subalgebra. Its normalizer Np(M) = {x € L : [x,M] C M} is a subalgebra
containing M.
e Let S C L be a subset. Its centralizer CL(S) = {z € L : [x,S] = 0} is a subalgebra. It is an ideal
if S is.
e The Killing form K : L x L — F is a bilinear form, defined as K(z,y) = Tr(adzady). It is
invariant, meaning that K(z, [y, z]) = K([z,y], 2).
e The universal enveloping algebra U = U(L) is a filtered algebra, defined by
UL)=TL)/(z®@y—y@z—[z,y]).
The filtration F,U is given by F;U = im(T7L). Since [F;U, F;U] C F;4j—1U (here the bracket is
in the sense of algebras, [v,w] =v®w —w @ v), gr U(L) is commutative.
1.1.4. Remark (Motivation for the universal enveloping algebra). We want to write [z, y] = xy — yx, which

does’t make sense a priori, and U(L) is the smallest construction which makes sense of it. Also, we want to
view L-reps as actual modules over some ring, and U(L) is the natural such ring.

1.1.5. Theorem (PBW). The natural map of commutative algebras S(L) — grU(L) is an isomorphism.

In other words, if we fix an F-basis x1,...,z, of L, then U(L) has an F-basis given by 7' ® --- ® z&.
In particular, this means that the map L — U(L) is injective.

PRrOOF. It suffices to show that these “ordered” elements z{' ® --- ® x& are linearly independent in
U(L). To do that, it suffices to construct a linear map ® : T(L) — S(L) that maps z' ® --- Q@ & to
themselves, and that kills the two-sided ideal (z ® y — y ® = — [x,y]), so that it factors through U(L).
This is done inductively on the degree d. For example, zox1 should be mapped to xi1x9 — [21, 23], and
T3T1To > T1T2T3 — T[T, T3] — [T1,23]x2 . In general, for a permutation t = t,, _...tm,tm, on d elements
(where t,, is the transposition (m,m + 1)), suppose X = x;, z;, ...x;, is an ordered monomial, then let
t(X) =i, -+ Ti,,, and define

r—1
(I)(t(X)) =X - Z (I)(umi+1 (tmi, cee tml (X)))
=0
where Uy, (%, ... ;) = @iy ... @i, [Tin) s Tiny 1 Ty s - - - Tiy. One can show that this does not depend on the
way t is written as the product of neighboring transpositions. (]
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1. FINITE-DIMENSIONAL LIE ALGEBRAS 3

1.1.6. Definition. Let L be a Lie algebra. Its lower central series is the sequence of subalgebras
L°>L'>*> -
where L° = L, L™ = [L, L. Tt is nilpotent if its lower central series terminates (L™ = 0 for some n).
1.1.7. Definition. Let L be a Lie algebra. Its derived series is the sequence of subalgebras
LO 510 512 5 ...

where L) = [, L™ = [L("=1 L(=D] Tt is solvable if its derived series terminates (L(™) = 0 for some n).

We also recall the Jordan—Chevalley decomposition theorem in linear algebra. Let V be a finite-
dimensional vector space over an algebraically closed field F' (not necessarily of characteristic 0). Call
an element x € EndV semisimple if its minimal polynomial over F has distinct roots (equivalently, it is
diagonalizable).
1.1.8. Theorem (Jordan—Chevalley). Let z € End V.

(1) There exists unique s, T, € EndV, such that © = x5 + x,, x5 is semisimple, x,, is nilpotent, and
T, Ty commute.

(2) xs,x, are polynomials in x (with coefficients in F).
(8) If AC BCV and x(B) C A, then x4(B),z,(B) C A too.

1.2. Nilpotent and solvable Lie algebras.

1.2.1. Theorem (Engel’s theorem). Let L be a Lie algbera whose every element is ad-nilpotent. Then L is
a nilpotent Lie algebra.

In the rest of subsections 1.2, 1.3, and 1.4, let F' be an algebraically closed field of characteristic 0.

1.2.2. Theorem (Lie’s theorem). Let L C gl(V) be a solvable Lie algebra over F, where V is a finite-
dimensional vector space. Then L stabilizes some flag of V', i.e. there is a basis of V' for which every element
in L is upper-triangular.

1.2.3. Proposition (Cartan’s criterion for solvability). Let L be a finite dimensional Lie algebra over F.
Then L is solvable iff the Killing form K(z,y) = Tr((adz) o (ady)) satisfies that K(z,y) = 0 for x € L,
y € [L,L].

1.3. Semisimple Lie algebras.

1.3.1. Proposition (Cartan’s criterion for semisimplicity). Let L be a finite dimensional Lie algebra over
F. Then L is semisimple iff the Killing form is nondegenerate.

1.3.2. Theorem. Let L be semisimple, then there exist simple ideals (unique up to permutation) Ly, ..., Ly C
L, such that L=L,®---&® Ly.

1.3.3. Proposition. Let L be semisimple, then ad L = Der L.

1.3.4. Theorem (Weyl’s theorem). Let ¢ : L — gl(V') be a finite dimensional representation of a semisimple
Lie algebra L. Then ¢ is completely reducible.

1.3.5. Definition (Abstract Jordan—Chevalley decomposition). Let L be semisimple, so that ad L = Der L.
Let z € L. Since Der L contains the semisimple and nilpotent parts of all its elements, there exist s,n € L
such that adxz = ad s+ adn, so x = s+ n.

1.3.6. Proposition (Actually useful criterion for semisimplicity). Suppose L is a Lie algebra over an alge-
braically closed field F of characteristic 0, and ¢ : L C gl(V') is a finite-dimensional faithful irrep. Then L
is reductive and dim Z(L) < 1. If L C sl(V') then L is semisimple.

PRrROOF. Let S = Rad(L). By Lie’s theorem 1.2.2, there exists a basis of V' for which S is upper-
triangular. In particular there is a simultaneous eigenvector v for S, say sv = A(s)v. Then since S is an
ideal, for any x € L,

(1.3.7) szv = A(s)xv + A([s, z])v.

Now, since V is irreducible, all vectors in V' can be written as linear combinations of xyxs...z,v for some
Z1,...,Zn € L. Repeatedly using eq. (1.3.7) shows that sz ...x,v — A(s)x1 ... x,v can be written as linear
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combinations of vectors that result from strictly less than n applications of elements of L to v. So, we can
choose a basis of V, such that every s € S is an upper-triangular matrix whose diagonal entries are all A(s).
However, the elements [s, 2] all have trace 0, so their diagonal entries are 0. By eq. (1.3.7) again, s € S acts
as the scalar A(s) on V', so S C Z(L), so L is reductive and dim Z(L) < 1. If L C sl(V') then S =0, so L is
semisimple. O

1.3.8. Corollary. The classical Lie algebras sl,,,sp,,,, 0y are all semisimple.

1.4. Root space decomposition. Let L be a semisimple Lie algebra over F.
1.4.1. Definition. A subalgebra H C L is toral if all its elements are (ad-)semisimple.
1.4.2. Exercise. Toral subalgebras are abelian.

The following definition is only true when L is semisimple. There is a general notion of Cartan subalge-
bras, defined later.

1.4.3. Definition. A toral subalgebra H C L is called a Cartan subalgebra if it satisfies any of the following
equivalent conditions:
(1) H is maximal among all toral subalgebras;
(2) H = Cy(H).
1.4.4. Definition.
1.5. Root systems and abstract weights.

1.5.1. Definition. Let V = F". A root system ® C V is a subset satisfying:

(1) ® is finite, 0 ¢ ®, and ¢ spans V.

(2) For any « € ®, the only other scalar multiple of o in @ is —a.
(

(

3) For any o, 8 € @, (o, B) := 2((6075)) €.

4) For any o, € @, a — (o, B) B € D.
1.5.2. Definition. Let ® C V be a root system. Let a € ® be any element, then denote o, € Aut(®) by
the automorphism k — k — (k, @)a, which is reflection across the hyperplane normal to a. The Weyl group
W is the group generated by these o,’s (for a € ®).

In fact, the Weyl group of any ® is a Coxeter group: 0,04 is a rotation with angle 20, where (o, ) =
||| 8] cos §. Since 6 € {0, %, 3 %, 1 %, 3, %}’R’, the order of 0,03 must be in {1,2,3,4,6}.

1.5.3. Definition. For o € &, let P, denote the hyperplane normal to «. The connected components of
V — U, P are called the Weyl chambers of ®.

1.5.4. Definition. Let ® C V be a root system. A subset A C ® is a base if it is a basis of V', and every root
a € @ is expressed as the linear combination of elements in A with either all non-negative or all non-positive
integer coeflicients. Say a root is positive or negative accordingly.

Let vy € V —J,, Pa. Denote by ®,(v) = {a € ®: (a,7) > 0}. An element a € ¢ (v) is indecomposable
if there does not exist x,y € ®4(y) with  + y = a. Denote by A(~) the set of all indecomposable roots in

P4 (7).

1.5.5. Proposition. ®, () is a base, and all bases are of this form. So bases are in 1-to-1 correspondence
with Weyl chambers.

1.5.6. Proposition. Fiz a base A.

(1) For any positive root a ¢ A, o — B is a positive root for some 8 € A.
(2) Let o € A, then o, permutes A\{a}.

1.5.7. Proposition. The Weyl group W acts simply transitively on bases, and it is generated by oo, @ € A.

1.5.8. Remark. The Weyl group also naturally acts on Weyl chambers, and these two actions are compatible
via the correspondence between Weyl chambers and bases.

1.5.9. Definition. The length of an element o € W is the smallest n € Z>¢ such that ¢ = 0, ...0,,, for
some «q,...,0, € A,
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1.5.10. Proposition. Let o € W, then its length is equal to the number of positive roots o such that o(«)
1S negative.

1.5.11. Proposition. The closure of the Weyl chamber C(A) corresponding to A is a fundamental domain
for the action of W on V.

1.5.12. Definition. Let ® be a root system. A weight A € V is an element such that (\,a) € Z for all
a € . Equivalently, if we fix a base A = {«1,...,a,}, it is an element such that (\, «;) € Z for all i.

1.5.13. Definition. A weight A is dominant (resp. strongly dominant) if X € C(A) (resp. A € C(A)).
Equivalently, (A, a;) > 0 (resp. (A, a;) > 0).

1.5.14. Remark. It could very well happen that A < p, A is (strongly) dominant, and g is not dominant.

1.5.15. Example. Let A\; € V such that (\;, ;) = 0;;. Then the set of weights A is just the lattice @, ZA;.
Inside A, there is a sublattice A,., the root lattice, generated by ®, whose index is equal to the determinant
of the Cartan matrix of ®. There is an element § € A, § =3, \i = 3> cq

1.5.16. Definition. A set II C A is saturated if for any A € II, A — i € II for every v € @, 0 < i < (\, ).

1.5.17. Proposition. Let II be saturated, and suppose there exists A € II such that every u € Il has p < A.
Then for any dominant p with < X\, p € I1.

1.6. Representations of semisimple Lie algebras. Let L be a semisimple Lie algebra over an
algebraically closed field F' of characteristic 0. Fix a Cartan subalgebra H of L, let ® be the set of roots,

and fix a base A. Let B = H@,, ; Lo be a Borel subalgebra.

1.6.1. Theorem (Theorem of the highest weight). There is a bijection
{finite-dimensional irreps of L} <— {dominant integral weights of A}.
First we develop some theory about maximal vectors and weights.

1.6.2. Definition. Let V be a (possibly infinite-dim) representation of L, and let V) be the weight spaces,
A € H*. A maximal vector v € V) with weight X is a common eigenvector of H killed by all L, a > 0.

1.6.3. Example. For the adjoint representation of a simple Lie algebra, there is a unique maximal root (3,
and the maximal vector is the vector in Lg (and its weight is ). For a finite-dimensional representation, by
Lie’s theorem there exists a common eigenvector v of B, which must be a maximal weight: for any x € L,
a > 0, there exists h € H such that a(h) # 0, and we have 0 = hav — zhv = [h, z]v = a(h)zv so zv = 0.
For infinite-dimensional representations, maximal weights do not necessarily exist.

1.6.4. Definition. If V = U(L)v for some maximal vector v € V), call V a highest weight module (of weight
A).

1.6.5. Proposition (Structure of highest weight modules). Let V = U(L)v be a highest weight module of
weight A, where v is a maximal vector. Then:

(1) V is spanned by ([[ya)v for o= 0. In particular V is the direct sum of weight spaces V,,.

(2) The possible weights p which appear are all of the form A — " c;o;, where a; = 0, ¢; € Z>g, and
they appear with finite multiplicity, and \ appears with multiplicity one.

(8) Any proper submodule is the direct sum of weight spaces not including V.

(4) V is indecomposable, with a unique mazximal submodule, and their quotient is an irreducible highest
weight module of weight .

1.6.6. Proposition. Suppose V is an irreducible highest weight module. Then there exists a unique mazimal
vector up to scalar multiplication.

1.6.7. Proposition. For any A € H*, there exists a unique (up to isomorphism) irreducible highest weight
representation V() of weight \.

PRrROOF. Existence: One can take the 1-dimensional rep W of B given by A, and define M(\) =
U(L) ®y(p) W, or equivalently take M(A\) = U(L)/(xa,h — A(h)1 : a = 0,h € H). (M is called a Verma
module.) Then quotient out the highest weight M (\) by its unique maximal proper subrepresentation to get
V(A). O
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Now we are ready to prove the theorem: we now know that in one direction, a irrep V' corresponds to
its maximal weight A, and in the other direction one associates A with V().

PROOF OF THEOREM 1.6.1. One direction is easy: if V(X) is finite-dimensional, then the slo-triples
(Zay Yo, M) in L all act on V(A), and we know that these have integral weights, and the maximal one
is clearly dominant. Conversely, suppose A is dominant integral. We have to show that V(\) is finite-
dimensional. Suppose A = {a1,...,a¢}, and let z; = Zo,, ¥i = Ya;» Pi = ha;. Denote the sly-triple
(i, i, hi) by st

First, we show that the action of z;,y; need to be locally (pointwise) nilpotent. For the maximal
A(hi)

vector v, one can verify that that y;

; 1y is killed by all x;, hence must be zero, since it has weight

A — (A(hi) + Da; < A. So the subspace generated by v, y;v,. .., y;‘(h")v is a slg)—module. Consider the sum

of all finite-dimensional 5[&1)—submodules of V(\), then it is nonempty and stable under L (for any finite-

dimensioonal 5[(2i)—submodule W, the sum ) xo W is L-stable), hence must be equal to V(A). So any

acd
w € V() lies in such a finite-dimensional slg)—submodule, therefore x;,y; are locally nilpotent.

Thus, we can define automorphisms exp(z;), exp(y;) of V/(\). The automorphism s; = exp(z;) exp(—y;) exp(z;)
satisfies s;V), = V;,,. In particular, the Weyl group permutes the weights that appear. But then the set of
weights that appear must be finite (since they are bounded by A). So dim V must be finite as well. O

1.6.8. Corollary. The set of weights in V(X) form a saturated set (definition 1.5.16). In particular, p
appears iff all W-conjugates of p are smaller than .

1.6.9. Proposition. For a dominant integral A, so that A\(h;) = m; € Z>q,

VN 2 U(L)/(2ash — M)yt ca = 0,h € H1<i<{).
1.6.10. Theorem (Freudenthal’s formula). Let V' be an irreducible L-module with highest weight A € A™T.
Then for any weight p € A, its multiplicity mult(p) = dim V), satisfies the recursion

23 a0 2isy mult(p + i) - (p+ia, @)

() = AT 8) — (i F 6 ¥ 9)




CHAPTER 3

Commutative Algebra

These notes contain solutions to selected problems in Atiyah and MacDonald’s Introduction to Commu-
tative Algebra. All mistakes are my own.

1. Rings and ideals

1.2. Problem. iv) For a polynomial f = ap+ a1z +-- -+ a,a™, we use I(f) to denote the ideal (aq,...,an).
It suffices to show the more general relation

I(fg) € I(f)I(g) C rad(I(fg))-

The first inclusion is obvious. Suppose g = by + - -+ + b,,™. To prove the second inclusion, we will show
a;b; € rad(I(fg)) by induction on i. For the induction basis i = n, we can easily show al,"'b,,_, € I(fg)
for all 7, so obviously a,b; € rad(I(fg)). For the induction step from k + 1 to k, since we can assume

a;bj € rad(I(fg)) for all i > k, we have then >, a;b—; € rad(I(fg)) for each I < m + k. Repeating the

argument above, we can show that a} "'b,,_, € rad(I(fg)) for all r, so ayb; € rad(I(fg)) for all j, concluding
the induction.

1.7. Problem. Suppose p is a prime ideal, and = ¢ p. Choose n > 2 such that 2™ = z. Since A/p is an
integral domain, 0 = 2" — 2 = z(2"~! — 1) implies that 2"~! = 1 modulo p, i.e. x is invertible in A/p.
Therefore, A/p is a field and p is maximal.

1.14. Problem. Clearly ¥ has a maximal element a by Zorn’s lemma. Suppose a is not prime, that is,
there exists zy € a such that z,y ¢ a. Then a+ (z) and a+ (y) each contain a non-zero-divisor, say m + zn
and s + yt. Then (m + an)(s + yt) € a is a non-zero-divisor, a contradiction.

1.16. Problem. Because Z is a PID, the points of Spec(Z) are just 0 and (p), p prime, and the closed sets
are any set not containing 0, as well as Spec(Z).

Because R is a field, Spec(R) is the trivial 1-point space.

Because C[z] is a PID, the points of Spec(C[z]) are 0 and (x — z), z € C. The closed sets are any set
not containing 0, as well as the whole Spec(Clz]).

Because R[] is a PID, the points of Spec(C[z]) are 0, (z —r), and (22 + az + b) where a? —4b < 0. The
closed sets are any set not containing 0, as well as the whole Spec(R]z]).

Finally, we wish to characterize prime ideals p C Z[z]. The set p NZ must be a prime ideal in Z. Case 1:
pNZ = {0}. Assume p is nonzero. Let f(x) € p such that it has lowest degree and smallest leading coefficient.
Then it is unique and irreducible. For any element go(z) € p, we can repeat the following modified Euclidean
algorithm: there exists nonzero mg € Z and ag(x) € Z[z] such that g, (x) = mogo(x) — f(x)ao(x) has strictly
smaller degree than go(x), and we substitute g;(z) for go(x). In the end, deg gi(z) < deg f(x), which means
gr(x) = 0 for some k. Then we see that f(x) | moms ... mg_190(x). Since f is primitive, f(z) | go(x). This
means p = (f(z)) where f is irreducible.

Case 2: pNZ = (p) for some prime p. Consider the image of p in Z[z]/p = F,[z], which is a prime ideal
since the map is surjective. Since F,[x] is a PID, the image is (f(z)) for some monic irreducible f in Fp[z]
(or else it is 0, in which case p = (p)). Pick a monic f(z) € Z[x] above f, then it is clear p = (p, f(z)).

In conclusion, prime ideals in Z[z] are either 0, (p), (f(z)), or (p, f(x)). Closed sets of Spec(Z[z]) are
characterized by a choice of primes (p), a choice of polynomials f(z), and all (p, f(z)) with either p or f(z)
among the chosen ones (as well as, of course, the whole Spec(Z[z])).

1.20. Problem. iv) Let Y be a irreducible component of X = Spec(A). Since the closure of a irreducible
subspace is again irreducible, we can assume Y is closed. Then Y = V(a) for some radical ideal a. If a is

7
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not prime, then there exists zy € a and x,y ¢ a. Then V(a,z) UV (a,y) = V(a) while neither is equal to
V(a), contradiction. Therefore a is prime. By maximality, @ must be a minimal prime, as desired.

1.22. Problem. We will prove ii) = i) = iii) = ii).

ii) = i): In general, it is easy to show that any prime ideal in A = A; X --- x A, must be of the form
Ay X oo X Ajmg X p X Ajp1 X ... Ay, where i is some index and p C A; is a prime ideal. This easily implies
that Spec A = Spec A; U --- U Spec A,,.

iii) = ii): Say €? = e where e # 0,1. Let A; = eA and Ay = ker(A — eA) = Ann(e). Then e is a unit
in A; while 1 — e is a unit in As, so both A; and A, are nonzero rings. Furthermore, any element a € A can
be uniquely written as ea + (1 — e)a € A; x Ay. This shows A = Ay x A,.

i) = iii): Suppose Spec A = V(a) UV (b). Then any prime ideal either contains a or contains b, but not
both. This means that a+b = (1) and ab C anb C rad(A). So there exists a € a, b € b where a+b =1, and
(ab)® = 0. Let e = (1 —a™)". Then e(1 —e) is a multiple of (ab)", so e = €2. If e = 0, then 1 — a™ € rad(A4),
which means that o™, hence a, is a unit (Problem 1.1), a contradiction. If e = 1, then 1 — a™ is a unit, then
so is b =1 — a, a contradiction. Therefore, e is an idempotent # 0, 1.

1.28. Problem. Injectivity is clear. For surjectivity, fix a homomorphism f : P(Y) — P(X). Let
¢ = (P1,...,0m) where ¢; = f(y;) (here y; € P(Y) is the ith coordinate of k™). Then ¢ induces the
homomorphism f.

2. Modules

For convenience, we also record some important results in each chapter.

2.1. Proposition (Cayley-Hamilton). Let M be a finitely generated A-module, and ¢ : M — M a homo-
morphism. Suppose a C A is an ideal such that ¢(M) C aM. Then there exists a polynomial
¢" + 1" 4 a, =0

where a; € a.

PROOF. Suppose x1,..., T, generate M, and ¢(z;) = 27:1 a;;x; where a;; € a. Let Cj; be the matrix
defined by C;; = a;; when ¢ # j, and Cy; = a;; — ¢. (In other words, we treat a;; as elements of End(M).)
Then C annihilates all of x1,...,Z,,, so det C does as well (multiply by the adjugate matrix). But det C is

a polynomial in ¢ of the required form. |

2.2. Proposition. Let M be a finitely generated A-module. If aM = M for some ideal a € A, then there
exists a € a with am = m for every m € M.

PRrROOF. Take ¢ = id in the above proposition. (I

2.3. Corollary (Nakayama’s lemma). Let M be a finitely generated A-module. If aM = M for some ideal
a€ A, acC J(A), then M =0.

FIRST PROOF. Since any 1 —z (z € J(A)) is a unit, this follows from Proposition 2.2. O
SECOND PROOF. Suppose Z1,..., T, is a minimal set of generators of M. We have x,, = > ', a;x;, SO

PP , ) g i=1 ,
(1—ap)z, = Z;:ll a;x;. But 1 —a, is a unit, so x, is generated by x1,...,z,_1, a contradiction. O

2.4. Corollary. Let M be a finitely generated A-module, N C M a submodule, a € J(A) an ideal. If
M =aM + N, then M = N.

Proor. Apply Corollary 2.3 to M/N. a

2.5. Corollary. Let (A,m, k) be a local ring, M a finitely generated A-module. Let x1,...,x, € M whose
images in M /mM form a basis of this vector space. Then x1,...,x, is a set of minimal generators of M.

PRrOOF. Let N = (z1,...,2,). Then M = N + mM, so M = N by Corollary 2.4. a

o
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2.11. Problem. Suppose A™ = A™. Let m be a maximal ideal of A, then (A/m)® A™ = (A/m)® A™, and
both sides are now vector spaces over k = A/m, so m = n.

If ¢ : A™ — A™ is surjective, then so is the induced map (A/m)™ — (A/m)™, hence m > n.

Suppose ¢ : A™ — A™ is injective, and m > n. We may view ¢ as an injective map ¢ : A™ — A™
satisfying ¢(A™) C a(A™), where a is the ideal generated by (1,...,1,0,...,0), with n ones. By (2.4) of the
book, ¢ satisfies an equation ¢* +a;¢* 1 +---+a =0, s0 ¢*(0,...,0,1) = 0, a contradiction to injectivity.
Therefore, m < n.

2.13. Problem. Define p: Ng — N by b®n +— bn. Then p o g is the identity on N, so ¢ is injective. In
addition, the sequence

0> kerp— Ng 5 N =0

splits by the existence of g: N — Np, so Ng = N @ ker p.

2.19. Problem (Direct limits are exact). Let p;;,v;;,m; be the maps inside the direct systems M, N, P
respectively. Let f;, g; be the individual maps between the direct systems, and let f: M —- N, g: N — P
be the induced maps. Suppose n € N such that g(n) = 0, then there exists n; € N; such that v;(n;) = n
and m;(gi(n;)) = 0, in other words, some g;(v;;(n;)) = m;;(gi(n;)) = 0. By exactness, there exists m; € M;
such that fj(m;) = v;5(n;). Then if we let m = p;(m;), then f(m) = v;(f;(m;)) = n. Consequently,
kerg C im f.

Suppose now that n = f(m) for m € M,n € N. Then there is m; € M; such that u;(m;) = m. Denote
n; = fi(m;), then v;(n;) = n. By exactness, g;(n;) = 0, so g(n) = 0. This means that im f C kerg, so
M — N — P is exact.

2.25. Problem. For any A-module M, the Tor long exact sequence gives
«++ — Torg(M, N") — Tory (M, N") — Tory (M, N) — Tory(M,N") — ...
By Problem 2.24, the first and last terms are both zero, so N’ is flat iff N is flat.

2.26. Problem. This exercise demonstrates the power of direct limits. The nontrivial part is to show that
Tor(A/a, N) =0 for all f.g. ideal a implies N flat.

First, let a C A be any ideal. Let a; be the directed system of finitely generated ideals such that a; C a,
ordered by inclusion. Taking the direct limit of the exact sequences 0 — a; — A — A/a; — 0 gives the exact
sequence 0 — a — A — ligA/ai — 0, so we conclude that A/a & ligA/ai. Now, Tor;(A/a, N) is the first
homology of

= Py® (Aa) = PL® (A)a) = Py @ (A/a) = 0

for a fixed projective resolution P; — N. Since this becomes exact when we replace a by each a;, and direct
limits commute with tensor products, we conclude that Tor;(A/a, N) = 0.
Next, let M be any finitely generated A-module. Then there is a filtration

O=MyCcMyC---CM,=M

such that each M;/M,;_; is generated by one element, i.e. is isomorphic to A/a for some ideal a. We now
know that Tory (M;/M;_1, N) = 0. Using induction and Problem 2.25, we conclude that Tor; (M, N) = 0.

Finally, let M be any A-module. Then M = lim M; where M; are finitely generated submodules of M,
so we conclude that Tor; (M, N) = 0. This implies that N is flat, as desired.

2.27. Problem. i) = ii): Let (x) C A be a principal ideal. Then A/(x) is flat, so the map (x)® (A/(z)) —
A ® (A/(x)) is injective. In other words, (z) ® (A/(z)) = 0. Let a C A be the ideal generated by = and
Ann(x). Define a map (z) x (A/(z)) = A/a by (az,b+ (z)) — ab+ a. This is well-defined and bilinear,
so it induces a well-defined surjective linear map (z) ® (A/(x)) — A/a. Therefore, a = A. So there exists
a,y € A such that ax +y =1 and zy = 0, in other words, (1 — az) = 0. So (x) is idempotent.

ii) = iii): Every finitely generated ideal is generated by idempotents, so it must be principal (use
(e,f) =(e+ f—ef)). Soitis a direct summand of A.

ili) = 1): Since the direct summand of a free module is free, for any finitely generated ideal a € A, A/a
is free. So for any A-module M, Tor{'(A/a, M) = 0, so by the previous problem M is flat.
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3. Rings and modules of fractions

Here’s a brief summary of how the operations we’ve learned so far interact with each other:

Tensor products are right exact;

Direct limits are exact;

Tensor products commute with direct limits;

Localization is exact;

S~1A4 is a flat A-module;

Localization commutes with tensor products (S™!M ®g-14 STIN =2 S~1(M ®4 N));
Exactness is a local property (in fact it can be checked at mazimal ideals);

Flatness is a local property.

(¢]

3.7. Problem. i) Suppose S is saturated, and let z € A\S. Then its image in S~'A is non-unit, since
otherwise there exists b € A such that ab € S, which would mean a € S, contradiction. In addition, WLOG
0 ¢ S. So there exists a maximal ideal m C S~1A containing 7- Then mN A is a prime ideal in A containing
z and disjoint from S. This means that A — S is a union of prime ideals. The converse is obvious.

ii) Since the intersection of a family of saturated sets is again saturated, S exists. Any prime ideal in
A\S is necessarily in A\S, so S is the complement of the union of prime ideals not intersecting S.

Suppose that S = 1+ a. Any prime ideal p not intersecting S corresponds one-to-one with a prime
S~1p ¢ S~ A. The union of all prime ideals in S~!A4 is clearly the set of all non-units in S~ A, so the union
of all prime ideals not intersecting S is the set

{x € A: Py € Asuch that zy € S}.

But this is precisely the set of elements 2 € A whose image in A/a is a nonunit. So S is the set of elements
x € A whose image in A/a is a unit.

3.8. Problem. i) = ii): Since t/1 is a unit in 7' A4, it should be a unit in S7!A too.

il) = iii): This is by definition.

iii) = i): To show injectivity, suppose at = 0 for some ¢ € T. Then there exists x € A with zt € S, so
there exists s = xt, s € S, such that as = 0. To show surjectivity, suppose a/t € T-*A. Take s = zt € S.
Then a/t = ax/xt = az/s is in #(S~LA).

iii) <= iv): By the reasoning in the above problem, the saturation S consists of all elements that divide
some element of S.

iv) <= v): Follows from the above problem.

3.10. Problem. ii) If A is absolutely flat, then so is Ay, but since it is a local ring it must be a field.
Conversely, suppose Ay, is a field for all maximal m. It suffices to show that for any A-module M and any
injection of A-modules N — P, M @ N — M ® P is injective. Since exactness is a local property, it suffices
to show that My, ® Ny — My, ® Py, is injective. But since Ay, is a field, the map is automatically injective.

3.11. Problem. i) = ii): If A/rad A is absolutely flat, then for any a € A, there exists © € A such that
a(l — ax) € rad(A), i.e. a(l — ax) is nilpotent. Let p C A be a prime ideal, then for any a, either a € p or
1 —ax € p. Consequently, A/p is a field, and p is maximal.

ii) <= iii): The closure of {x} € X = Spec A is {x} = V(p,) = {}, iff p, is maximal. (Remark: Spec A
is always Ty for any ring A.)

ii) = iv): Let pi,p2 be distinct points in X = Spec A. Choose f; ¢ p1, f1 € pa. We wish to find
f2 ¢ po such that fi f5 is nilpotent (which guarantees that Xy, N Xy, = &). Consider the image of f; in A,,.
Because every prime ideal in A is maximal, A, is a local ring whose only prime ideal is p2Ay,. Therefore,
f1 is nilpotent in A,,, so there exists fo € A\ps such that f; fo is nilpotent in A. Then Xy, , Xy, are disjoint
neighborhoods of p1,ps respectively.

iv) = iii) is obvious.

ii), iv) = i): By the last problem, it suffices to show that (A/rad A)y, is a field for any maximal ideal
m C A/rad A. Because the preimage m¢ of m is a prime ideal, it is maximal in A. Let (a+rad A)/(s+rad A) €
Ag such that a € m°. Copying the proof of ii) = iv), we can find ¢ € A\m® such that at is nilpotent in A,
ie. (a+rad A)/(s+rad A) is zero. So (A/rad A)y, is indeed a field and we are done.
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Finally, we need to show that X = Spec A is totally disconnected. Because A/rad A is absolutely flat,
for any a € A, there exists © € A such that a(1 — ax) is nilpotent. Therefore, X, and X;_,, partition X.
As a result, if a subset S C X is connected, either X, C S or X,NS = @. If S contains at least two points,
then since X is Hausdorff, S cannot be connected. So S must be a single point.

3.12. Problem. iv) Because K ®4 M = S™'M where S = A\{0}, the kernel of the map M — K ®4 M =
S™1M is precisely T (M) by definition of localization.

3.15. Problem. It suffices to show that if ¢ : A™ — A™ is surjective, then it is bijective. By localizing at
each prime ideal, we can assume WLOG A is local. Let m be its maximal ideal and & be its residue field.
Tensoring the split exact sequence 0 — ker¢p — A™ — A™ — 0 with k, we obtain that ker ¢ = mker ¢.
Also ker ¢ is finitely generated since it is a direct summand of A", so by Nakayama’s lemma ker ¢ = 0, as
desired. (Aside: If ¢ is injective, there is no reason for it to be surjective. For example, consider Z — Z with

multiplication by 2. The dual argument breaks down since 0 — Z LENy/EN Z/27 — 0 is not split.)

3.19. Problem. viii) Let q € Spec B and p = q° € Spec A. We have
(B®aM)q=DBq®p(B®aM)=(By®pB)®aM = Bq®a M = Bq®24, M,

using the homomorphisms A — A, — Bg. Therefore, if M, = 0, then (Mp), = 0. Conversely, by problem

2.13 the map M, — By ® M, is an injection, so (Mp)q = 0 implies M, = 0. This is enough to imply
Supp Mp = (f*)~!(Supp M).

3.21. Problem. iv) (Fiber over a point) Let p € Spec(A4). We have the following commutative diagram:

A—— Ay, —— Ay /pA,

A

B —— B, —— B,/pB,
where B, = f(A\p)~'B and pB, = (pAp)°. In terms of the spectra, we then have

Spec By, /pB, —— Spec B, —— Spec B

| | Ir

Spec A, /pA, —— Spec A, —— Spec A.

Hence Spec B, /pBy, = Spec B ®4 (A, /pA,) is canonically homeomorphic to the fiber (f*)~!(p).

(Aside: we can use this to give a better proof of problem 1.16. To find the prime ideals of Z[z], it is
enough to find the fibers over each p C Z. The fiber over p = 0 is SpecZ[z] ® Q = Spec Q[z]. These are
the polynomials in Z[z] that are irreducible in Q[z], and by Gauss’s lemma they must be irreducible in Z[z].
The fiber over p = (p) is Spec Z[z] ® F, = F,,[z]. These are the polynomials in Z[z| that are irreducible mod
p.)

3.24. Problem. By compactness WLOG suppose Xy, ,..., Xy, cover Spec A.

Existence: suppose elements a;/f;* € Ay, satisfy that aifjej /ffif;j = ajff"/ffif;j in Ay,y,, that is,
a;f;’ — a; f{" is killed by some power of f; f;.

Let g; = f{, and suppose a;g; — a;g; is killed by (gigj)N for some large enough N, for all pairs i, j.

Then Xg{\]-}—l ;oo X N1 cover Spec A, so there exist m; € A such that

1= ZmigzNH = Z(ngfv)gz

2

(This is like a “partition of unity” that allows one to go from local to global.)
Leta=)", migiNai. It suffices to show that for any i, ag; — a; is killed by a power of g;. We expand

agi; — a; = (Z mjgévaj)gi - ai(z ijJI-VH)
J J

= m;g; (a;9: — aig;)
J
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which is killed by gZN .

Uniqueness: it suffices to show that if the image of v € A in each Ay, is zero, then x = 0. Suppose z is
killed by f;* for each i. Since X« cover X, there are m; € A such that >, m; f;* = 1. Then 1 kills z, so
x=0. '

3.27. Problem. iv) Suppose X is covered by a collection of open sets defined by f, : A — B,. Then
Spec(Q),, Ba) = @, so @, Ba = 0. Since this is a direct limit, one of the terms ), B; in the direct system
must be zero, and this tensor product is over a finite index set.

3.30. Problem. If A/rad A is absolutely flat, then X, is both open and closed, so X and X agree.
Conversely, suppose the complement of X, is Xj, then A = (a) + (b), so there exist z,y with 1 = za+yb. In
addition, ab must belong to all prime ideals, so ab € rad A, so a(1 —za) is nilpotent, so A/ rad A is absolutely
flat.

4. Primary decomposition
Suppose a C A is a decomposable ideal.

4.1. Theorem. Let a =), q; be a minimal primary decomposition. Then p; = rad(q;) are precisely prime
ideals of the form rad(a: x) as x ranges over A. In particular, the set of p;’s are only dependent on a (these
are the primes associated with a).

PROOF. The proof is surprisingly easy. We expand

rad(a: z) = rad(ﬂ qi 1 x) = ﬂrad(qi tx) = ﬂ ;.
i i v¢q;
Picking = ¢ q;, € ();;9; by minimality, we have rad(a : z) = p;. Conversely, if rad(a : x) is prime, then
it must equal one of the p;’s. (I

4.2. Proposition. The isolated (mimimal) prime ideals associated with a are precisely the minimal prime
ideals containing a. (]

4.3. Proposition. |J,p;, ={r € A: (a:z) # a}.

PRrROOF. Reducing to A/a, it suffices to show that if 0 is decomposable with associated prime ideals p;,
then (J; p; is precisely the set of zero divisors, |J,,orad(0 : z). If z # 0 then there must exist ¢ such that
x ¢ q;, so rad(0 : ) C p; by Theorem 4.1. Conversely, for each p;, there exists x such that rad(0 : z) = p;,
also by Theorem 4.1. O

Primary ideals interact nicely with localizations. If q is p-primary, p NS = @, then S™'q is a S~ 'p-
primary ideal that contracts back to q. If pN S # &, then S~1q = S~1A.

We say a subset ¥ of prime ideals associated to a is isolated if is closed downwards under inclusion.
Then, localizing at A\(U,cx p) kills off precisely the associated primes not in 3.

4.4. Theorem. Let a = (), q; be a minimal primary decomposition. Let p;,,...,p;,, be an isolated set of
associated primes. Then q;; N --- N, is dependent only on a. In particular, if p; is isolated, then q; is
dependent only on a.

PROOF. Localize at S = A\(p;, U---Up;, ). Then S~la = S"1q;, N---N S 1g;  is a minimal primary
decomposition of S~'a, and S~tanN A = q;, N---Ngq;, is a minimal primary decomposition of S~*a N A4,
which is only dependent on a since S is only dependent on a. (]

Some (counter)examples to keep in mind:

e In k[z,y], (22, 2y) = ()N (x,y)? = (z) N (22,y). These are both minimal primary decompositions,
and the set of associated primes are () and (z,y). Furthermore, the primary ideal corresponding
to isolated primes (z) is the same, whereas the other primary ideal is different.

e A prime power is not necessarily primary (whereas this becomes true if “prime” is replaced by
“maximal”). An example is p? in k[z,y, 2]/(zy — 2?), where p = (z, 2).

e A p-primary ideal is not necessarily a power of p. An example is (z,y?) in k[z,y].
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Finally, we summarize the theory of primary decomposition for modules. Fix a ring A and an A-module
M. An element x € A is a zero-divisor in M if zm = 0 for some m # 0. It is nilpotent in M if some power
of it kills M.

For a submodule N C M, define its radical r);(N) = rad(N : M). It is primary in M if N # M
and every zero divisor in M/N is nilpotent. Equivalently, N C M is primary iff (N : M) = Ann(M/N) is
ra(N)-primary. A minimal primary decomposition of N C M is

n
N=[
i=1
where each Q; is primary in M, rp/(Q;) are all distinct, and none of @Q; is redundant.

4.5. Proposition. The primes p; = ryp(Q;) are only dependent on N. They are the prime ideals of the
form rad(N : x) where x € M.

4.6. Proposition. The minimal prime ideals associated with N are precisely the minimal primes containing
TM(N)
4.7. Proposition. |J,p; ={r € A: (N :z) # N}.

4.8. Proposition. Let p;,,...,p; , be an isolated set of associated primes. Then Q;, N---NQ;,, is dependent
only on N. In particular, if p; is isolated, then Q; is dependent only on N.

The proofs of these propositions are completely standard.

e}

4.3. Problem. Suppose A is absolutely flat, and ¢ C A is primary. Then A/q is absolutely flat (problem
2.28). Suppose a € A/q is a nonunit, then there exists € A/q such that a(1—ax) = 0, so a is a zero-divisor.
Since q is primary, a is nilpotent. Then a™ = 0 for some n, so a = 2"~ *a™ = 0. In other words, A/q is a
field, so q is maximal.

4.6. Problem. We claim that the zero ideal is not decomposable. Suppose otherwise, then the set of zero
divisors in C'(X) is equal to the union of the (finitely many) prime ideals associated with (0). Find maximal
ideals m,,,...,m,  containing each associated prime ideal (these can only be of the form m, = {f € C'(X) :
f(z) = 0}). It suffices to find a zero divisor g that does not vanish at all of z1,...,x,.

Since X is compact Hausdorff, X is a normal space. Urysohn’s lemma then says that if A, B C X are
two disjoint nonempty closed sets, then they are separated by a continuous function.

We choose x # z1,...,x, since X is infinite. Since X is Hausdorff, there exist disjoint open sets
U,V C X such that z € U and z1,...,2, € V. Choose a function g € C(X) that equals 1 on z1,...,z, and
0 on X\V. Then Suppg = {z € X : g(z) # 0} C X\U. Then we can find h # 0 that vanishes on Supp g
and equals 1 at x, so that gh = 0.

4.7. Problem. iii) If f(z) is a zero-divisor in (A/q)[z] = Alz]/q[z], then there exists a nonzero element
a € A/q such that af(z) = 0, so every coefficient of f is a zero-divisor in A/q. Because q is primary, this
implies that every coefficient of f is nilpotent, so f is nilpotent. This shows that q[z] is primary, and clearly
it must be p[x]-primary.

4.9. Problem. Suppose p is a minimal prime ideal containing (0 : a) for some element a. Then the image
of pin A/(0: a) is a minimal prime, so every element inside is a zero-divisor. Therefore, if = € p, then there
exists y € A,y ¢ (0: a) such that xzy € (0:a). Sox € (0: ay) and ay # 0, as desired.

If 0 is decomposable, then the primes in Ass(0) are precisely primes of the form rad(0 : z), which is a
subset of D(A). Conversely, if g € D(A), then by the above paragraph q C J, 4, rad(0 : z) = UpeAss(o) p, SO
by prime avoidance we have q € Ass(0).

4.13. Problem (nth symbolic powers). i) Since pA, is a maximal ideal, p" A, is pA,-primary, so p™ s
p-primary.

ii) The only isolated prime of p™ is p, because rad(p™) = p. The proof of theorem 4.4 then tells us that
p(™ is the p-primary component.

iii) It is easy to show that S, (p(™p(™) = S, (p™*+"), so they have the same p-primary components.

iv) This is obvious by ii).
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4.14. Problem. It suffices to show that p = (a: x) is prime. Suppose yz € p, then zyz € a. If y ¢ p, then
xy ¢ a,s0 (a:zy) D (a:z) implies (a: zy) = (a: ). Since z € (a: zy), z € p as well.

4.17. Problem. We first show the following claim: let a be an ideal, p a minimal prime ideal containing a,
then q = Sy(a) is p-primary, and if ¢ = (a : ) then a = qN (a,2). The first clause of the claim follows from
problem 4.11 by reducing mod a. For the second clause, suppose bx € q for some b € A, then since = ¢ p,
b € q, so bz € a. This proves the claim.

Now, fix an ideal ay. From the claim, we may choose ay = g1 N (ag, zo) for some q; = Sy, (ag) = (ag : xo)
and zo ¢ p;. Choose a; maximal such that agp = a; N gy and xg € a;. Repeating the above procedure, we
may choose a; = q2 N (a1, 1) where q2 = Sp,(a1) = (a1 : x1) and x1 ¢ po. Choose ay maximal such that
asNqe = a; and z1 € as. Repeating this again, at each stage we have ag = q1N---Ngp Ny, 0y € q1,- .-, qn,
and a,_1 C a,.

Even though this does not necessarily terminate in finitely many steps, we can use transfinite induction.
The successor step is the same as the one described above. For the limit step, we just take a, to be the
union of the ag’s where § < a. Then in fact at each stage we have

ap = pr m qsg Nag.
Ba
Then consider an ordinal « such that o > |A|, where we well-order A a priori. We must then have a, = (1),
at which point ay is expressed as the intersection of primary ideals qg, 8 < a.

4.18. Problem. i) = ii): Suppose a =, q;, then we know that Sy (a) =, -, 9;. Clearly, we may choose
x € A such that x ¢ p; iff p; C p. Then Sy(a) = (a: z™) for a sufficiently large power of x, by problem 4.15,
so this verifies (L1). Problem 4.12 directly implies (L2) since Si(a) D S2(a) D ....

ii) = i): By problem 4.17 we express a = (), qa. Let S,, = Sp, N---NS,,. Then S, (a) = Sp(qiN---N
Gn N ) = Sp(g1) NN Sy(dn) N Sp(an) = g1 N--- N gy since a, ¢ [J;_, p; by construction. Since S, (a)
stabilizes, we can use transfinite induction to show that q, D (., g; for every ordinal a > n, which then
implies a = (N}, ;.
4.19. Problem. Induct on n where the induction basis is obvious. For the inductive step, suppose WLOG p,,
is minimal among p;. By inductive hypothesis there is a minimal primary decomposition a’ = q1 N---N(p_1
where each q; is p;-primary. It suffices to find a p,,-primary ideal q,, such that ¢, 2 a’. Suppose otherwise,
then a’ C Sy, (0). In other words, ﬂ?z_ll SpH(g;) = 0. But for every p;, p; ¢ p, by minimality, so S, ' (q;) =
S;nl(A), which is not the zero ring, so we get a contradiction.

5. Integral dependence and valuations

5.1. Proposition. Let A C B be a ring extension. The following are equivalent:
(i) © € B is integral over A;
(ii) Alz] is a finitely generated module over A.
(i1i) Alzx] is contained in a subring C C B that is f.g. as an A-module.
(iv) There is a faithful Alx]-module M such that M is f.g. over A.

PROOF. The nontrivial part is iv) = i). Consider M as an f.g. A-module, and consider the map
¢ : M — M given by m — xm. By Cayley-Hamilton, ¢ satisfies a monic polynomial equation over A. Since
M is faithful as an Alz]-module, x satisfies a monic polynomial equation over A. O

5.2. Corollary. The elements in B integral over A forms a subring of B, called the integral closure of A in
B.

5.3. Corollary. If B is integral over A and C' is integral over B, then C is integral over A.

In addition, integral dependence is preserved by passing to quotient rings and localizations. Even
better, if C' is the integral closure of A in B, then S~!C is the integral closure of S™!'A4 in S~'B, S being
any multiplicatively closed subset of A.

5.4. Proposition. Let A C B be an integral extension of integral domains. Then A is a field iff B is a field.

5.5. Corollary. Let A C B be an integral extension. Let q C B be a prime ideal, and let p = qN A. Then
q is mazimal in B iff p is mazimal in A.
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5.6. Corollary. Let A C B be an integral extension. Then no two distinct prime ideals lying over prime
p € A can have a containment relation.

PrOOF. Localize at S = A — p, and use corollary 5.5. (]

5.7. Theorem (Lying-over). Let A C B be an integral extension, and p C A a prime. Then there exists a
prime q C B such that qN A =p.

PRrOOF. Consider the contraction of a maximal ideal in S™'B, S = A — p. ]
5.8. Theorem (Going-up). Let A C B be an integral extension. Suppose py C --- C py is a chain of
prime ideals. Then for any q1 C -+ C qm lying over p1,...,pm respectively, it can be extended to a chain
q1 C -+ C qn, each lying over p1,...,pn. |

An integral domain is said to be integrally closed if it is so as a subring of its field of fractions. Clearly,
any UFD is integrally closed. Being integrally closed is a local property.

Define, for a C A an ideal, the integral closure of a in B to be the set of elements in B satisfying a monic
polynomial equation with coefficients in a.

5.9. Proposition. Let C' be the integral closure of A in B, and let a C A be an ideal. Then its integral
closure in B is rad(a®) where a° is the extension of the ideal in C.

5.10. Corollary. Let A C B be integral domains, A integrally closed, x € B integral over an ideal a C A.
Then x is algebraic over the quotient field K of A, and its minimal polynomial t" 4+ a1t" ' +- - - +a, satisfies
ai,...,a, € rad(a).

PRrROOF. The conjugates of x are all integral over a since they all satisfy the same integral equation over
a. Since the a;’s are polynomials in the conjugates of x, they all belong to rad(a®) = rad(a) since A is
integrally closed. (I

5.11. Theorem (Going-down). Let A C B be an integral extension, such that A is integrally closed. Suppose
P1 D - D Py is a chain of prime ideals. Then for any q1 D -+ D qm lying over p1, ..., pm respectively, it
can be extended to a chain q1 D --- D qy, each lying over py,...,Pn.

ProoOF. It suffices to show that given p; D po, with q; lying over p;, there exists qo C q; lying over
po. It then suffices to show that p5° = po, where the extension and contraction are through A — B — By,.
To this end, suppose x € A, s € B —q1, y € poB such that § = £. Then yt = xst for some t € B — q;.
Replacing y with yt, and s with st, we may assume WLOG ¢ = 1.

Since y € pa B, y is integral over po, so it satisfies an equation y” +uyy" "t + -+ + u, = 0 where u; € po.

Working in K, the quotient field of A, we have s = yz~!, so

U U U
Sr+_18r71+_§57‘72+”.+_7“:0.
x x x”
But s € B, so each u;/x" = v; € A. If © ¢ po, then v; € py for every i, so s € poB C p1B C qq, a
contradiction. Therefore, x € py as desired. (]

5.12. Proposition. Let A be an integrally closed domain, K its field of fractions, L/K a separable finite
extension, B the integral closure of A in L. Then there exists a basis v; of L/K such that B C > Av;.

PrOOF. Consider an arbitrary basis of L/K, then each basis element can be multiplied by some element
in A such that they lie in B. Call this basis uy,. .., u,. Consider the trace form Try /x : L x L — K, given by

(x,y) = Trp /g (zy). This is nondegenerate by separability. So there exists a dual basis vy,...,v, € L such
that Tr(v;u;) = 6;5. We claim this is the desired basis. Indeed, consider € B, and express ¢ = Zi TV,
then because u; € B, x; = Tr(au;) € A. O

For an integral domain B and its field of fractions K, we say B is a valuation ring of K if for any nonzero
x € K, either z € B or x~! € B. Then B must be a local ring that is integrally closed (in K).

Let K be any field, © an algebraically closed field. Consider the set of pairs (A, f) where A C K is a
ring and f : A — Q is a homomorphism. Partially order this set so that (A, f) < (4', f') iff A C A’ and
f=1f'|a. Let (B, g) be a maximal element of this set.

5.13. Proposition. B is a local ring with maximal ideal m = ker g.
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5.14. Proposition. Let x € K,  # 0. Then either m[z] # Blz] or m[z~!] # Bz ~1].
5.15. Theorem. B is a valuation ring of K.

PROOF. Let nonzero x € K, it suffices to show either x € B or x—! € B. By proposition 5.14 WLOG
m[z] # Blx]. Then it is contained in some maximal ideal m’ C B’ = B[z]. We must have m'N B = m since m
is maximal, so the inclusion B — Blz] induces a field extension k = B/m to k' = B’/m’. Because k' = k[z],
it is a finite extension, so the induced embedding g : kK — € (recall m = ker g) extends to an embedding
k' — § since Q is algebraically closed. This extends to a map B’ — €, so by maximality, B = B’. Since
x € B, x € B, as desired. O

5.16. Corollary. Let A be a subring of a field K. Then its integral closure is the intersection of all valuation
rings of K containing A.

5.17. Proposition. Let A C B be integral domains, B a finitely generated algebra over A. Let v € B
nonzero. Then there exists u € A nonzero such that any map f: A — Q, where Q is algebraically closed and
f(u) #0, can be extended to a map g : B — Q where g(v) # 0.

PROOF. Inducting on the number of generators, we may suppose B is generated over A by one element
x.

If 2 is transcendental, suppose v = anz™ +---+ag. Let u = a,. Then for any f : A — Q where f(a) # 0,
there must exist w € © such that f(a,)w™ + -+ f(ap) # 0. Extend f to g : B — Q by mapping = to w.

If z is algebraic, then so is v™1 (over K = Frac(A)). So we have equations

apx™ 4+ ay, =0, aw "+---+a,=0
of least degrees, for a;,a; € A. Let u = apag, and consider f: A — Q such that f(u) # 0. We easily extend
this to f1 : A[u=!] — Q, and now both z and v~! are integral over A[u~1]. Extend f; to h : C — Q, C being
a valuation ring containing A[u~!], then z,v~! € C. But since x € C, C contains B, so v € B C C too. So
h(v) # 0 since v is a unit, and taking g : B — C % Q) finishes the proof. a

5.18. Corollary (Hilbert’s nullstellensatz). Let k be a field, B a finitely generated k-algebra that is a field.
Then B is a finite extension of k.

e}

5.1. Problem. Let b € B be an ideal, g € V(b) in Spec B. Then f*(q) = q° 2 b° =: a, so f*(q) € V(a) in
Spec A. Conversely, suppose p 2 a. Because f : A — B is integral, so is f : A/a — B/b. So there exists a
prime § € B/b above p € A/a. Pull § back to g € B, which is a prime ideal lying above p that lies inside
V(b).

5.2. Problem. Zorn’s lemma.

5.8. Problem. ii) Let By = Blzo]/fg(xo). Then fg(x1) factors as fg(z1) = (z1 — xo)p1(z1) in Bi[x1], and
degp; = deg(fg) — 1. Let By = Bi[x1]/p1(x1), and so on. We end up with a ring B’ D B such that fg(z)
splits into linear factors in B’[z]. The roots of fg are all integral over C, therefore so are the coefficients
of f and g. But they also lie in B, so they must lie in C since C is integrally closed in B. (Note that this
problem implies that for a ring extension A C B, for elements a,b € B, if both a + b and ab are integral over
A, then so are a, b themselves.)

5.13. Problem. Suppose q1,q2 € P. Let x € q2, then ngng € A% C qi, so there exists g € G such that
gx € q1. Therefore, g2 C UgeG gq1, so there exists g € G such that q2 = gq;.

5.15. Problem. Any finite extension can be split into a separable extension followed by a purely inseparable
one, so it suffices to prove the two cases separately.

If L/K is separable: consider a set of generators of L over K, and take the splitting field M of the
minimal polynomials of these elements. Then M/K is a finite Galois extension since it is the splitting field
of a separable polynomial. By problem 5.14, A = BG2I(M/K) By problem 5.13, Spec B — Spec A has finite
fibers.

If L/K is purely inseparable: let p = char K. Then for any x € B, there exists n > 0 such that " e K,
so 2P" € A since A is integrally closed. Suppose prime ideal q¢ € B such that g A = p. Then z € q
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implies 2P" € AN q = p. Conversely, if 2P" € p C q, then = € q since q is prime. Therefore, q is uniquely
characterized as the set of elements whose some p™th power lies in p.

5.16. Problem (Noether’s normalization lemma). We only show the second part of the problem (geometric
interpretation). Namely, if k[y;,...,y] — A = k[x1,...,2,]/] is injective, the induced map of affine
algebraic varieties X — k" is surjective. A point in k" corresponds to a morphism of algebras k[y1, ...,y —
k. Since k is algebraically closed and A is integral over k[y1,...,y.|, this can be extended to a morphism
A — k, which corresponds to a point in X.

5.17. Problem (Hilbert’s nullstellensatz). We state several theorems that are associated with the name.
Let k£ be an algebraically closed field.

A formulation of nullstellensatz: the map k™ — Spmk[zy,...,x,] given by (ai,...,a,) — (x1 —
ai,...,Ty, — a,) is bijective. (Proof: using problem 5.18, suppose m C k[z1,...,2,] is a maximal ideal.
Then k[z1,...,z,]/m is a finitely generated algebra over k that is a field, so it is a finite extension of k, so
it is equal to k since k is algebraically closed. Suppose aq,...,a, are the images of x1,...,x, in k, then
m = (.731 —A1y...,Tp —an).)

Weak nullstellensatz: if a # (1) is an ideal in k[z1,. .., 2], then its associated variety V (a) is nonempty.

(This is easily equivalent to the above statement.)
(Strong) nullstellensatz: if a C k[zq, ..., ;] is an ideal, then I(V(a)) = rad a.

5.18. Problem (Zariski’s lemma). There is an integral extension k[yi,...,y.| < B. Since B is a field, so
is k[y1,...,yr]. This implies r = 0.

5.22. Problem. Let v # 0 be an element of B. Since A C B, are integral domains and B, is finitely
generated over A, there exists an s # 0 in A such that, given any map f: A — Q where f(s) # 0 and Q is
algebraically closed, f can be extended to a map g : B, — €.

Since J(A) = 0, there is a maximal ideal m C A not containing s. Taking Q to be the algebraic
completion of A/m, we obtain a map ¢ : B, — €. In particular, g(v) # 0, so n = ker g N B does not contain
v. It suffices then to show that n is maximal in B. Observe that the integral extension A — B induces a
map A/m — B/n that is also integral. Since the left side is a field, so is the right side.

5.23. Problem. iii) = i): Suppose for contradiction that p C A is not the intersection of maximal ideals.
Replacing A with A/p, we have J(A) # 0 and it suffices to find a non-maximal prime q C A that is not the
intersection of primes strictly containing q. Choose z € J(A), pick q to be the pullback of a maximal ideal
in A;. Then q is a prime ideal such that = ¢ q. Since x belongs to all maximal ideals in A, q is not maximal.
Furthermore, any prime ideal strictly containing q must contain x, so we are done.

5.24. Problem. (i) If B is integral over A, consider a prime q C B. Then p = q¢ is a prime in A. Since A
is Jacobson, p = (), m; for maximal ideals m; C A. By going-up, there exist maximal n; containing q such
that n{ = m;. Then (), n;)¢ = (), n§ = ap. Since q C (), n; and both pull back to p, g = (), n;. Thus B is
Jacobson.

(ii) If B is a finitely generated A-algebra, consider a prime q C B and its pre-image p = q° C C. Then
A/p — B/q is an inclusion of integral domains, and J(A/p) = 0 because p is the intersection of maximal
ideals. By 5.22, J(B/q) = 0 as well, so q is the intersection of maximal ideals. Thus B is Jacobson.

In particular, every finitely generated ring and every finitely generated algebra over a field is Jacobson.

6. Chain conditions

Example of a Z-module satisfying dcc but not acc: take G C Q/Z be elements whose order is a power
of p. Then Gy C G; C G2 C ..., where G; consists of elements = € G such that p’z = 0.

For any partially ordered set: acc <= every nonempty subset has a maximal element; dcc <= every
nonempty subset has a minimal element.

6.1. Proposition. Suppose 0 = M’ — M — M" — 0 is exact. Then M is Noetherian (resp. Artinian) iff
M’ and M" are both Noetherian (resp. Artinian).

6.2. Proposition. If M is a finitely generated module over a Noetherian (resp. Artinian) ring, then M is
a Noetherian (resp. Artinian) module.
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A composition series for a module M is a chain
M=My>DM D>---DM,=0
such that M;/M;,, is simple (has no nontrivial proper submodules).

6.3. Proposition. If M has a composition series with finite length n, then every composition series of M
has length n. Furthermore, every chain in M can be extended to a composition series.

PROOF. Let [(M) be the least length of a composition series of M of finite length.

Suppose N C M, N # M. Consider a composition series M = My D My D --- D M, = 0 of length
n=1(M). Then N=MyNN2ODM; NND--- D M,NN =0 is a composition series of N, so [(N) < n. If
equality is achieved, then each (M; N N)/(M;+1 N N) is nontrivial. Since it is a submodule of M;/M; 1, it
must be equal to M;/M;11. We then see inductively that M = N, a contradiction. Therefore, I(N) < I[(M).

Now, consider any composition series M = My D --- D My, = 0. Then I(M) > (M) > --- > 1(Mp,) =
0, so I(M) > m. But [(M) < m by definition, so [(M) = m. O

6.4. Proposition. M has finite length iff M is both Noetherian and Artinian.

6.5. Theorem (Jordan-Holder). Any two composition series of M have the same length, and the multiset
of successive quotients M;/M;+1 do not depend on the particular composition series chosen.

6.6. Proposition. Suppose 0 — M’ — M — M" — 0 is exact, then (M) =1(M') +1(M").

6.7. Proposition. Suppose (0) = my...m, for mazimal ideals m; (not necessarily distinct), then A is
Noetherian iff A is Artinian.

PROOF. A Dm; Dmmy D --- D mmy...m, = 0. Each successive quotient is a vector space over a
field, so acc <= dcc for each quotient. By induction, acc <= dcc for A. O

7. Noetherian rings

7.1. Proposition. Suppose A is a Noetherian ring.

Let B = A/a for some ideal a C A, then B is a Noetherian ring.

Let B be a ring, A C B, such that B is f.g. as A-module. Then B is a Noetherian ring.

Let S C A be a multiplicative closed subset, then S~1A is a Noetherian ring.

(Hilbert Basis Theorem) Alx] is Noetherian. Corollary: let B be an associative algebra over A of
finite type. Then B is Noetherian.

7.2. Proposition. Let A C B C C be rings, A Noetherian, C f.g. as A-algebra. If C' is either f.g. as
B-module or integral over B (these two equivalent), then B is f.g. as A-algebra.

We say an ideal a is irreducible if a = b N ¢ implies a = b or a = ¢.
7.3. Proposition. In a Noetherian ring, every ideal is a finite intersection of irreducible ideals.
7.4. Proposition. In a Noetherian ring, every irreducible ideal is primary.

PRrROOF. Passing to the quotient we assume WLOG 0 is irreducible. Suppose xy = 0, x # 0. Consider
the chain Ann(y) C Ann(y?) C ..., then Ann(y") = Ann(y"*!) for some n. Then if a € () N (y™), suppose
a = by™, then by"*! = ay =0, so b € Ann(y" ') = Ann(y"), so a = 0. Therefore (x) N (y") = 0, so y™ = 0.
We have shown that (0) is primary. O

Consequently, all results in section 4 applies to Noetherian rings.

7.5. Proposition. In a Noetherian ring A, any ideal contains a power of its radical. In particular, rad(A)
s nilpotent.

7.6. Proposition. Let a # (1) be an ideal in a Noetherian ring. Then the prime ideals associated with a
are precisely prime ideals of the form (a: x).
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PrROOF. Passing to the quotient, assume WLOG a = 0. Suppose 0 = Uj q; is a minimal primary
decomposition, with rad(q;) = p;. Let a; = [, q; # 0.

Take nonzero z € a;, then (0 : ) = (;(q; : ) = (q; : @) € p;. On the other hand, there exists n such
that p?' C q;, so a;p C angq; = 0. Take the smallest such n, then there exists nonzero x € aip?_l, and

piz =0,s0p; C(0:2). So (0:x)=p;.
Conversely, if (0 : x) is prime, then so is rad(0 : ), which is associated with a by Theorem 4.1. a
8. Artin rings
In what follows, the terms “Artin” and “Artinian” are used interchangeably.
8.1. Proposition. Any prime ideal in an Artin ring is maximal.

8.2. Proposition. An Artinian ring has finitely many mazximal ideals.

8.3. Proposition. Let A be Artinian, then J(A) = rad(A) is nilpotent.

PROOF. Suppose rad(A4)" = rad A"*! = ... = a is nonzero. Look at the minimal ideal b such that
ab # 0. By minimality, b is principal, and its generator x must satisfy za = (). Thus there exists nonzero
y € asuch that 7y = x,s0o x = 2y = - -- = 2y~ = 0 since y € rad(A) is nilpotent, so b = 0, contradiction! [J

8.4. Theorem. A is Artinian if and only if A is both Noetherian and dim A = 0.

8.5. Proposition. Let A be a Noetherian local ring with maximal ideal m. Then exactly one of the following
is true: either m™ # m"t for all n, or m"™ = 0 for some n and A is Artinian.

8.6. Theorem. An Artinian ring A is uniquely a finite product of Artin local rings.

8.7. Proposition. Let A be an Artinian local ring. Then the following are equivalent:

o FEvery ideal is principal;
e The maximal ideal is principal;
e dim(m/m?) < 1.

In fact, if any of the above is true, then any ideal is a power of the maximal ideal.

9. Discrete valuation rings and Dedekind domains

9.1. Proposition. Let A be a Noetherian domain of dimension 1. Then any ideal is uniquely written as a
product of primary idelas whose radicals are all distinct.

PRrROOF. By primary decomposition, any ideal is the intersection of primary ideals. Since their radicals
are all isolated, the primary ideals are unique. Since p; +p; = (1), q; and q; are also pairwise coprime, so

Nai =I1a- O

Let K be a field. A discrete valuation v : K* — Z is a surjective group homomorphism satisfying
v(x +y) > min(v(x),v(y)). The set A = {z € K : v(xz) > 0} is then a valuation ring of K. By results in
chapter 5, A is local and its maximal ideal is m = {x : v(z) > 0}. It is easy to see that m is principal, and if
we pick a generator (x) = m, then every nonzero ideal in A is of the form (z™) for some n > 0. As such, A is
a Noetherian local domain with dimension 1. Conversely, these are also characteristic of discrete valuation
rings:

9.2. Proposition. Let A be a Noetherian local domain of dimension 1. The following are equivalent:
(i) A is a DVR;
(i) A is integrally closed (in K = field of fractions);
(i4i) m is principal;
(iv) dim(m/m?) = 1;
(v) Every nonzero ideal is a power of m;
(vi) There exists x € A such that very nonzero ideal is (z™) for n > 0.
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PROOF. (i) = (ii): suppose z € K satisfies 2" + a12" ' + -+ + a, = 0 for a; € A, then nv(z) =
v(x™) > wv(a,) >0, so v(z) > 0.

(ii) = (iii): Pick any nonzero a € m, then since A has dimension 1, (a) is m-primary. Since m is finitely
generated, there exists n such that m” C (a) and m"~! ¢ (a). Pick b € m"~! that does not belong in (a),
and consider a~'b. It is clear that a=1b ¢ A, since otherwise b € (a). On the other hand, a~1bm C A is an
ideal. If a~!'bm = A, then m = (ab™!) is principal, which is what we wanted. Otherwise, a~*bm C m, so
m is a faithful A[a~!'b]-module that is finitely generated as an A-module, so a~'b is integral over A, hence
belongs to A, which is a contradiction.

(i) = (iv) is clear.

(iv) = (v): Suppose dim(m/m?) = 1. Consider an ideal a, then there exists n such that m" C a.
Consider the image a of a in A/m™, which is an Artinian local ring by proposition 8.5. In this ring, the

image of m is nilpotent, so there exists m with @ C m™ and @ € m™ "', Since dim(m/m?) = 1, m is principal,

say m = (x). Then yz™ ¢ (z™*!) for some y € A/m", soy ¢ (x) =m, so y is a unit, so 2™ €@, soa =m",
so a is a power of m.

(v) = (vi): since A is not Artinian, m™ # m"~! for any n. Pick z € m, ¢ m?. Suppose (r) = m",
then n = 1, as desired.

(vi) = (i): since (z™) # (2"T!) for any n, we see that for any a € A, there is a unique n such that

(a) = (z™). Define v : A — Z by mapping a to n, and extend this to K* by v(a/b) = v(a) — v(b). O

A Noetherian domain A with dimension one is a Dedekind domain if it is integrally closed. Equivalently,
each A, is integrally closed, i.e. A, is a DVR. By proposition 9.2, this is also equivalent to saying that any
primary ideal is a power of its radical. By proposition 9.1, this is also equivalent to saying that any ideal is
uniquely factorized into the product of prime ideals.

Examples of Dedekind domains: any PID is a Dedekind domain, for A is a Noetherian domain with
dimension one such that every localization A, is a PID (hence DVR by proposition 9.2). An important class
of examples arise as rings of integers O of finite extensions K/Q (algebraic number fields). This is because
Ok is a submodule of some Z", and therefore is a Noetherian Z-module and an integrally closed domain
(as the integral closure of Z in K). To show it has dimension 1, consider any nonzero prime p C Ok, then
pNZ +# 0, so it is maximal, so p is maximal as well. In particular, in Ok, ideals can be uniquely factorized
into prime ideals.

A fractional ideal in an integral domain A is an A-submodule M of K = Frac(A) such that there exists
nonzero x € A satisfying that zM C A. The set of z € K such that xM C A is denoted (A : M).

A submodule M of K is said to be invertible if there exists a submodule N of K such that M N = A.
If M is invertible then its inverse N is necessarily equal to (A : M), since N C (A: M) = (A: M)(MN) C
AN = N. Then M(A: M) = A, so there exist z; € M, y; € (A : M) such that ) z;y; = 1, which implies
that the x; generate M as an A-module. Since M is finitely generated, it is a fractional ideal. The invertible
ideals form a group with respect to multiplication.

9.3. Proposition. Invertibility is a local property: for a fractional ideal M, the following are equivalent:
(i) M is invertible;
(ii) M is finitely generated and each M, is invertible;
(iii) M is finitely generated and each My, is invertible.

PrOOF. (i) = (ii): Ay = (M(A : M)), = My(A : M),. Since M is clearly finitely generated,
(A: M), = (Ap: My), so My(Ay : M) = Ay, so M, is invertible.

(iii) = (i): Let a = M(A: M) C A. The inclusion f : a — A, localized at each m, is bijective, so f is
a bijection too. O

9.4. Proposition. Let A be a local domain, then A is a DVR iff every nonzero fractional ideal is invertible.

PROOF. A is clearly Noetherian, so it suffices to show any ideal a is a power of the maximal ideal m.
Suppose mn = 1 for a fractional ideal n. Consider the maximal a that is not a power of m. Then a C na C A,
and furthermore a # na, since otherwise a = ma and a = 0 by Nakayama. Therefore, by maximality,
na = m”, so a = m**!, contradiction! O

The corresponding global result is:
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9.5. Proposition. Let A be an integral domain. Then A is a Dedekind domain iff every nonzero fractional
tdeal is invertible.

Therefore, for a Dedekind domain A, the set of nonzero fractional ideals forms a group I, and I is free
abelian with the nonzero prime ideals as generators.
There is an exact sequence of abelian groups

1-U— K" —% o (@) I — H—1,

where U is the group of units in A, and H = I/P is the ideal class group (fractional ideals quotient principal
fractional ideals). For A = Ok rings of integers in algebraic number fields, H is finite and U is finitely
generated. The torsion part of U is the subgroup W of roots of unities in K, and U/W is freely generated by
r1 472 —1 elements, where r; is the number of real embeddings and 2r; is the number of complex embeddings
of K.

10. Completions

10.1. Proposition. Suppose G is a topological group, and H is the intersection of all open neighborhoods
of 0. Then H = {0} is a subgroup of G, and H =0 if and only if G is Hausdorff.

Define the completion G using Cauchy sequences: a sequence () is Cauchy if for any open neighborhood
U of 0, there exists N (dependent on U) such that x,, — z, € U for all m,n > N. Then G is the set of
Cauchy sequences modulo equivalence. The natural map ¢ : G — G has kernel precisely H = W The
construction is functorial: for a continuous homomorphism f : G — H, there is induced a natural continuous
homomorphism f: G— H. (é is naturally a group, and it inherits a topology as an inverse limit as described

below.)
Suppose G has a neighborhood basis G = Gy D G; 2 G2 D --- given by subgroups. Then by looking at
cosets, each G; is both open and closed. Furthermore, 1&16‘ /G, since an equivalence class of Cauchy

sequences corresponds exactly to a coherent system of elements of G/G;. So G inherits a topology as a
subset of the infinite product of G /G, as discrete spaces. This is the same topology as the one induced by

the sequence of subgroups G>o G1 D Gg D ---. Under this topology, the image of f: G — G is dense.

10.2. Proposition. Let 0 — (4,) — (Bn) — (Crn) — 0 be an exact sequence of inverse systems, then
0 — LA — lim B,, — lUmOC,, is exact. Moreover, if the inverse system A, is surjective (the maps
Api1 — A, are surjective), then 0 — hmA — hmB — th — 0 s exact.

(In general, 0 — lim A4, — anBn — limC,, — lim' 4, is exact, where I'Lnl A,, = cokerd, where
d:1[An = [[An by an — an — Onyi1(any1), where 6, : A,y — Ap_q.)

10.3. Corollary. Let 0 — G’ 1G4 @ =0 be an exact sequence of groups. Let {Gn} be a sequence of

subgroups that define the topology on G. Let G, = f~1(G,), GI! = g(G,), then 0 — G -G —G"—0is
exact.

10.4. Corollary. G, is a subgroup of G, and @/é’; ~G/G,.

PrOOF. Take G' = G,, G" = G/G,, in the above, then G = G" since it has the discrete topology. O

10.5. Corollary. G=3G.

We say G is complete if ¢ : G — G is an isomorphism; then the completion of G is complete. Complete
implies Hausdorff. Given a commutative ring A and an ideal a, consider the a-adic topology generated by
the neighborhood basis a™. This is Hausdorff iff (a™ = 0. Similarly, for an A-module M, define the a-adic
topology as generated by the neighborhood basis a” M. Now, the completion Misa topological E—module,
and for any A-module homomorphism f : M — N, induced is a continuous homomorphism f: M- N.

Example. Let A = k[z], a = (z). Then A = k[[z]].

Example. Let A =7, a = (p). Then A= Z,, the p-adic integers.

For a filtration M = My 2 M; O My D ---, it is called an a-filtration if aM; C M, for all 7. It is
called a stable a-filtration if aM; = M;;; for all ¢ large enough.
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10.6. Lemma. For any two stable a-filtrations M;, M, there exist N such that My n C M and M € M;.

10.7. Proposition. Let A = @nZO A, be a graded ring. Then A is Noetherian iff Ao is Noetherian and A
is a f.g. algebra over Ag.

PRrROOF. <= follows from Hilbert’s basis theorem.

= Let Ay = @, An, then A is an ideal and A/A; = Ag. Therefore, A is a Noetherian ring.
Because A, is finitely generated as an ideal, it is finitely generated as an Ag-module, hence Noetherian as
an Ag-module. Therefore, the A,’s, as Ag-submodules, are finitely generated. Line up the generators in
ascending order of n, and consider the ideal (in A) generated by the first & generators. This ascending chain
is eventually constant, which means that the ideal A is finitely generated by homogeneous elements. Call
them x4, ..., x5, with degrees k1, ..., ks.

Let A’ be the Ap-algebra generated by ;. We show by induction that A4, C A’. The induction basis is
trivial. Suppose Ag,..., 4, C A’. Let x € A, +1 C Ay, so that z = > a;x; where dega; =n+ 1 — k;. Since
n+1—4k;<n,a; € A,s0x € A" as well. This finishes the proof. O

Let A be any ring, a an ideal, then A* = @, ., a" is a graded ring. Let M be an A-module, M, be
an a-filtration, then M* = @, -, M, is a graded A*-module. If A is Noetherian, then so is A*, by the
proposition above. B

10.8. Proposition. Let A be a Noetherian ring, a C A, M f.g. A-module, and (M,) an a-filtration of M.
Then M* is f.g. as A*-module iff (M,,) is stable.

Proor. Let M} = Moy®& M, ® --- & M, ® aM,, ® a’M,, @ --- be the A*-submodule generated by
@D, M;. Since M is f.g. over a Noetherian ring, it is Noetherian, so each M; is a finitely generated
A-module. Therefore, M is a finitely generated A*-module.

If M* is finitely generated, then it is a Noetherian A*-module, so the M is eventually constant, i.e. M,
is a stable filtration. Conversely, if M is eventually constant, since M* = |, M}, it is finitely generated as
an A*-module. O

10.9. Corollary. Let A be Noetherian, a C A, M f.g. A-module, (M) a-stable filtration. Suppose M' C M
is a submodule, then (M’ N M,) is a a-stable filtration of M'.

10.10. Corollary (Artin-Rees). Let A be Noetherian, M f.g. A-module, M’ submodule, then there exists k
such that for all n >k, a"M N M' = a""*(a*M N M").

10.11. Corollary. Let A be Noetherian, M f.g. A-module, M’ submodule, then the a-stable filtrations a™ M’
and a"M N M’ have bounded difference, and therefore determine the same a-adic topology on M'.

10.12. Proposition (Completion is exact for finitely generated over Noetherian). Let 0 — M’ — M —
M" — 0 be an exact sequence of f.g. modules over an Noetherian ring A. Let a C A be an ideal, then the
sequence of a-adic completions 0 — M' — M — M" — 0 is ezact.

PRroOOF. This follows from corollary 10.3 and 10.11. (]

10.13. Pr0p051t10n Let A be a ring, M a finitely generated A-module, then the natural linear map ¢ :
A®a M — M is surjective. Furthermore, if A is Noetherian, then ¢ is bijective.

PROOF. First, clearly An = A” so we take an exact sequence 0 - N — F' — M — 0 where F'is a f.g.
free A-module. Then A ® A N — 4 A® aF — A ® A M — 0 is exact. Furthermore we get a (not necessarily
exact) sequence 0 — N—F — M —0. Since F' — M is surjective and F~A ®4 F, we conclude that ¢ is
surjective.

If A is Noetherian, then 0 — N—>F—5M-o0is exact, and in addition N is finitely generated, so
A\®A N = Nis surjective. This is enough to show that ¢ is injective. O

Recall that to show an A-module K is flat, it is enough to have K ® 4 M — K ®4 N for injective maps
M — N for finitely generated M, N. Consequently, if A is Noetherian, A is a flat A-algebra.

10.14. Proposition. Let A be a Noetherian ring, A its a-adic completion, then:
(i) a= Aa=A®4a. (A\a is the ideal in A generated by the image of a.)
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(i) a" = a”.

(ZZZ) an/an+1 o an/an-ﬁ-l‘

(iv) @ C J(A).

PROOF. (i) A®4 a — @ is an isomorphism, and its image is Aa.

(i) @ = (Aa)" = Aa"™ = an.

(iii) Take the completion of the exact sequence 0 — a1 — g — g™ /a"*! — 0.

(iv) Since @" = a”, A is complete under the @-adic topology. Therefore, for any = € @, (1 — 2)~! =
1+ + 2%+ ... converges in A. |

10.15. Corollary. Let A be a Noetherian local ring, m its maximal ideal. Then A is a local ring with m its
maximal ideal.

PROOF. Because A/f = A/m is a field, fi is a maximal ideal. Because it is contained in J(A), it is the
unique maximal ideal. O

10.16. Theorem (Krull’s intersection theorem). Let A be a Noetherian ring, a an ideal, M a finitely
generated A-module. Then

E=()a"M={zeM:3ycauxl-y) =0}

n>1

PROOF. We know FE is finitely generated. By Artin-Rees lemma, there exists k such that £ = a**1 M N
E = a(a*M N E) = aE, so by Nakayama there exists a € a such that 1 — a annihilates all elements of E.
The converse is trivial. (]

This means that A — A and A — S~1 A have the same kernel, where S = 1+a. Furthermore, ¢ : A — A
maps every element of S to a unit (proposition 10.14). Therefore, there is a uniquely induced injective map
ST1A — A.

10.17. Corollary. Let A be a Noetherian domain, a # (1) an ideal, then (1,5, a" = 0.

Counterexample for A not Noetherian: let A be the ring of C'*° functions on R, a the maximal ideal of

functions vanishing at 0. Then (1, a” consists of f € A such that f(0), f'(0), f”(0),... all equal 0. On

the other hand, z is annihilated by an element in 1+ a iff x = 0 in some open neighborhood of 0. These two
sets are clearly not the same (e=1/*").

10.18. Corollary. Let A be a Noetherian ring, a C J(A), and M finitely generated A-module. Then the
a-adic topology on M is Hausdorff.

10.19. Corollary. Let A be a Noetherian ring, p a prime ideal of A, then the intersection of all p-primary
ideals of A is ker(A — A;).

Given a ring A and an ideal a, define its associated graded ring
gro(4) = G(A) = Pan /a1,
n>0
Given an A-module M and a a-filtration M,,, define
gr(M) = G(M) = @ My, /My 41
n>0

It is a graded G(A)-ring.

10.20. Proposition. Let A be a Noetherian ring, a C A an ideal. Then
(i) Gq(A) is Noetherian.
(ii) G4(A) = Go(A) as graded rings.
(iti) If (M,,) is a stable a-filtration of a finitely generated A-module M, then G(M) is a finitely generated
graded Gq(A)-module.

We work towards proving that the a-adic completion of a Noetherian ring is Noetherian.
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10.21. Proposition. Let ¢ : (4,) — (Bn) be a homomorphism of filtered groups. Let G(¢) : G(A) — G(B),
¢ A — B be the induced maps. Then if G(¢) is injective (resp. surjective), so is ¢.

PRrROOF. Consider the commutative diagram

0 —— Ap/Apy1 —— AJApy —— AJA, —— 0

o s L
0 — B,/Bn+1 — B/B,y1 —— B/B, —— 0

Because the rows are exact, we can apply snake lemma to obtain an exact sequence

0 — ker a — ker 8 — kery — coker @ — coker  — cokery — 0.

If G(¢) is injective, then by injection so is S for all n, so since inverse limits preserve injectivity, ¢ is injective
as well. Similarly for surjectivity. ]

10.22. Proposition. Let A be a complete ring in the a-adic topology, M an A-module, (M,,) an a-filtration
such that (), M,, = 0. If G(M) is a finitely generated G(A)-module, then M is a finitely generated A-module.

PROOF. Pick a finite set of (WLOG homogeneous) generators of G(M) over G(A), say T; € M, /My, +1.

For each i, construct a filtered A-module A = Ay O A; 2 A2 O ... where 4g = --- = A4,, = A and

Ay, +x = a¥. Direct sum these together, we obtain a map of filtered A-modules ¢ : F — M where F is

free. This induces G(¢) : G(F) — G(M), which is surjective by construction. By the above proposition,
¢ : F'— M is surjective as well. Consider the diagram

F— M

F—s M
The bottom map is surjective, the vertical map on the right is injective, and the vertical map on the left is
an isomorphism. Therefore, F' — M is surjective, and M is finitely generated as an A-module. O

10.23. Corollary. Let A be a complete ring in the a-adic topology, M an A-module, (M,) an a-filtration
such that (,, M, = 0. If G(M) is a Noetherian G(A)-module, then M is a Noetherian A-module.

PROOF. Let M’ C M be a submodule. Then (M’ N M,) is an a-filtration such that (), (M’ N M,) = 0.
Since G(M') C G(M) is a submodule of a Noetherian module, it is finitely generated, so M’ is a finitely
generated A-module. |

10.24. Theorem. Let A be a Noetherian ring, a C A an ideal, then the a-adic completion A is Noetherian.

PROOF. Since A is Noetherian, so is G4(A) = Ga(g). Viewing A as a module over itself, and applying
the above corollary (A is complete), implies that A is Noetherian. (I

For example, A[[z1,...,x,]] is Noetherian whenever A is Noetherian.

11. Dimension theory

Our first notion of dimension applies to finitely generated graded modules M = €,, M,, over Noetherian
graded rings A = @, A,. We know A can be viewed as a finitely generated algebra over Ay, say generated
by homogeneous elements x1,...,xs of degrees k1,...,ks. In addition, it is clear that each M, is finitely
generated as an Ag-module.

Let A be a Z-valued additive function on the class of all finitely generated Agp-modules. Define the
Poincaré series

P(M,t) =Y MNM,)t" € Z[[t]].
n>0

11.1. Theorem. There exists f(t) € Z[t] such that

f(®)
(1 —thr)(1 —th2) .. (1 — ths)

P(M,t) =
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Proo¥r. Induct on s by considering the “multiplication by zs” map on M. (]

Denote by d(M) the order of the pole of P(M,t) at 1. In particular, taking M = A, we arrive at the
first notion of “dimension” of A.

11.2. Corollary. If all k; =1, then A(M,,) is a polynomial in n of degree d(M) — 1 for all n large enough.
(This is the Hilbert polynomial of M.)

11.3. Proposition. If x € A is not a zero divisor in M, then d(M/xM) = d(M) — 1.

When Ay is Artinian, any f.g. module M over A, has finite length, so we could take A to be ¢, the length
function. For example, when A = k[xy,...,z4], L(A,) = ("jf;l), so P(A,t) = (1 —t)7% so d(A) = s (as
expected).

Using this, we may define the dimension of a Noetherian local ring.

11.4. Proposition. Let A be a Noetherian local ring, m its maximal ideal. Let q be an m-primary ideal, M
a finitely generated A-module, and (M,,) a stable q-filtration of M. Then:
(i) M/M,, is of finite length;
(it) For all sufficiently large n, L(M/M,) is a polynomial g(n) in n of degree at most the number of
generators of q;
(iti) The degree and leading coefficient of g depends only on M and q and not on the filtration chosen.

PROOF. O
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Homological Algebra
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CHAPTER 5

Algebraic Number Theory

These notes loosely follow what was covered in the one-year graduate number theory sequence at MIT.
18.785 was taught in fall 2022 by Bjorn Poonen; 18.786 in spring 2023 by Andrew Sutherland. I have included
additional topics in the canon, such as Tate’s thesis and modular forms. All mistakes are the author’s own.

1. Algebra preliminaries
1.1. Absolute values.

1.1.1. Definition. A (real-valued) absolute value on a field k is a map | | : £ — R>¢ such that:

o |z|=0< 2z =0;

o |zyl = |zllyl;

o |z +y| <|z|+ |y| (triangle inequality).
If the stronger condition that |z +y| < max(|z|, |y|) is satisfied, the absolute value is called nonarchimedean;
otherwise it is archimedean. Note the spelling of the word archimedean.

1.1.2. Example. Examples of absolute values:

e The usual absolute value | | on C, and the inherited absolute values on R, Q.

e The trivial absolute value on any field: |z| = 1 for  # 0. This is often implicitly excluded from
consideration, to little detriment.

e The p-adic absolute value on Q: |z|, = p~?»(®).

An absolute value induces a metric on k by d(z,y) = |z — y|, which then induces a topology (generated
by the open balls). Under this topology, it is easy to verify that k is a topological field.

1.1.3. Definition. Two absolute values on k are equivalent if they induce the same topology.

1.1.4. Proposition. Two absolute values | |1 and | |2 are equivalent if and only if | |2 = | |5 for some real
s> 0.

PROOF. Consider the image of the homomorphism f : k* — R? by z + (log|z|1,log |x]2).

Case 1: the image does not intersect the second quadrant. Then it must be a subset of a line with
positive slope, and therefore | [o = | |5 for some positive s. Since these induce the same open balls, they have
the same topology as well. So in this case both statements are true.

Case 2: the image intersects the second quadrant. Then there exists € k such that |z|; < 1 and |z|3 > 1

(without loss of generality, both absolute values are nontrivial). In this case, the sequence x, 22, 23,... con-
verges in the first topology but diverges in the second, so the two absolute values induce different topologies.
So in this case both statements are false. |

1.1.5. Corollary. If two absolute values | |1 and | |2 on k are inequivalent, then there exists x € k such that
|z]1 <1 and |z|2 > 1.

1.1.6. Proposition. An absolute value | | is nonarchimedean iff there exists a constant C such that |n| < C
for all positive integers n. In fact, this C is then easily seen to be 1.

PROOF. (=) is easy. (<=): say z,y € k, |z| < |y|. Then

5 (7)o

(2

[z +y[" =[x +y)" = < C(f™ + [yl + -+ [y[") < Cnlyl™.

Taking n — oo, we obtain |z + y| < |y| = max(|z|, |y|). O

27
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1.1.7. Corollary. In a field of positive characteristic, every absolute value is nonarchimedian.

1.1.8. Theorem (weak approximation theorem). Let k be a field, and let | |, ,...,| |, be pairwise inequiv-
alent nontrivial absolute values on k. Let ay,...,a, € k, and € > 0. Then there exists x € k such that
|x — a;|; < e for eachi=1,... n.

PRrROOF. First, we find z such that |z|; > 1 and |z]2,...,|2|, < 1. The induction basis n = 2 follows from
[1.1.5]. Suppose we have found z such that |z|; > 1 and |z]a,. .., |2|, < 1. If |2|,4+1 < 1 we are already done,
so suppose |z|n+1 > 1. Then as m — oo, 142_7‘1, T . — 1, whereas #‘2 e lj_7)n — 0. Take
y such that |y|; > 1 and |y|,41 <1, then %75 satisfies the induction step for sufficiently large m.

Next, we solve the case a; # 0, aa, . ..,a, = 0. This amounts to finding y such that |y — 1|1, |yla,.- -, |Y|x
are all arbitrarily small. Take z as above, and consider y = 11% once again.

Finally, we find y; replacing a; with each nonzero a;, and add them all together. This element satisfies
the desired approximation. (I

1.1.9. Theorem (Ostrowski). The only nontrivial absolute values on Q are either | |5 for 0 < e <1, or
| |, for some prime p and e > 0.

ProOF. Divide into the archimedean and nonarchimedean cases.

Case 1: there exists a positive integer b with [b| > 1. Say |b] = b*. For any positive integer n, write
n = apb® + ap_1b*"1 + .-+ + ag, where ag,...,ar € {0,...,b—1}. Let C = maxi<m<p—1|m|/m®. Then
In| < |agb®® + Jag_1|b**F=Y + oo+ jag] < C(aQb™® + -+ + a§) < Clagh® + -+ + ag)® = Cn®. Then
[n|™ = |n™| < Cn™*, so taking m — oo we obtain |n| < n®. On the other hand, for any positive integer n,
take k such that b* < n < b¥+1. Then |n| > p@*+1) — (pF+1 —p)> > pok (b — (b — 1)®) = Cn® for a fixed
C not depending on n, so similar to above we obtain |n| > n®. This means |n| = n®, so |z| = z* for all
x € Q*, so the absolute value is equivalent to | |o. In order for the triangle inequality to hold, it must be
| |5 for 0 <e<1.

Case 2: |n| <1 for all integers n. Then by [1.1.6], | | is nonarchimedean. Consider

p={neZ:|nl <1}

Then z,y € p = |z + y| < max(|z|,|y|) < 1, so p is an ideal. Furthermore it is a prime ideal, since
|zy| < 1 = either |z| < 1or |y| <1, and 1 ¢ p. Therefore, there exists a prime p such that |n| = 1 for any
integer n coprime to p, and |p| = p~¢ < 1 for some e > 0. Since | | is multiplicative, it has to be | |f. |

1.1.10. Theorem (Ostrowski’s theorem for function fields). Let k be any field. The only nontrivial absolute

values on k(t) that restrict to the trivial absolute value on k are either | | . or| |, ., where 7 is a monic
irreducible polynomial in klt].

Here, as usual, |f|,, .= ¢4/ and |f|, = =)

Proor. (TODO) U

1.2. Valuations.

1.2.1. Definition. A (real-valued) valuation on a field k is a homomorphism v : k* — R such that
v(z +y) = min(v(z), v(y))-
We usually extend this to a map on the whole & by the convention v(0) = oo.

If v is a valuation, ¢ € (0,1), then || = ¢*®) is a nonarchimedean absolute value. The image of v is
called the value group. Let A = {x € k:v(x) > 0}, then A is called a valuation ring. If the valuation group
is discrete (which can then be scaled to Z), then v is called a discrete valuation and A is a discrete valuation
ring. Note that by definition, a discrete valuation will surject onto Z.

More generally, in the same way, one could define a valuation with values in any totally ordered abelian
group (T, +, <), and extend this to I' U {oo} with the usual addition and size convention for co.

1.2.2. Definition. Let A be an integral domain, and K its field of fractions. It is a valuation ring (of K)
if any of the following equivalent conditions hold:

(1) For any z € K, either z € A or ! € A (or both).
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(2) There exists a totally ordered abelian group (I, 4+, <), and a I'-valued valuation v : K* — T, such
that A= {z € K : v(z) > 0}.

PROOF. (1) = (2): Let I' = K*/A*. Consider the projection v : K* — I'. Multiplicatively, I is a
totally ordered abelian group under the relation v(z) > v(y) <= zy~! € A. Then v is a valuation, and
A={ze K :v(x)>v()}

The converse is easy. (I
1.2.3. Proposition. Let A be a valuation ring of K = Frac(A). Then:

o A is a local ring, with the set of nonunits as its maximal ideal;
o A is an integrally closed domain.

ProOF. Atiyah-MacDonald, Proposition 5.18. (]

1.2.4. Proposition. Let A be a subring of a field K. Then its integral closure in K is the intersubsection
of all valuation rings of K containing A.

ProOF. Atiyah—MacDonald, Corollary 5.22. (]

1.2.5. Proposition. Let v : K — R U {oo} be a valuation, and let A be its valuation ring. Suppose
Z1y...,Tn € K and v(zy) < wv(x;) for alli > 2. Then v(xy + -+ + ) = v(z1).

PROOF. v(z1+: - +xy) > min(v(xy),...,v(xy,)) = v(z1), and v(x1) > min(v(x1+- - 4x,), v(x2), ..., v(Ty)).
Since v(xy) is strictly the smallest, this minimum must be equal to v(z; + -+ + x,). So we conclude
v(ry + -+ ) = v(1). O

1.3. Discrete valuation rings.

1.3.1. Definition. Let A be an integral domain. It is a discrete valuation ring (or DVR for short) if any of
the following equivalent conditions hold:

(1) A is the valuation ring of a (unique) discrete valuation of K = Frac A4;
(2) A is a local, dimension-1 PID;
(3) Ais a local, dimension-1, Noetherian, integrally closed domain.

PROOF. (1) = (2): For any ideal a C A, consider n = v(a) := inf,ecq v(x). Let m € A be an element
such that v(7) = 1, and suppose z € a satisfies v(z) = n. Then /7™ € K has valuation 0, hence is a unit
in A. So 7™ € a. Similarly, we can show a C (7™), so a = (7™). So any ideal is principal, and the only prime
ideal is (7).

(2) = (3): Every PID is noetherian and UFD, hence integrally closed.

(3) = (1): We first claim that for any fractional ideal I of A, the fractional ideal A(I) := {z € K :
xI C I} is equal to A. Clearly A(I) is a subring of K containing A, so for any x € A(I), A[z] C A(I). Since
A(I) is a fractional ideal of a Noetherian ring A, it is finitely generated over A. By [1.4.1], z is integral over
A, hence inside A. This shows A(I) = A.

Now, let p be maximal among the nonzero ideals I C A with [ = {z € K : 2 C A} 2 A. (Such
an ideal clearly exists, because any principal ideal generated by a non-unit satisfies this.) We claim that
p is prime (hence is the unique nonzero prime ideal). Let z,y € A, xy € p, x ¢ p, and take z € p~1\A.
Then zy(p + (x)) C A, and since ¢ p, p C p + (), so by maximality, we conclude zy € A. Therefore,
z(p+ (y)) C A, and so we conclude that y € p.

So we have A D pp~! D p. If pp~1 = p, then p~! C A(p) = 4, a contradiction. So since p is a maximal
ideal, pp~! = A. In addition, since p~! C A(p"), we must have () p"™ = 0. So we can choose some element
7w € p\p?, then mp~! C Abut 7p~! ¢ p,somp~! = A, i.e. (7) =p. Then for any element z € A, there exists
a unique n > 0 such that = € p™\p"*!, so that 2 /7™ € A\p, i.e. /7" is a unit. This then defines a unique
discrete valuation on K, whose valuation ring is A. (I

1.3.2. Proposition. Let (A,m,k) be a DVR, n > 0.

(i) m™/m"*t = k non-canonically (as k-vector spaces);
(ii) Let U, = 1+m™ be subgroups of A* for n > 1, and define Uy = A*. Then U, /U,41 = m"/m"H1
formn > 1, and Uy/U; = k>, both canonically.
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PROOF. (i) m"/m"*1 is an (A/m)-module, i.e. a k-vector space. Since m" = (7™) is a principal ideal,
the image of 7™ in m™/m"*! is nonzero and generates the vector space. So dimy m™/m"*! = 1.

(ii) It is clear that v(ﬁ —1) > n, so inverses exist in Uy, i.e. is a subgroup of A*. Map U,,/Up4+1 —
m”/m" ! by 1 +wu+— u. It is easy to check that this is a group isomorphism. Also, the map A — k induces
Uo /Uy = k*. |

1.3.3. Proposition. Let A be a DVR with fraction field K and residue field k. Let n > 1.

(i) If k has characteristic p > 0, then U? C Upq1;
(i) If K is complete and char k does not divide m, then uw— u™ is an automorphism on U,,.

PROOF. (i) follows from the previous proposition.

(ii) Injectivity is because u +— u™ is an isomorphism on each Uy /Uq41, for ¢ > n. To show surjectivity, let
vy, € U,. Then some u,, € U, satisfies u]'v,4+1 = v, where v,41 € U,41. Similarly, we can find u,41 € Upq1
such that u;' 1 vn42 = v,11 Where v, 42 € U, 12. Keep going like this, then w,u, 1,12 ... converges to an
element u € U,, by completeness, and u™ = v,,. (I

1.3.4. Example. Examples of DVRs:

e Consider v, : Q = Z U {co}, then its valuation ring is A = Z, (Z localized at (p)).

e Consider v : k((t)) — Z U {oo} mapping each formal Laurent series to the lowest degree whose
coefficient is nonzero. Then A = k[[t]].

e For a connected open U C C, let .#(U) be the field of meromorphic functions on U. For V .C U
open, there is a restriction map .# (U) — .# (V') that is injective (because of analytic continuation).
Let

M = lim A (U).
Us0
This is the field of germs of meromorphic functions at 0. Consider v : .# — Z U {00} mapping f
to the order of vanishing of f at 0. Then A is the ring of germs of holomorphic functions at 0.

1.3.5. Remark. DVRs are the simplest commutative rings after fields. There is the following tower of
inclusions:
Noetherian, dim 1 integrally closed

]

Dedekind UFD local

i

PID regular local ring

-

field, DVR
Furthermore, the following reverse implications hold:
e Noetherian, dim 1 + integrally closed = Dedekind;

e Dedekind + UFD = PID;
e Dedekind + local = field or DVR.

DVRs are an example of what’s regular local rings.

1.3.6. Definition. For a Noetherian local ring A with maximal ideal m and residue field k, it is called a
regular local ring if dimy m/m? = dim A (in general dimj m/m? > dim A).

Geometrically, a regular local ring corresponds to a curve being nonsingular at a point.

1.3.7. Example. Consider the Noetherian local ring A = C|[[z,y]]/(y?> — 23). The curve y*> — 2® has a
singularity at the origin. Correspondingly, A is not a regular local ring for any of the following reasons:
e m = (z,y) is not principal;
e dimcm/m? = 2, while dim 4 = 1;
e A is not integrally closed: consider the injection A — C[[t]] by = + t2, y — t>. Then A maps
isomorphically to the subring of C|[[¢]] consisting of power series in which the coefficient of ¢ is 0.
This ring is not integrally closed since t = t3/t? € Frac(A) is integral over A but not in A.
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1.4. Integral extensions.

1.4.1. Proposition. Let A C B be a ring extension. The following are equivalent:

(i) x € B is integral over A;

(ii) Alz] is a finitely generated module over A.
(i1i) Alx] is contained in a subring C C B that is f.g. as an A-module.
(iv) There is a faithful Alx]-module M such that M is f.g. over A.

1.4.2. Proposition. Let A be an integrally closed domain, K = Frac(A), L/K a finite extension. Then
a € L is integral over A if and only if its minimal polynomial in K has coefficients in A.

PROOF. Suppose a € L is integral over A. Let g € Afx] be monic such that g(a) =0, and let f € K[z]
be the minimal polynomial of o in K. Consider an algebraic closure K > L D K, then in K[z], f factors
into linear factors f(x) = [](x — «;). Then each «; is also a root of g, hence integral over A. Therefore,
the coefficients of f, being symmetric polynomials in «;, are elements in K integral over A, so they are in A
themselves. O

1.4.3. Example (Integral closure resolves codimension-1 singularities). Let A = k[z,y]/(y? — x3). We saw
in the previous subsection that A is not integrally closed by embedding A = k[t?,t3] < k[t]. The integral
closure of A (in its fraction field) is k[t]. The map A < kl[t] corresponds to the map between varieties from
the affine line to the curve y? — 23 = 0.

1.5. Localization. The following properties are preserved by localization (by a set not containing 0):

Noetherian
Integrally closed
Integral domain
PID

UFD

Exactness.

1.5.1. Proposition. dim A = sup{dim A, : p € Spec A}. (easy)

1.5.2. Proposition. Let A C K where K is a field, let M be an A-module such that M injects into the
vector space V.= M @4 K. Then

M= (1 My= (] Mn

pCA prime mCA maximal
PRrROOF. It suffices to show that if x € M, for every m, then z € M. Define the ideal
I={a€A:ax e M}.

Since x € My,, there exists s ¢ m such that s € I. Therefore, I is not contained in any maximal ideal, so
I=Asoxe M. a

Remarks: 1) We require M < V to be injective because otherwise we cannot view M as a submodule
of My,. 2) This proposition allows us to go from local to global.

1.6. Dedekind domains.

1.6.1. Definition. Let A be an integral domain, K = Frac(A4). A fractional ideal of A is an A-submodule
I of K, such that al C A for some a € K. When A is Noetherian, this is equivalent to imposing that I is
finitely generated as an A-module. A fractional ideal is invertible if II=! = A, where I~! is the fractional
ideal {z € K : I C A}.

1.6.2. Definition. Let A be an integral domain. It is a Dedekind domain if it satisfies any of the following
equivalent conditions:
(i) A is Noetherian, and each A, (p # 0) is a DVR;
(ii) A is Noetherian, dim A < 1, and A is integrally closed;
(iii) All fractional ideals of A are invertible.
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PROOF. (i) = (ii): If p # 0, then A, is a DVR. If p = 0 then A, = Frac(A) is a field. Therefore by
Proposition 5.1, dim A < 1. Also, each A, is integrally closed, so by Proposition 5.2, A = [ A,, so it is
integrally closed as well.

(ii) = (i): easy. O
1.6.3. Example. Examples of Dedekind domains:

e Every PID is a Dedekind domain. In particular, Z and k[x] are Dedekind domains.
e The ring of integers Ok of any algebraic number field is a Dedekind domain.
e The coordinate ring of a nonsingular affine algebraic curve C' is a Dedekind domain.

The set of invertible fractional ideals forms an abelian group under multiplication. It is the ideal group
Div(A) of A. The set of principal fractional ideals forms a subgroup, and the quotient is called the class
group Cl(A).

Invertibility is a local property:

1.6.4. Proposition. For a fractional ideal M, the following are equivalent:
(i) M is invertible;
(it) Each M, is invertible;

(iti) Each My, is invertible.

1.6.5. Corollary. In a Dedekind domain A, every nonzero fractional ideal is invertible.

(Reduce to the local case, where everything is easy because it’s DVR.)

1.6.6. Proposition. Let A be a Dedekind domain, then every nonzero x € A belongs to finitely many prime
ideals.

PROOF. The map I +— (z)I~! gives an order-reversing involution on the set of ideals between () and
A. Therefore, A/(x) is an Artinian ring, so it has dimension 0 and has finitely many maximal ideals. Since
every prime is maximal, it has finitely many prime ideals. ]

In what follows, assume A is a Dedekind domain, and K its field of fractions. We study prime factor-
ization in Dedekind domains.

Let I be a fractional ideal of A, then I, is a fractional ideal of A, so it is equal to (pA,)™ for some
unique n € Z. Define then v,(I) = n.

1.6.7. Proposition. (i) The map v, : Div(A) — Z mapping I — vy(I) is a group homomorphism. (ii)
Suppose I is generated by x1,. .., T, thn vy(I) = minwvy(z;).
1.6.8. Corollary. For each x € K*, there only exist finitely many p < 0 such that vy(z) # 0.

PROOF. For any = € A, it belongs to only finitely many primes, so for all other primes p, x is invertible
in Ay, so vy(z) = 0. In general r/s € K*, where r,s € A. O

1.6.9. Corollary. For any fractional ideal I of A, there only exist finitely many p < 0 such that vy,(I) # 0.

1.6.10. Theorem. There is an isomorphism of abelian groups:

Div(A)= @ Z
primes p#0
I (D))

H pr i (ep)p
P

1.6.11. Proposition. Let I =[], p*, J=]], pfe. Then
o I D J < e, < fp (to contain is to divide)
o [ +J= Hp pmin(ep»fp)
o 10 =], prexCeots)

IJ = Hp p€p+f)1

(1) = I, b
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1.6.12. Theorem. For a Dedekind domain A, the following are all equivalent:
o Cl(A) is trivial.
e Aisa PID;
e Aisa UFD;

PROOF. (ili) = (i): Let I be any fractional ideal. Because it factors into the product of prime powers,
it suffices to show that any nonzero prime ideal p is principal. Pick a # 0 in p, then we can uniquely factorize
a = [[, p where each p is irreducible. Since p 2 (a), p | (a), so p | [[,(p). Since p is prime, p must divide
some (p), but since (p) is a prime ideal, p = (p) is principal. O

More concepts: Let A be the coordinate ring of a regular affine curve X over an algebraically closed
field k. (Then X = Spec A4, and A is a Dedekind domain.)

algebra geometry
K = Frac(A) function field on X
nonzero primes p C A closed points P of X
nonzero fractional ideal I =[], p*» of A divisor ) p e, P on X
integral ideal I C A effective divisor on X
principal fractional ideal (f) principal divisor (f) on X

1.6.13. Theorem (Strong approximation theorem). Let A be a Dedekind domain, K = Frac(A). Suppose
we have distinct nonzero prime ideals p1,...,pn C A, integersey,...,e,, and elements ay,...,a, € K. Then
there exists x € K, such that:

o vy, (x—a;) > e; (this is the “weak” part);

o vy(z) >0 for all prime ideals q # 0, q & {p1,...,pn}.

PrOOF. Without loss of generality, assume all e; > 0.

Case I: Suppose a1 € A4, ag,...,a, = 0. Because p7* +p52 - - - pSr = A, there exists y € pi*, z € p5? - - pin
such that  +y = a1. Then vy, (z — a1) = vy, (—y) = vp, (y) > e1, and vy, (¢ — a;) = vy, (x) > e; for every
i # 1. Also, since z € A, vq(z) > 0 for all g.

Case II: Suppose ai,...,a, € A. Then using Case I, we can choose x; satisfying that vy, (z; — a;) > e;
and vy, (z;) > 0 for i # j. Let x = 21 + -+ + @, then vy, (v — a;) > vy, (7 — a;) > e;, and vy(z) > 0.

Case III: Suppose a1, ...,a, € K in general. Take nonzero t € A such that tay,...,ta, € A. Then by
Case II, there exists x € A such that vy, (z — ta;) > e; + vy, (t), vq(x) > vq(t) for those q with vg)>0, and
vg(x) > 0 for all others. Then z/t € K satisfies the conditions. O

Remark: we can in fact force vy, (z) = f; for any collection of f;: just take a; such that v, (a;) = f; and
e; > f;, then any x such that vy, (x — a;) > e; satisfies vy, (z) = f;.

1.6.14. Corollary. A semilocal Dedekind ring A must be a PID.

PROOF. Let py,...,p, be the nonzero primes. Any ideal I is p{*---pSr. By SA, there exists x € K =
Frac(A) such that vy, (z) = e;, so in fact I = (). O

1.7. Separability. Next, we review some field theory related to separability. Let K be a field and K
be an algebraic closure of K.

1.7.1. Lemma. Let o« € K, L = K(«). Then [L : K] > |Homg (L, K)| with equality iff o is separable, iff
L/K is separable.

PrOOF. We have L = K[z]/(f(z)) for some irreducible f(z) € K[z]. Any homomorphism o : L — K
fixing K must send z to another root of f in K, so there are at most deg f choices, and there are exactly
deg f choices if and only if all roots of f are distinct.

Let 5 € L be any element, then K(8) C K(«). Since « is separable over both K and K (), we then

. _ _[K(a):K] _ Homg(K(a),K) _ i7e ; ;
have [K(B) : K| = [K(@): KB = Trompe s, (K ()% — Homg (K (8), K), which shows that 8 is separable over
K as well. Therefore L/K is separable. |

1.7.2. Proposition. For a finite extension L/K, the following are equivalent:
e L is separable over K;



1. ALGEBRA PRELIMINARIES 34

o L=K(a,...,an) for some o; separable over K;
e L =K(a) for some a separable over K;
e [L: K]=|Homg (L, K)|.

1.7.3. Corollary. Let M/L, L/K be finite separable extensions, then M /K is separable as well.

1.7.4. Lemma. Let L/K be a field extension, and let F' be the set of elements in L separable over K. Then
F is a field between L and K.

PrOOF. It suffces to show that if a, 8 € L are separable over K, then so are a + 3, af. Consider the
tower of extensions K(a,3) D K(a) D K. By the above lemma, [K(a) : K] = [Homg (K (a), K)| and
[K(a, ) : K(a)] = |Homg (o) (K (e, 8), K)|. So

[K(a, 8) : K] = [Homg (K (a), K)| - |Hom g (o) (K (e, 8), K)| = |Homg (K (o, 8), K)|.

By the primitive element theorem, there exists v € K(«, 8) with K(y) = K(a, ), then we conclude that v
is separable over K. Thus a + 3,af € L are both separable. (]

Then we call [F : K| = [L : K], the separable degree of L/K, and call [L : F] = [L : K|; the inseparable
degree of L/K. Call L/K separable if F = L, and purely inseparable if F = K.

1.7.5. Theorem (Primitive element theorem). Let L/K be a finite separable extension. Then L = K(«)
for some element o € L.

1.7.6. Theorem (Normal basis theorem). Let L/K be a finite Galois extension, with G its Galois group.
Then there exists 5 € L, such that {of : 0 € G} forms a K-basis of L.
1.7.7. Theorem (Purely inseparable extensions). Let K be a field of characteristic p.

e A extension L/K of degree p is purely inseparable iff L = K(a'/?) where a € K is not a p-th
power.
o Any purely inseparable extension is a tower of purely inseparable degree-p extensions.

1.7.8. Proposition. The separable degree [L : K], is equal to | Homg (L, K)|.

PROOF. By definition, [L : K], = |Homg (F, K)| where F is the separable closure of K in L. But
Homg (F, K) corresponds one-to-one with | Homg (L, K)| (use the above theorem and the fact that pth roots
are unique in characteristic p). O

So the separable degree is multiplicative: for field extensions M/L/K, [M : L|s[L : K|, = [M : K],, and
so does the inseparable degree.

1.7.9. Definition. A field K is called perfect if any finite extension of K is separable. Equivalently, either
char K = 0, or char K = p and the Frobenius endomorphism x — P is an automorphism.

For example, any finite field F, is perfect, but F,(¢) is not.
1.7.10. Definition. A field K is called separably closed if its only separable extension is K itself.
1.8. Etale algebras.

1.8.1. Definition. Let K be a field. An étale algebra L over K is a finite product of finite separable
extensions of K.

Apparently, a K-algebra A is étale if and only if the map Spec A — Spec K is an étale morphism.

1.8.2. Proposition. Let L be a commutative K-algebra with finite dimension, such that dimg L < |K]|.
TFAE:

L is a fintie étale K-algebra;

Every element of L is separable over K ;

L ®k K’ is reduced for every extension K'/K;

L ®k K' is semisimple for every extension K'/K;

L = Klz]/(f) for some separable f € K|x].
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The advantage of working with étale algebras instead of separable field extensions is that they are
preserved by extension of coefficients. In other words, let K'/K be a field extension, and L/K a finite
separable extension, then L ® ¢ K’ is not necessarily a field. However:

1.8.3. Proposition. Let K'/K be a field extension, L is an étale K-algebra, then L @k K' is an étale
K'-algebra.

PROOF. Because tensor products commute with finite products, WLOG assume L/ K is a finite separable
extension. By the primitive element theorem, L = K|[z]/(f(z)) for some irreducible separable polynomial f.
Then L @k K' = K'[z]/(f(z)).

In K'[z], f(z) factors into the product of irreducible separable polynomials fi(z)--- fn(z). By the
Chinese Remainder Theorem, K'[z]/(f(z)) = [1;—, K'[z]/(fi(x)) is a product of finite separable extensions
over K’. O

1.8.4. Proposition. Let L/K be an étale algebra, Q2 a separably closed field containing K. Then

Lok Q— H Q
oc€Homg (L,Q)

(@1 (...,00),...)
is an isomorphism.

PRrROOF. Because Homg (][] L;, Q) = [[Homg (L;,Q2), we may again assume L/K is a finite separable
extension, i.e. L = K[z]/(f(z)) for an irreducible separable polynomial f. Then f(z) = (z — a1)(x —
az)...(r — ay) in Qz], so any o € Homg (L, ) must send x to one of a;. The map is therefore given by

Ly I = | )
(f(.l‘)) i=1 T = o€Homg (L,Q2)

1.9. Norm and trace.

1.9.1. Definition. Let A C B be commutative rings, such that B is a free A-module of rank n. For b € B,
xb . .
the map B — B is an A-linear map, so we may define

Np/a(b) = det(B =% B),
Trpa(b) = tr(B =% B).

1.9.2. Proposition. Let A — A’ be any ring homomorphism, A C B such that B is a free A-module of
rank n, and let B' = B®4 A’ be a ring that is a free A'-module of rank n. Then

Npja(b) =Npja(b® 1),
Trp/a(b) =Trp a(b®1).
1.9.3. Theorem. Let L be an étale K-algebra, /K separably closed, and ¥ = Homg (L,QY). Then
Np/x(®) =[] o),

oceX
Trp x(b) = Y o(b).
ceEX

PrOOF. We have Nz /x(b) = Nrg,a/0(b ® 1) = Noy..xq/a(...,0(b),...), by propositions 1.8.4 and
1.9.2. But this is just the diagonal matrix with entries o(b), so the norm is [ .5, 0(b). The situation is
identical for the trace. 0

1.9.4. Proposition (Norm and trace for finite extensions). Let L/K be a finite extension, and fix an
embedding L C K. Let « € L* have minimal polynomial f(z) € K[z]. Suppose f(z) = [[;(z — o) in K[z],
and let e = [L : K(«)]. Then

Np/k(a) = Haf, Trp/k(a) = eZai.
i i
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1.9.5. Theorem. Suppose A C B C C are rings, such that B is a free A-module of rank n, and C is a free
B-module of rank m. Then

Neya(e) = Np/a(Neyp(c)),
Tro/a(c) = Trp/a(Tre/p(c)).
PRrROOF. We refer to https://stacks.math.columbia.edu/tag/0BIJ. (]

1.10. Bilinear pairings. Let k be a field, V' a finite dimensional k-vector space. Let (—, =) : VXV — k
be a symmetric bilinear pairing. This induces a map V' — V* by

vi— (w — (v, w)).
The left kernel (which is equal to the right kernel since the form is symmetric) is the set of v € V such that
(v,wy=0forall we V.
Fixing a basis eq,..., e, of V allows the definition of the discriminant
disc((—, =), e1,...,e,) = det((e;, €;)).

Applying a change-of-basis matrix 7' multiplies the discriminant by a factor of (det T)2.
The symmetric bilinear form is called nondegenerate (or a perfect pairing) if the following equivalent
conditions are met:

e the induced V' — V* is an isomorphism;
e the left kernel is 0;
e the discriminant under any basis is nonzero.

Given a basis eq,...,e, of V, there is a dual basis fi,..., f, of V* defined by f;(e;) = J;;. If the pairing is
perfect, then f; correspond to a dual basis €] of V, satisfying (e;, e;) = d;;.

2. The AKLB setup

2.1. Dedekind extensions. We work in the following setup. Let A be a Dedekind domain, K =
Frac(A), L/K a finite separable extension, and B the integral closure of A in L. The main goal of this
subsection is to show that B is also a Dedekind domain.

2.1.1. Proposition. For any element { € L, there exists s € A such that sl € B.
Consequently, L = Frac(B).
2.1.2. Proposition. Ifb € B, then Trp i (b) € A.
We define the trace pairing:
LxL—K
(w,y) = Trpx(2y).
2.1.3. Proposition. The trace pairing is nondegenerate.

PROOF. Let ¥ = Homg (L, Q) = {o1,...,0m} where § is some separably closed extension of K. Pick a
basis f1,...,m of L/K. Then the discriminant is equal to

det(Tx(8:;)) = detpr Y ow(Bi)on(B;) = det(ow(8;)) det(on(8;)) = det(on(5:))*.

So it suffices to show that o (5;) are linearly independent over 2. But this is just the linear independence
of characters (on the group L*). O

Given an A-module M C L, define its dual M* = {x € L : Tr(xm) € A ¥Ym € M}. This is order-

reversing.
2.1.4. Proposition. B is a finitely generated module over A.

PRrROOF. Consider an arbitrary basis of L/ K, then each basis element can be multiplied by some element
in A such that they lie in B. Call this basis uq,...,u, and let M C B be the A-module generated by these
elements. Consider its dual, AM*, which is freely generated by the dual basis v; of u;, Tr(viu;) = ;5. So
B C B* C M*, and B is finitely generated (since A is Noetherian). O
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2.1.5. Theorem. B is also a Dedekind domain.

PROOF. Because B is a Noetherian A-module, it is a Noetherian ring. By definition, B is integrally
closed. Because B/A is integral, dim B = dim A < 1. So B is a integrally closed Noetherian domain with
dimension at most 1, hence a Dedekind domain. (Il

2.1.6. Corollary. Ok is Dedekind.
Actually we don’t need L/K to be separable.

2.1.7. Theorem (Krull-Akizuki theorem). Let A be a Noetherian integral domain with dimension 1, with
K = FracA. Let L/K be a finite extension, and B a ring with A C B C L. Then B is Noetherian with
dimension at most 1, and for any nonzero ideal J C B, B/J is an A-module of finite length.

2.1.8. Corollary. Let A be a Dedekind domain, K = Frac A, L/K finite, and B the integral closure of A
in L. Then B is a Dedekind domain.

Finally, we mention the following notations:

e | p (lying over) for primes q C B, p C A means that N A = p;
e Given nonzero prime p C A, we can uniquely factor

pB:Hq?’-

Call e; the ramification index of q; over p;
e For q|p, fq=[B/q: A/p] is called the residue field degree.

2.2. Prime factorization in Dedekind extensions. We continue to work in the AKLB setup. Let
p C A be a prime ideal, then pB = [[q° factors as a product of primes in B. For a prime q € B,
q|p<=qNA=p<= q2pB <= q appears in the factorization of pB.

2.2.1. Proposition. [B/pB: A/p| =[L: K] =:n.

PROOF. Let S = A —p. Because A/p = S~ 1A/p(S71A) and B/pB = S~'B/p(S~'B), we may WLOG
replace A with S~'A4 and B by S™'B. (Here we implicitly use the fact that localization commutes with
integral closure.) But now since S™'A4 = A, is a DVR, it is a PID, so B is free over A with the same rank
as [L : K|. Consequenly, [B/pB: A/p] =[L: K]. O

2.2.2. Proposition. Given p C A, ), eqfq =n.

PROOF. We count the dimension of B/pB as a A/p-vector space. By the above proposition, this dimen-
sion is equal to n. On the other hand, by CRT, B/pB =[], B/q%". Consider the filtration of B/g-vector
spaces:

qlp

B/q® Dq/q° D---Dq% /g% D 0.
Every step is equal to q*/q**!, which is a 1-dimensional B/q-vector space, so B/q® is eq-dimensional over
B/q, which is in turn f;-dimensional over A/p. So dim 4/, B/q° = ey fp, and we're done. |

2.2.3. Corollary. There are at most n primes lying over p.

2.2.4. Definition. The extension L/K is called:
o totally ramified at q if e; = n, fq = 1, and q is the only prime lying over p.
o unramified at q if e, = 1 and B/q is separable over A/p.
e unramified above p if it is unramified at every prime above p. Equivalently, iff B/pB is an étale
A/p-algebra.

2.2.5. Definition. A prime p C A:
e is inert if ¢ = pB is prime in B.
o splits completely if all eq = fq = 1.

2.2.6. Definition. A discrete valuation w on L is said to extend the discrete valuation v on K if w|g =e-v
for some e € Z.
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2.2.7. Proposition. Fixp C A. Then there is a bijection
{primes q | p} <= {discrete valuations w extending vy}
given by q — vg.

Proor. First, we show that v4 indeed extends v,. Because for distinct primes in A, the sets of primes
q lying above them are disjoint, it is clear that vq(z) = equy(z). The hard part is to show that all discrete
valuations extending v, are of this form. Let w be such a discrete valuation, and let W = {z € L : w(x) > 0},
which is a DVR. Let m be the maximal ideal of W, and ¢ = mNB. Sinceq=mNB2OmNA=p,q]p
Because L # W D By, W = By (since By is a DVR), and w = v,. O

2.3. Dedekind-Kummer theorem. We wish to give some intuition of the eq and f;’s. We continue
to work in the AKLB setup.

2.3.1. Theorem (Dedekind-Kummer). Suppose B = Ala] for some « € L. Let f(x) € Alx] be the minimal
polynomial of o in K, and suppose that f(x) mod p = [[(gi(x) mod p)¢. Then pB = [[qi', where
qi = (pvgi(a)) CB,e = €q;>» and f; = fqi = [B/qi : A/p] = deggi(ac).
PROOF. We have B = A[z]/(f(x)), so
B/pB = (A/p)[x]/(f ( ) mod p)
=[[A/p)[z]/(gi(z) mod p)“
=[] Al=)/ (P gi(x )

:HB/ pvgz Oé

By the uniqueness of factorizing an étale algebra into separable extensions, we conclude pB = [[(p, g:(a))® =
[Ta5*. Furthermore, f; = [B/q; : A/p] = [A[z]/(p, gi(x)) : A/p] = [(A/p)[z]/g9i(x) : A/p] = deg gi. O

From this, counting the degree of f, we get a more intuitive epxlanation of n = alp €a fq-
Geometric example:

algebra geometry
Dedekind domain A Z Clz]
Field of fractions K Q C(z)
Degree two separable extension L | Q(v/=5) C(v/z)
Integral closure B Z[\/=5] ClvZ]
Totally ramified ideal (2) (2)
Ideal that split completely (3) (z—20), 20 # 0

2.4. Index of A-lattices. We now change gears to the topic of A-lattices.

2.4.1. Definition. Let V' be an r-dimensional vector space over K. An A-lattice in V is a finitely generated
A-submodule of V' such that V = M K.

Our goal in this subsection is to define the “index” of an A-lattice, which will be an ideal in A. This
allows us to define the ideal norm.

First, consider a torsion module M over A of finite type. Since A is a Dedekind domain, the simple
torsion modules over A are of the form A/p for some prime ideal p. Then given any composition series

M=M, O>M,_1D---DM 31\407
with Mi/Mi—l = A/pz, we define
X(M) = pr .

By Jordan-Holder theorem, x(M) only depends on M, and not on the composition series chosen.
2.4.2. Proposition. For fractional ideals I C J, x(J/I) = 1J1.
PROOF. Localize at each prime to assume A is a DVR, where everything is easy. ]

2.4.3. Corollary. If I C A is an integral ideal, then x(A/I) = I.
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2.4.4. Definition. Let M, N C V be A-lattices.

o If M DO N, then M/N is torsion. Define (M : N)4 = x(M/N), which is an integral ideal in A.
e In general, for any two A-lattices M, N, there exists an A-lattice P contained in M and N, so we

can define (M : N)y4 ((A]g }Ij)):

In particular, when V = K, for I, J fractional ideals, (J : I)4 = IJ 1.

It is important that everything we do here commutes with localization: for example, (M : N)a), =
(X(M/N))p = x((M/N)y) = x(My/Ny) = (My : Ny)a,. Many arguments we have for the general AKLB
setup start by immediately reducing to the DVR case using localization.

2.4.5. Proposition. Given X € GL,(K), (A" : X(A™))4 = (det X).

PrOOF. Assume WLOG A is a DVR, hence a PID, so X has a Smith normal form, which is diagonal,
so we just reduce to the case n = 1. But (4:z4)a = x(4/(x)) = (z). O

2.5. Inclusion and ideal norm. We continue to work in the AKLB setup.

2.5.1. Definition. Let Z4,Zp be the ideal groups of A and B. Define
e i :74 — 1Ip by I — IB, the inclusion homomorphism.
e N:Ip — Ty by Jw— (B:J)a, the ideal norm.

2.5.2. Proposition. The following two diagrams commute:

x> (x) o (z)

L* ——= TIp L* ——5 7Ip

T 0 bk

« x> (x IA, KX z—(x IA.
(B

PROOF. The first one is trivial. For the second one, consider an element x € L™, then N((x)

D)a =

)
(z))a. If A is a DVR, then it is a PID, so B is a free A module, and by proposmon 2.4.5, (B : (
(det(L = L)) = (Np/k(z)). In general, localize at each prime p, and because ((B : (z))a), = (By :
(#)p)a, = (Np/x(2))p at each p, (B : (2))a = (N1 k(7). O

2.5.3. Proposition. i and N are group homomorphisms.

ProoF. This is clear for 7. If A is a DVR, hence a PID, B must be a semilocal Dedekind domain, so it
is a PID (corollary 1.6.14). This means that the map L* — Zp is surjective, so N is a homomorphism. In
general, localize A at each prime p. Then because localization commutes with (:) 4, the diagrams

Ip —— IBp

[

Ta — IAp
commute. Because the N,’s on the right are group homomorphisms for every p, we conclude that N : ZTp —
T4 is a homomorphism as well. (]
2.5.4. Proposition. Let p C A satisfy that pB = [[q1. Then:

e i(p) =Tla%;
e Forq|p, N(q)=pls.

PROOF. For the second one, N(q) = (B : q)a = x(B/q) = x((A/p)®fa) = p/a. O
The geometric picture:
algebra geometry
Ring A Affine scheme Spec A
Dedekind domain Nonsingular curve
Inclusion of Dedekind domains A < B | (possibly) Ramified cover Spec B — Spec A
Ideal group 7 Divisor group Div
Inclusion homomorphism ¢ : T4 — Zp | Inverse image/pullback f* : Div X — DivY
Ideal norm N : Zp — Z4 Image/pushforward f, : DivY — Div X
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2.6. DVR extensions. We now consider the following setup. Let A be a DVR with maximal ideal
p=(m), K =Frac A, B = Alz]/(f(z)) for some monic f(z) € A[z]. In general, B need not even be integrally
closed.

2.6.1. Lemma. Any mazximal ideal of B contains p.

PROOF. Let m C B be maximal. Then if p € m, m + pB = B, so the image of m generates B/pB.
Applying Nakayama’s lemma to the local ring A and finitely generated A-module B, we see that m generates
B, a contradiction. (]

2.6.2. Corollary. Mazimal ideals of B are in bijection with mazimal ideals of B/pB = (A/p)[x]/(f), which
are in bijection with irreducible factors of f(x) mod p.

Armed with this information, we consider two conditions on f that would make B not only Dedekind,
but actually a DVR.

Case 1: Suppose f is irreducible mod p. Then the only maximal ideal of B is pB = (7)B, which is
principal. So B is a local Noetherian domain whose maximal ideal is principal, so B is a DVR. Here, the
ramification index e = 1, f = n, p C A is inert, and unramified if f mod p is separable.

Case 2: Suppose f is Eisenstein; this means that f = 2™ + a, 12" ! +--- + a1z + ag, where a; € p but
aop ¢ p?. (This actually implies f is irreducible too.) In this case f = 2™ mod p, so there is also only one
maximal ideal in B, corresponding to (p,z) = (ag,x). But since ag = —(z™ + -+ + a12), ag € (x). So the
unique maximal ideal is just (z), so B is also a DVR. Also, we check that B/(z) = A/p,so f =1, e =n,
and p is totally ramified.

We now study the converse of the above. Suppose in the AKLB setup, [L : K| = n, and we assume in
addition that A is a DVR. Then the following are true:

2.6.3. Proposition. If B is a DVR, with mazimal ideal m, such that [B/m : A/p] = n, then B = Alz]/(f(z))
for some monic f € Alz] irreducible mod p.

PROOF. By the primitive element theorem, there exists b € B/m that generates it over A/p, which is
represented by b € B. Let f(z) € A[z] be the characteristic polynomial of b over K. We have f(b) = 0, so
the image f of f in (A/p)[z] has b as a root. Since b is of degree n over A/p, f is irreducible of degree n. So
by the discussion above: A[z]/(f(x)) is a DVR, and there is an inclusion A[z]/(f(z)) < B mapping x > b.
Since L = K (b), L = Frac A[z]/(f(z)) as well, and because B is an intermediate ring between a DVR and
its field of fractions, and B # L, it must be that B = Alz]/(f(z)). O

2.6.4. Proposition. If B is a DVR, with the discrete valuation w : L* — 7Z, and w extends the valuation
v on A with index n, then B = Alz]/(f(x)) for some Eisenstein polynomial f € Alx].

ProoF. Pick f € B such that w(f) = 1. Let f € A[z] be the characteristic polynomial of § in K.
We wish to show that it is Eisenstein. Write f(x) = 2™ 4+ an_12" ! + -+ 4+ a1x + ap (the fact that it has
degree n follows from the same argument as follows). Then 8" +a,_18" 1 +-- -+ a8+ ao = 0 in B. Since
w(a;B") =i (mod n), and the two terms with smallest w have to have the same valuation, we conclude that
w(ag) = w(B™) =n, so v(ag) =1 and v(a;) > 1fori=1,...,n—1. Also, A[z]/(f(x)) is a DVR that injects
into B, so Alz]/(f(z)) = B. O

3. Galois extensions

3.1. Galois extensions. We now consider the following “AKLBG” setup: in addition to having the
original AKLB, we require L/K to be a finite Galois extension with G = Gal(L/K).

3.1.1. Proposition. Fiz a nonzero prime p C A. Then the G-action on L induces a transitive G-action on

{aCB:q|p}.

PrOOF. Fix on q above p. If g above p is not in the orbit of q, then by prime avoidance, we may
find b € ¢, such that b ¢ gq for all ¢ € G. This means that gb ¢ q for all ¢ € G. Consider the norm
Np/x() =l eq 9b € A, then Ny x(b) € q' but N/ (b) ¢ q. This is a contradiction togNA=g¢'NA. O

Because of this, the eq and fq are the same for all q | p, for any fixed p, so we can just call them e, and
fp- Also, let g, denote the number of primes above p. Then:

3.1.2. Proposition. e, fy,g, = n.
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3.2. Decomposition group. Fix q a prime upstairs. Define the decomposition group D = Dq < G as
the stabilizer of q in G. Then (G : D) = g4 by the orbit-stabilizer theorem, so |D| = e, f,.

The reason we define D is that while G preserves B and permutes the primes {q : q | p}, D preserves
both B and g, which means that it acts on B/q.

3.2.1. Proposition. Suppose B/q is separable over A/p. Then:

e B/q is Galois over A/p;
o The natural map D — Gal(Fy/F,) is surjective. (Here, Fq = B/q, F, = A/p.)

PRrOOF. For the first bullet point, it suffices to show that B/q is normal over A/p. Given b € B/q,
represented by b € B, we let P(z) = [[ co(z — gb). This polynomial is G-invariant, hence is in K[xz], hence
in A[z]. Reducing modulo q, we get P(x) = [yea(z — gb) € (A/p)[z]. This shows that b is the root of a
polynomial in (A/p)[z] that splits completely, so the extension is indeed normal.

For the second bullet point, by primitive element theorem, F, = IF, (b) for some nonzero b € F,. Strong
approximation gives us b € B such that b = b mod q and b € g’ for all other q’ | p. Then gb € q for all
9 € G\D. Let P(z) = [[,cq(z — gb) € Alz], then reducing mod q, we get P(x) = [yea(z - gb) € Fylz].
But since gb = 0 in Fy, P(z) = [Tyep(@ = gb)z!¢I=IPI Since P(b) = 0, every conjugate of b is a nonzero
root of P(z), hence equals gb for some g € D. This shows that D — Gal(F,/F,) is surjective. O

3.3. Inertia group.
3.3.1. Definition. The inertia group I, satisfies the short exact sequence
1 =1y — Dq — Gal(F,/F,) — 1.

In other words, I; consists of the elements of G' that preserve B and q, and act as the identity on
B/q=F,.

Because |D| = ef, |Gal(Fy/F,)| = [Fq : F,] = f, we see that |I| = e. So the inertia group “detects”
ramification in some sense.

By Galois theory, the sequence of subgroups 1 < I < D < G corresponds to a tower of fields L O L’ D
LP 5 K, where L' is the inertia field and LP is the decomposition field. Computing the group indices, we
get [L: L] =e, [LT:LP]=f, [LP : K] =g.

In addition, I and D behave well under sub- and quotient groups, as follows: fix AKLBG, and let H be
a subgroup of G. Let L C L be the fixed field of H. The corresponding B¥ c L is the integral closure of
Ain L then B is the integral closure of L in K by transitivity of integrality. Fixing q C B, it pulls back
to ¢ ¢ BY and p C A, and similarly we have a tower of fields Fq D Fqu D Fy. For the Galois extension
L/ LH we can similarly define the inertia and composition groups Iy < Dy < H.

3.3.2. Proposition. Dy =DNH, Ig=I1INH. ]
If, in addition, H is a normal subgroup, then L /K is Galois as well, with Galois group G/H. Then:

3.3.3. Proposition. The following diagram commutes and has exact rows and columns:

1 1 1
1 Iy Dy Gal(Fq/FqH) — 1
1 I D Gal(Fq/F,) — 1

1 —— Igjpg —— Dg/g —— Gal(Fgu /Fp) —— 1
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3.4. Frobenius class. Now, we consider the case where F, is a finite field. Then it is a well-known
result that finite extensions of finite fields are always cyclic and generated by the Frobenius element

Frobg : ¢ — 2Pl

Suppose L/K is unramified at g, then D = Gal(Fy/F,) is a cyclic group, and we can view Frob, as an
element in D with order f.

For ¢’ | p, 9 = oq for some 0 € G, so Dy = cDo™" are conjugate subgroups of G, and Froby =
o Froby 01 Therefore, p determines a conjugacy class in G, called the Frobenius class. (So if G is abelian,
the Frobenius class is actually an element in G.)

1

3.4.1. Definition. Assume AKLBG with finite residue fields. For q unramified, define the Artin symbol
L/K

pr := Frob, .

When G is abelian, this only depends on p, so we may instead write pr L/TK.

3.4.2. Definition (Artin map). Let A be Dedekind, K = Frac A, L/K abelian extension. There is a
homomorphism from the subgroup of the ideal group Z4 generated by unramified primes to G, given by

[Twi = TToe 225

3.4.3. Remark. Here’s how to determine the splitting type of a prime in a separable but not necessarily
Galois field extension. Assume AKLB, and let M be the Galois closure of L/K. (So M is the splitting field
of the minimal polynomial of a, where L = K(«)).

Let G = Gal(M/K), then G naturally embeds into S,, by permuting the n maps Homyg (L, M). The
subgroup of G corresponding to L is H = G N S, _1, where S,,_1 is the subgroup of all permutations fixing
the identity embedding L — M. Because the G-action on Homg (L, M) is transitive, this action is exactly
the G-action on H\G, the right cosets of H.

Fix a prime p C A that we want to study. Suppose C' is the integral closure of B in M, and fix an
arbitrary prime ¥ C C above p. Let I C D C G be the inertia and decomposition groups of 8. Then the
transitive G-action on H\G induces a D-action on H\G.

The main claim here is that the orbits of this D-action corresponds precisely to the primes q C B above
p, and the size of the orbit corresponding to q is eqfq. Proof of this claim: given some orbit [Hg] of H\G
under D, we map this to ¢ N L.

e Injectivity: suppose gi*f N L = ¢=P N L = q, then glgz_1 maps g2 to some prime that is also
above . Because L/M is Galois, there is an element h € H C G mapping g1 back to g2B. Then
hg195* € D, so [Hg1| = [Hg1(95 '92)] = [H (hg195 ) g2] = [Hga].

e Surjectivity: follows because G is transitive on the primes in C' above p.

; it it _atabili Qi [Dy/pl _ ep/pfyps _
e Size of the orbit: by orbit-stabilizer theorem, this is equal to Daral = enreFure = eq/pfa/p-

Even better, we have that / < D is normal, so every [-orbit in a D-orbit corresponding to q (of size eqfq)

has the same size. By orbit-stabilizer theorem, this size is Hﬁ;"l‘ = eq/p- Notice that:
R q

e When L/K is already Galois, H = {1}, and every orbit of the D-action on G (i.e. the D-cosets)
have the same size.

e When p is unramified and residue fields are finite (e.g. K, L are local fields), D is generated by the
Frobenius element, so D-orbits are the same as the orbits of Frobenius.

Reference: Melanie Wood.

4. Completeness and local fields
4.1. Local fields.
4.1.1. Definition. A local field is a field K with a nontrivial absolute value that is locally compact.

Recall that

e An absolute value induces a metric, which induces a topology on K, under which K is a topological
field;


https://people.math.harvard.edu/~mmwood/Splitting.pdf
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e A locally compact space is one where each point = has a compact neighborhood, i.e. z € U C K
where U is open and K is compact.

4.1.2. Proposition. Suppose the absolute value on K is induced by a discrete valuation v : K — Z U {oo}.
Then K is locally compact, iff K is complete and the residue field is finite.

PROOF. (=) It is clear that K is Hausdorff. If K is locally compact, then each point of K has a
local base of closed compact neighborhoods. Given any Cauchy sequence, we can find a descending, nested
sequence of closed compact sets, so by Cantor intersubsection theorem there is a unique point inside all of
them whence the sequence converges. Let A be the valuation ring and 7 a uniformizer. Also, since some 7" A
is compact, multiplying by 7~" shows that A is compact, so A/mA is compact and discrete, hence finite.

(<) If A/m Ais finite, then A/7™ A is also finite. Then A= Jim A/m™Ais a closed subset of [ [, -, A/7™ A,

which is compact by Tychonoff. So A=Ais compact, so 7" A is compact, and they form a basis of compact
open neighborhoods of K. O

4.1.3. Proposition. Let F be a global field, with a nontrivial absolute value | |,. Then its completion F,
with respect to this absolute value is a local field.

PROOF. If the absolute value is archimedean, then F' must be a finite extension of K = Q, and the
absolute value must restrict to the usual Euclidean one on Q. So F), is a finite extension of R, which is either
R or C. These are local fields.

If the absolute value is nonarchimedean, I claim that it is induced by a discrete valuation. Let C' = B<1(0)
and m = B.;(0), which are nonempty because | |, is nontrivial. Consider the absolute value | |, restricted
to K = Q or F,(t). By Ostrowski’s theorem, this is induced by some discrete valuation v on A = Z or
F,[t]. Then A C C, and since C is integrally closed, it contains B, the integral closure of A in F. Let
g =mnN B, then B; C C. But since there are no intermediate rings between a DVR and its fraction field,
By, = C. Therefore, the absolute values | |, and the one induced by v have the same valuation rings, hence
equivalent.

Now, F, evidently has finite residue field, so it is a local field. O

4.1.4. Lemma. A locally compact topological vector space over a nondiscrete locally compact field has finite
dimension.

4.1.5. Theorem. Any local field is either R,C, or a finite extension of Qp, or Fq((t)).
4.2. Hensel’s lemma.

4.2.1. Lemma (Hensel’s lemma). Let A be a complete DVR with residue field k, F € Alx], and f € k[z] be
the image of F. Suppose a € k is a simple root of f, then there exists a unique a € A lifting o, such that
F(a)=0.

4.2.2. Lemma (Hensel’s lemma, stronger). Let Ak, F, f as before. If f(xz) = g(x)h(z), where g,h are
coprime monic polynomials in k[z], then F(z) = G(x)H (z), with G, H € Alx] lifting g, h.
4.3. Extensions of complete DVRs.

4.3.1. Theorem. In the AKLB setup, assume A is a complete DVR with prime ideal p. Then B is a DVR,
i.e. there is only 1 prime above p.

(In fact, this holds even when L/K is finite and not necessarily separable — see Serre’s book.)

FIRST PROOF. Suppose there are at least two primes g1, g2 above p. Pick b € q1,b ¢ qq2, then g4 N A[b)]
and gz N A[b] are distinct primes in A[b], both containing p. So A[b]/pA[b] has at least 2 primes as well. Now,
let F(x) € A[z] be the minimal polynomial of b in K, so that

APl Al K[

pAR]  (F(x),p) — (f(2))
where f is the reduction of F' mod p. Because k[z]/(f(z)) has at least 2 primes, f factors into coprime monic
g, h € k[z], which we lift into a factorization of F' by Hensel’s lemma. But this contradicts the irreducibility
of F. g



4. COMPLETENESS AND LOCAL FIELDS 44

4.3.2. Lemma. If (K,|-|) is complete and V is a f.d. vector space over K, then any two norms are
equivalent.

SECOND PROOF. Each prime q | p defines an norm on L (as a f.d. K-vector space) extending the absolute
value on K. It suffices then to find a way to characterize q in terms of the topology it induces. In fact, for
x € L, x is in the valuation ring of q iff the sequence 2=, 272, ... does not converge to 0, so the topology
uniquely characterizes the valuation ring of ¢, which uniquely characterizes q as its maximal ideal. (I

Some corollaries of the above theorem:

B is a DVR and a free A-module of rank n.

There exists a unique discrete valuation w on L extending v on K, with index e.

B and L are complete with respect to w. (since it is equivalent to the sup norm, which is complete)
If x,y € L are conjugate over K, then w(z) = w(y). (suppose y = oz, then w and w o o are two
discrete valuations extending v, so they are the same)

For z € L, w(z) = %’U(NL/K(.T)). (use the ideal norm interpretation)

4.3.3. Corollary. The valuation v: K — Z U {oco} is the restriction of a unique valuation K — QU {oc}.

PROOF. For each finite algebraic extension L/K, v can be uniquely extended to L. The map K —
Q U {oo} is surjective because K contains all nth roots. O

However, by taking the algebraic closure, K is no longer complete! For example, @ has a valuation
with value group Q and residue field F,, but it is not complete anymore. So we can define C, = Q,, which

is complete, but it is not obvious that it is still algebraically closed. Fortunately:

4.3.4. Theorem. Let K be a field complete with respect to a nontrivial non-archimedean absolute value.
Then the completion of K is algebraically closed.

PRrROOF. See Brian Conrad’s handout here. O

4.4. Newton polygons. Let K be a field with a valuation v : K — RU{oo} (not necessarily surjective).
For a polynomial f(z) = apa™ + -+ ap € K|z], we may construct its Newton polygon as the lower convex
hull of the points (¢,v(a;)). The main theorem is the follows:

4.4.1. Theorem. The width of the slope s segment of the Newton polygon is at least the number of zeros of
[ with valuation —s, with equality when f splits completely into linear factors.

Note that this provides additional motivation for Eisenstein’s criterion.

ProoF. WLOG pass to the case K = K. First, notice that changing f(z) to f(az) or af(z) by any
constant a € K* does not alter the content of the theorem. As such we can reduce to the case s = 0 and

suppose f factors as
a

flx) = H x—r;)

=1

c

(x —t)) H 1—xz/ug) € Alx]

k=1

H::]@

where v(r;) > 0, v(t;) =0, and v(ux) < 0. Reducmg modulo the maximal ideal of A, we get

b
f@) = [[@-1)

This means that the Newton polygon of f has a segment from (a,0) to (a + b,0), which has width b equal
to the number of zeros of f with valuation 0. (]

4.5. p-adic analysis. Let K be complete with respect to a nonarchimedean aboslute value, i.e. coming
from some valuation. Because we have a notion of size, we can do “p-adic analysis” much like how we do real
or complex analysis. But here, lots of small errors cannot add up to a big error because of the nonarchimedean
triangle inequality, so very nice things hold.

For example, for a sequence ag, a1, -+ € K, the series »_ a,, converges if and only if a,, — 0.


http://math.stanford.edu/~conrad/248APage/handouts/algclosurecomp.pdf
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For another example, we have the Cauchy-Hadamard formula for the radius of convergence: given
f(z) =" apa™ € K[[z]], its radius of convergence
- 1
~ limsup,,_, o |an|/"
4.5.1. Theorem (Strassmann’s theorem). Let A be the valuation ring of K, f(z) = > ana™ € Al[z]] a

nonzero formal power series such that a, — 0. Then the number of zeros of f(x) in A is at most N, where
N s the largest such that |ay| = max |ay,|.

We now specialize to the case K = C,,. Here, we have the p-adic exponential function
l.n
exp(e) = 3 € Qylle]].
n>0
Its radius of convergence is R = p_ﬁ. Using the Newton polygon, we see that the truncated exp has no

roots with valuation at least p%l.

Conversely, we may wish to find a p-adic logarithm. There is a natural one, called the Iwasawa logarithm.

4.5.2. Proposition. There exists a unique homomorphism

log : (C; - (Cp,+)

satisfying:
(E2 1:3 .
(1) For|z] <1,log(l+z)=a— % + % —...;
(2) logp = 0.

PRrROOF. Let m be the maximal ideal of the valuation ring of C,. Construct the logarithm in stages:
e First, for x € m, define log(1 4 z) according to the infinite series. Then
log(1+ ) +log(1 +y) =log((1 +z)(1+y))
holds as an identity on power series, so it holds as numbers in C,,.
e Second, for x € G = p%(1 + m), define log(p™(1 + z)) = log(1 + z).
e Third, we claim that C)/G is in fact torsion. This would allow us to uniquely extend log to the

entire C,\. To show this is torsion, let O = {z € C, : v(x) = 0} be the group of units in the
valuation ring, and notice that

O*/(1+m) - CY/G % Q/Z

is exact. The left side is isomorphic to IF_pX, which is torsion; the right side is also torsion. So the
middle term must be torsion as well, which finishes the proof.

]

4.6. Completing a Dedekind extension. Let us start with an example. We wish to compute field
extensions of Q, such as Q(i) ®g Q,. This is clearly an étale algebra over Q,, and depending on how z2 + 1
factors in Q,[z] (read: in F,[z], because of Hensel’s lemma), it is either

e Q, x Q,, in the case that 2+ 1 factors into two distinct factors (e.g. p = 5). There are two primes
above pZ,,.

e a totally ramified extension over Q,, in the case that z? + 1 factors into the same factors (e.g.
p = 2). There is one prime above pZ, with e =2, f = 1.

e an unramified extension over Q,, in the case that 2 + 1 does not factor (e.g. p = 7). There is one
prime above pZ, with e =1, f = 2.

The following theorem generalizes the previous example.

4.6.1. Theorem. Assume AKLB, and fiz a prime p C A and the valuation v = v, on K. Let w; be
the distinct discrete valuations on L extending v, which are in bijection with primes q | p. Let K be the
completion of K wrt v, and let f/i be the completions of L wrt w;. Then:

(1) EZ/I/(\’ is a field extension;

(2) The induced w; on L; is the unique extension of U on K.
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(3) ei@\l/@ =e;, and f(w;/v) = f;.
() [T R) = ey
(5) L@k K — [, Li is an isomorphism.

PROOF. (1) through (4) are casy. For (5), there is a natural K-bilinear L x K — IL L; given by
(¢, ) = Lo, which induces a linear map L ®k K — IL EZ To show this is an isomorphism, it suffices to
show this is surjective, since both sides have the same K-dimension (n=73,eifi)

Choose a K-basis a; (i=1,2,...,n) for [], L;. For each oy, using weak approximation, we could find
¢; € L such that its diagonal embedding into ], L; is close to ;. Then these ¢; still forms a basis (because
the change-of-basis matrix is close enough to id). This shows surjection, as desired. O

4.6.2. Proposition. If, in addition, L/K is Galois, then each Zl/l? is Galois as well, with Galois group
D;.

PRrOOF. Each ¢ € D; acts on L respecting w;, so it acts on El fixing K. This gives a homomorphism
¢:D; — Aut(fi/f?). Conversely, there is a map ¥ : Aut(zi/f?) — D; by restricting to L. Since 9 o ¢ = id,
¢ is injective. But

eifi = |Di| < |Aut(Li/K)| < [Li : K] = eifi,

so all inequalities must be equal, and Ez /IA( is Galois. O
4.6.3. Proposition. Let B; be the valuation of v; on L. Then B ® 4 A= Hi B\l

PROOF. Both sides are free A-modules of rank n. So it suffices to check isomorphism after reducing
mod p. The LHS reduces to B/pB, and the RHS reduces to [, B/q;' B, and the two are equal by CRT. [
5. Ramification

5.1. The different. Setup: AKLB. Recall that an A-lattice M is a finitely generated A-submodule of
L, such that M K = L. Then we can define its dual as

M*={zx e L:Tr(zxm) € A,Ym € M}.

If M is free, then so is M* (with the dual basis). If M is a B-module (i.e. a fractional B-ideal), then so is
M*.

5.1.1. Definition. The different ideal Dp /4 is defined as the inverse of the dual of B as an A-lattice:
DB/A = (B*)_l.
This is in fact an actual ideal inside B, since B C B* = (B*)~! C B.

5.1.2. Proposition. For any prime p C A, (Dpsa)p = DB, /A, -
5.1.3. Proposition. For primes q|p, Dpya - E\q = DB:/A:' (Both sides are ideals in E\q)

PROOF. Assume WLOG A is a DVR with maximal ideal p, by localizing. Let L = L @x K = qup Z;,
and B=B®g A= Hq‘p By (cf. previous subsection). Even though L may not be a field, it is still an étale
K-algebra, so the trace pairing is still nondegenerate. Consequently, we can form B* = B*®4 A =[] ale B,
This shows that B* generates each By over A, so Dp,4 generates DBAq /7, 8 desired. O

5.2. The discriminant. The different Dp /4 is an ideal in B. We will define another ideal, the dis-
criminant Dp, 4, which is an ideal in A.

5.2.1. Definition. Given elements eq,...,e, € L, their discriminant
disc(er, ..., en) = det(Tr(ese;))i ;-

This has the following properties:
o Ifey,... e, € B, disc(ey,...,e,) € A.
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e Suppose ¢ € Endg (L) mapping e1,...,e, to €),..., e, then

disc(e],...,el) = (det ¢)? disc(eq, ..., en).

e Let M be a free A-lattice. For two bases of M, their discriminants must differ by the square of a
unit in A (which must be 1 when A = 7Z!)

5.2.2. Definition. Assuming AKLB and given an A-lattice M:

e When A = Z, M is necessarily free, and disc M € Z is an integer (given by the discriminant of any
set of A-basis of M).

e When A is general and M is a free A-module, the discriminant D(M) is the principal (fractional)
ideal generated by the discriminant of any basis of M.

e When A, M are both general: the discriminant D(M) is the A-module generated by disc(z1, ..., 2,)
for any n elements z1,...,x, € M.

5.2.3. Proposition. The discriminant D(M) is finitely generated over A, and therefore it is a fractional
A-ideal.

PrOOF. Choose independent elements ey, ..., e, € M generating L/K, and let N be the free A-lattice
generated by them. Then M C a~!'N for some a € A, so D(M) C D(a'N). The latter is generated by 1
element, so it is a Noetherian A-module, so D(M) is finitely generated. (I

5.2.4. Proposition. For any prime p C A, (Dp/a)p = Dp,/a,-

5.2.5. Proposition. Let L/K be a finite separable extension with degree n, and suppose o; : L — Q are n

distinct elements in Homg (L, Q). Then given ey, ..., e, € L,
disc(eq,...,en) = det(ai(ej))ij.
PrOOF. Tr(eie;)ij = (3o on(ei)on(e;))i; = (or(ei))in(oj(er))jn- O

5.2.6. Proposition. Forz € L,
disc(1,z,22,..., 2" 1) = H(Ul(ac) —j(r))%
i<j

Proor. This is the Vandermonde determinant. g

5.2.7. Definition. If f = [[(z — «;), then the discriminant of this polynomial
disc f = H(ai —aj)?
i<j

5.2.8. Proposition. If A is a Dedekind domain, f € Alx| a monic separable polynomial, then disc(f) =
disc(1,z, 22, ..., 2" 1).
5.2.9. Definition. The discriminant ideal Dp/4 = D(B) C A, which is an actual ideal in A.
5.2.10. Example. Dy;j/7 = (—4) = (4).

5.3. Detecting ramification.

5.3.1. Theorem. Assume AKLB, then Dg/a = N(Dpya), where N is the ideal norm.

PROOF. Since everything is compatible with localization, WLOG A is a DVR, so B is free, say with
basis ej,...,e,. Then B* is free also, with the dual basis €],...,e/,.

In general, if mq,...,m, is an A-basis for another free lattice M, then (Tr(m,e;)) is the change-of-basis
matrix sending e},...,e], to my,...,my. Setting m; = e;, we see that (Tr(e;e;)) is the change-of-basis
matrix sending €}, ..., e}, to e,...,e,. Taking the ideal generated by the determinant on both sides, we see
that D/ is equal to the index (B*: B)4 = (B: (B*)"')a = N(Dpg/a). O

5.3.2. Theorem. Assume AKLB, p € A, q|p. Then L/K is unramified at q iff 1 Dp/a-
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PRrROOF. In the general case, first localize, then complete with respect to the unique discrete valuation
to reduce to the case where A is a complete DVR. Then B is a DVR as well, with pB = q°. The different is
a power of q, Dg/a = q™, for some m > 0. Then Dg/y = N(Dp/a) = pf™. Pick an A-basis by,...,b, of
B, and let by, ...,b, be their images in B/pB. Then L/K is unramified at q if and only if B/q® = B/pB
is a separable field extension of A/p, iff det(Tr(b;b;));; # 0, iff det(Tr(b;b;)i;) # 0 mod p, iff p{ Dp 4, iff
91 Dpja- O

5.3.3. Corollary. Assume AKLB, p € A, then L/K is unramified at p (i.e. unramified at all primes above
p)iffptDpa-
5.3.4. Corollary. Only finitely many pimes of B ramify.

5.3.5. Example. Take A = Z, K = Q, L = Q(a) where « is a root of 3 — 2 — 1. We wish to compute
the ring of integers Ok. Clearly, Z[a] C Ok. Suppose m is the index of Z[a] in Ok. The discriminant
D(Z[a]) = disc(1,a,a?) = disc(z® — x — 1) = —23. But discOx = —23/m? is necessarily an integer, so
m =1 and Ok = Z[a]. Moreover, Dedekind-Kummer theorem tells us that the factorization of a prime (p)
in Z[a] corresponds to factorization of #* —z — 1 modulo p. In the case p = 23, the fact that (23) | Dy /x
corresponds to the fact that z3 —z — 1 = (z — 10)2(z — 3) is ramified.

5.4. More on the different. There is a neat formula for the different in the case where B is monogenic:
5.4.1. Proposition. If B = Ala], and f is the minimal polynomial of c, then Dg/a = (f'(r)).
5.4.2. Lemma. Under the hypotheses abouve,

0, fori=0,1,...,n—2

Tr(a'/f' () = {1 fori=n—1

and for all i, Tr(a'/f'(a)) € A.

PrOOF. Expand both sides of
1 1

N (@—B)f'(B)

m F(B)=0

at infinity, and compare the coefficients. O

PROOF OF 5.4.1. Let I = (1/f'(«)) € B* be the fractional B-ideal, i.e. the A-span of a'/f'(«) for
i=0,...,n—1. We compute

(B*: 1) = (det(Tr(a"™ / f'(a))iy)) = (1)
by the lemma, so B* = I, and Dy, = (B*)~! = (f'(«)). O
5.4.3. Lemma. Assume AKLB. Let a be a fractional ideal of A, b a fractional ideal of B. Then Tr(b) C a
iff b C aB*.
PROOF. Assume WLOG a # 0. Then Tr(b) C a <= a~ ! Tr(b) C (1) = Tr(a='b) C (1) &= a6 C
B* <= b CaB". O
5.4.4. Proposition. For a tower AKBLCM, we have that

Dcya = Dc/pDpja
as ideals of C', and
Deja = Npjx(Deyp) - Dg\f:AL]

as ideals of A.
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ProOOF. For a fractional ideal ¢ of C, we have the following equivalence:

¢ C Dgyp = Trayr(c) € B

— DE}A TI'M/L(C) - Dt

B/A
= HL/K(DB}A Trar/n(c)) C A
= Trp e (Tearyn(Pgpa0) © A
= Trai(Dyja0) C A

= D ¢ € Dgjy

-1

< cC DB/ADC/A'

This implies DE}B = ’DB/ADE}A, i.e. Doja = DcypDpya- Taking the ideal norm Ny, g of both sides, we
get the formula for the discriminant. |

Geometrically, the different ideal corresponds to the ramification divisor. Fix an algebraically closed k,
and let K be a finite type k-algebra of transcendental degree 1. Then K is a finite extension of k(t), and
there is an unique regular projective curve X over k whose function field K (X) = K. Here, X serves as the
analog of Dedekind rings — the stalk at each non-generic point is a DVR. Moreover, any nonempty proper
open subset of X is Spec A for some Dedekind A.

Now, suppose L/K is a finite separable extension of degree n, and L is the function field of another
curve Y. Then there is a dominant morphism 7 : Y — X, and for any nonempty proper open Spec A C X,
its preimage is Spec B C Y. In this case, we return to our familiar AKLB setup, where an ideal of B
corresponds to an effective divisor on Spec B. In the case of the different, because the different is compatible
with localization, the corresponding divisors on Spec B’s glue together to give a divisor on Y. This is called
the ramification divisor R if 7 : Y — X, and the points that appear are exactly primes that ramify.

The ramification divisor appears in the Riemann-Hurwitz formula: 2gy — 2 = n(2gx — 2) + deg R.

5.5. Unramified extensions of complete DVRs.

5.5.1. Theorem. Let A be a complete DVR with residue field k. Let K = FracA. Then there is an
equivalence of categories between the category of finite unramified extensions L/K and the category of finite
separable extensions k' [k, given by the functor F mapping L to its residue field k.

PROOF. It suffices to show the functor F is essentially surjective and fully faithful.

Essentially surjective: consider a finite separable k’/k, say k' = k[z]/(f(x)) with f(x) monic irreducible
separable of degree n. Lift f to f(x) € K[x] (monic, irreducible and separable), and let L = K|[z]/(f(z)).
This is a finite separable extension of K, and suppose its Dedekind ring is B with maximal ideal q. Then
because f is irreducible mod ¢, L/K is unramified, with residue field B = A[z]/(f(z)), so that B/q =
Alz]/(f (), q) = k[z]/(f(2)) = K.

Fully faithful: The map of Homs is given by

Hompg (Ly, Le) — Hom 4 (B1, Be) — Homy (K}, kb).

The first map is bijective, with inverse given by tensoring a map B; — By with K. So we focus on the
second map. Write k] = k[z]/(g(x)) = k(@), and lift @ to o € B. Then L; = K(«), because [Ly : K| = [k] :
k] = degg(x) is at most the degree of the (monic) minimal polynomial g(z) € A[z] of @. Then B; = Alq]
as well, and Hom4(Bj, Bz) then corresponds bijectively to the roots of g in By. Similarly, Homyg (K], k%)
corresponds to the roots of g in k. But every root of g in k4 lifts uniquely to a root of g in Bg, by Hensel’s
lemma. This finishes the proof. (In fact, here only the fact that L, /K is unramified is used, so Ly/K does
not need to be unramified for this to hold.) O

5.6. Totally ramified extensions of complete DVRs. Suppose K is a local field, and fix a separable
closure K*¢P /K. The maximal unramified extension of K can be defined as

unr — U K’
K'CK®*P:K'/K f. unram.
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5.6.1. Example. Consider the case K = QQ,,. Because k = [, the only finite separable extensions of k are
Fpn, one for each n. As such, there is one unramified extension of Q, of degree n for each n. Therefore,
Q™ /Qp is an infinite Galois extension, with Galois group the profinite integers

Gal(Qy™/Q,) = Gal(F,/F,) = lim Gal(Fyn /Fy) = imZ/nZ =Z = [[ Z.

¢ prime
Note that Q)" has value group Z and residue field ]F_p.

Now, we show that any finite extension can be broken down into an unramified part and a totally ramified
part. Let A be a complete DVR, K = Frac A with residue field k, L/K f. sep. and with residue field £.
Assuming that ¢/k is separable (which is true e.g. for number fields), each unramified subextension of L/K
corresponds to a separable subextension of ¢/k, which is contained in ¢. So the unramified subextension
K'/K corresponding to ¢/k contains all unramified subextensions of L/K. We have [K': K] =[(: k] = f,
so [L: K'] =e. Also, f =1 for the extension L/K’, so in fact it is totally ramified. Furthermore, if L/K is
Galois, then Gal(L/K') = I,/ = I,/ since everything has size e.

Next, we study totally ramified extensions. Assume AKLB with A, B complete DVRs, L/K totally
ramified with residue field k, and let p = char k.

5.6.2. Definition. Say L/K is tamely ramified if p 1 e (which is automatically true when k has characteristic
0). Otherwise, say L/K is wildly ramified.

For example, L = K(7'/¢) = K[z]/(z¢ — 7) is a totally ramified extension of degree e (here 7 is a
uniformizer in K). It turns out that all tamely ramified extensions must be of this form:

5.6.3. Theorem. Assume AKLB as above, L/K totally tamely ramified of degree e. Then L = K(7'/¢) for
some uniformizer m.

PROOF. Choose uniformizers mg of K, g of L. Then [L : K] > [K(my) : K] > e = [L : K], so
L = K(ng). We have 7§ = u - mg for some unit v of B. We wish to get rid of that unit to conclude
L=K (7‘(‘}(/6). This requires us to use the tamely ramified condition.

Because A and B have the same residue field, we may assume WLOG u = 1 (mod q) by adjusting 7x
by a unit in A. Now, the polynomial z¢ — v = 0 has a simple root of 1 in k (since e # 0), so by Hensel’s

lemma it has a root in B. In other words, u has an e-th root in B, so we’re done. (I

5.7. Continuity of roots.

5.7.1. Lemma (Krasner’s lemma). Let K be a field complete with respect to a nontrivial non-archimedean
absolute value, and K a separable closure of K. Given an element o € K, let its Galois conjugates be o;. If
an element 8 € K is such that |a — | < |a — ay| for all i, then K(a) C K(3).

PROOF. Suppose for contradiction that a ¢ K(3). Then there exists o € Aut(K /K (3)) sending a to
oa # a. Then |a — | = |o(a — )| = |ca — B| > |a — B], which is a contradiction. O

We use Krasner’s lemma to derive a result known as “continuity of roots”.

5.7.2. Proposition (Continuity of roots). Let K be a field complete wrt a nontrivial nonarchimedean
absolute value. Then we can uniquely extend the absolute value to K. Let f € K[z] be a separable monic
irreducible degree n polynomial. If g € K[z] of degree n has all coefficients sufficiently close to f’s, then the
following holds:

e FEach root B of g belongs to a root o of f;

* K(B) = K(a);

e g is separable and irreducible.

ProoF. To start with, it is clear that when f and g are close enough, the roots of g have absolutely

bounded size. This is because if g(8) = 0 where g(z) = b,x™ + - - - + by, then

[bal|BI" = [ba—18""" + -+ + bo| < max(|bo—1]|B" 7", [bol)-

Now, since |f] is bounded by an absolute constant, we have for f, g close enough, if g(5) = 0,

n

18— ) = £(8) ~ 9(8) = 0.

i=1
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So one of the factors | — a;| must be small. When f, g are sufficiently close, we can force it to be smaller
than all |a; — ;| for ¢ # j, so B belongs to some «;. Then Krasner’s lemma implies K (3) 2 K(c;), but the
former is of degree at most n over K and the latter is of degree n, so K(8) = K(«;) and g is irreducible and
separable. O

5.7.3. Corollary. Let K be a degree n extension of Q,. Then there exists a degree m number field F
contained in K, such that FQ, = K.

PRrROOF. Let K = Qp(a) = Q,[z]/(f(x)) where f is the min. poly of .. Since Q is dense in Q,, we may
approximate f arbitrarily well by some g € Q[z]. By the continuity of roots, g is separable, irreducible, and
has a root 8 € K such that Q,(8) = Q,(a) = K. Let F = Q(8), then F is a degree n number field such
that FQ, = Q,(8) = K. O

5.7.4. Corollary. Choose an algebraic closure Q, of Q,. Let Q be the algebraic closure of Q inside Q,.
Then QQ, = Q,.

5.7.5. Corollary. The map Gal(Q,/Q,) — Gal(Q/Q) given by o olg is injective. (The image is called
the decomposition subgroup.)

Remark: Gal(Q,/Q,) is a pro-solvable group, while Gal(Q/Q) is very poorly understood.

6. Lattice methods
6.1. Lattices in R". We move on to lattice methods in studying number fields (finite extensions of Q).
6.1.1. Definition. Let V be a n-dimensinoal R-vector space. A lattice in V is a subgroup
N="Zey+ -+ Zep
for some linearly independent ey, ..., e,,. It is full if m = n.
6.1.2. Proposition. Let A C V' be a subgroup, then A is discrete iff A is a lattice.

Equip V with the dot product in R™ so that we pin down the unit length. Then we get a unique Haar
measure on V', such that V' together with the measure is isomorphic to R™.
6.1.3. Definition. For a set X and a o-algebra ¥ on X, a map pu: ¥ — RU {£oo} is a measure if:
o 1(2) =0;
e u(E)>0foral E e
e For a countable family of pairwise disjoint sets E; € 3, u(lU, Ei) = >, u(£;).

6.1.4. Theorem (Haar’s theorem). Let G be a locally compact Hausdorff topological group. A Borel set is
an element in the Borel algebra, i.e. the o-algebra generated by open sets of G. There is a unique (up to
scaling) nontrivial measure p on the Borel algebra such that:

w(gS) = u(S) (left translation-invariant);
w(K) < oo for K compact;
w(S) = inf{u(U) : S CU,U open};
p(U) =sup{p(K) : K CU,K compact} for U open.
For a full lattice A = Zey + - - - + Ze,, let
F={aje1 + - +ane,:0<a; <1}
Then R™ = [[,co (F + A). Also, vol(F) = |det(eq,...,e,)| = \/det({es, e;))i,;-
More generally:

6.1.5. Definition. A fundamental domain for A C V is a measurable F' C V such that V' =[], (F' + A).

6.1.6. Proposition. If F,G are two fundamental domains then they have the same volume.

PROOF. For each A € A, (FF+A)NG is a translate of FFN (G — \), so they have the same volume. Taking
the sum over A € A, we get vol(G) = vol(F). O

6.1.7. Definition. The covolume covol(A) of a full lattice A is defined to be the volume of any fundamental
domain of A.
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6.1.8. Proposition. Suppose A D A’ are full lattices, then
covol(A') = (A : A') covol(A).
6.2. Minkowski’s lattice point theorem.
6.2.1. Lemma. Let S C R", vol(S) > 1. Then there exist distinct s,s’ € S, such that s — s’ € Z".
PRrROOF. Cut up R” into unit cubes, and translate pieces of S into [0,1)™. They must overlap. (]

6.2.2. Theorem (Minkowski’s lattice point theorem for Z™). Let S C R™ be a symmetric convex region
such that vol(S) > 2™. Then S contains a nonzero lattice point.

PROOF. The dilation S must contain two distinct points s, 3s’ where (s — s’) € Z", which is the

point we want. (Il

6.2.3. Theorem (Minkowski’s lattice point theorem, full version). Let V' be a finite dimensional R-vector
space, A a full lattice, S C V a symmetric convex region with vol(S) > 2" covol(A), then it contains a
nonzero lattice point.

As an application, we prove the following classical result:
6.2.4. Theorem. Ifp =1 (mod 4) is a prime, then p = 2% + y? for x,y € Z.

PROOF. Because (_71) = 1, there exists i € F,, with i +1 = 0 (mod p). Let A C Z? be the lattice
consisting of points A (mod p) that is a multiple of (1,i) mod p. Clearly, A has index p in Z?2, so covol(A) = p.

Let S = {z € R?: |z| < +/2p}. Then |S| = 2p7 > 4p = 2% covol(A), so S contains a lattice point in A, which
is necessarily a solution to 22 4 y2 = p. O
7. Global fields

7.1. Global fields.
7.1.1. Definition. A global field is a finite extension of Q or F,(¢).

7.2. Places. We transition to a discussion of places, which are like primes but generalizes to the
archimedean case as well.

7.2.1. Theorem. The category of global function fields with field inclusions is equivalent to the category of
smooth projective curves with dominant rational maps, via X — K(X).

Let K be a number field.

7.2.2. Definition. A place of K is an equivalence class of nontrivial absolute values on K. The set of all
places is commonly denoted by M.

By Ostrowski’s theorem, Mg corresponds set-theoretically with SpecZ. Every place v € Mg is an
extension of ||, for some p < oo (we write v | p for this). We already know that places v | p for finite p
correspond bijectively to primes q | (p).

7.2.3. Proposition. v is archimedean if v | 0o, and nonarchimedean otherwise.
PrOOF. Complete wrt v to get an extension K, /Q,, and use theorem 15.1.4. (I
7.2.4. Lemma. Suppose K = Q(«). If v | p for p < oo, then K, = Q,().

PrOOF. Consider Q,(c), which must be contained in K,. The absolute value on @Q, then extends
uniquely to an absolute value on Q,(«), under which Q,(«) is complete. Since this absolute value concides
with that of K, and K C Qp(«a), we have K, = Qp(«). O

The minimal polynomial of « in K, is then an irreducible factor of the min. poly of « in K. Conversely,
any irreducible factor gives a finite extension F'/Q,, which is equipped with a complete absolute value, and
there is a unique extension K — F', which is the completion of K wrt that absolute value. Therefore we
have

7.2.5. Theorem. K ®q Q, = Hv‘p K,, for p <oo.
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7.2.6. Example. If v | co, then K, is a finite extension of R, so either R or C. Suppose K = Q[z]/f(x),
then f(z) in R[z] factors as the product of r linear factors and 7o quadratic factors. The linear factors
(x — a) correspond to embeddings K — R mapping = — a (these are the “real places”), and the quadratic
factors (z —z)(z —Z) correspond to pairs of embeddings K — C mapping x — z or Z (these are the “complex
places”). Then 7 + 2ry = [K : Q] by counting degrees.

7.2.7. Corollary. The places v | p correspond bijectively to Homg(K,Q,)/ Gal(Q,/Q,).
7.2.8. Definition. If v | p, the normalized absolute value on K, is |z], = [Nk, g, (7).
7.2.9. Proposition. Suppose p is finite, v | p, and let O, be the DVR in K,. If x € O,, then
|zl = (#Ou/20,) 7.
Proor. We have (Ng, /g, (7)) = N(20,) = (O, : 20,)z, = x(0y/20,) = (#0,/r0,). Taking ||, on

both sides gives us the formula. a

7.2.10. Example. If v is complex, then |z|, = |z|?, which is actually not an absolute value! In general,
||, = |a:|1[,K”:@”] for x € Q. This normalization is “intrinsic”, because given x € Ok, multiplication by x
scales the Haar measure on K, by a factor of |z|,.

7.2.11. Theorem (Product formula). If x € K*, then [] |z|, makes sense and is equal to 1.

vEM K
PROOF. Ny /q(z) = Nkgqy0,/0,(®) = I, Nk, /0,(®), so taking | [, on both sides gives us
|NK/Q<$)‘P = H |-
vlp
Taking the product over all p an using the product formula for Q, we get the desired formula. O

7.3. Orders. We are on our way to apply Minkowski’s lattice point formula to say something nontrivial
about the ideal class group.

7.3.1. Definition. An order in a number field K is a subring O of finite index in Og.

Equivalently, O is a Z-lattice in K that is also a ring.
For an order O, we have the following inclusions:

O‘—)K‘—)KR:ZK@)QR‘—)K@::KR@RC.

Thus, O is a lattice in the R-vector space Kg. The canonical Hermitian inner product on C™ restricts to
an inner product on Kg = R™ (note that this inner product is not equal to the canonical one on R™: for
example, (z,y) = x + yi € C is embedded as (z + yi,z — yi) € C?, so (z + yi,x — yi) - (2 + wi, z — wi) =
2(zy + zw) = 2(z,y) - (z,w). Consequently, the volume under this inner product is scaled by a factor of 2"2).
For z,y € K, we then get an inner product

(:v,y} = Z ox - ay.

o:K—C
7.3.2. Proposition. covol(O) = /| disc O|.

PROOF. Let ey, ..., e, be a Z-basis of O. Let A = (6(€;))s,j € Myuxn(C). Then |discO| = (det A).
But covol(0)? = det(e;, e;) = det(>_ oe; - oe;) = | det A]2. So covol(O) = /| disc O. O

7.3.3. Corollary. Suppose I is an invertible fractional O-ideal, then covol(I) = v/disc O - N(I).

7.4. Finiteness of the class group, and other applications. Now we are ready to apply Minkowski’s
lattice point theorem to show that every fractional ideal contains a relatively short vector. Use (r, s) to denote

(r1,72).

7.4.1. Theorem. Let K be a number field, O an order. Let m = 2L(2)*\/|disc O|, then for any invertible

nmn

fractional O-ideal I, there exists a nonzero a € I, such that |N(a)|] <m-|N(I)|.
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PrOOF. Let S = {z = (25)seHomg(k,C) € Kr : ) |2,| < t}, where t is a constant we fix later. Then it
is not hard to show that vol(S) = 2T7rs%. Choose ¢ such that vol(S) > 2" covol(I). By Minkowski’s lattice
point theorem, there exists nonzero a € I lying in S, such that ¢t > Y _|oa| > n{/[], loal = n{/| Nk g(a)l.

We know that ¢ can be chosen to be arbitrarily close to ’{/(%)sn!\/ disc O - |[N(I)| from above, so we see that

n! 49 .
IN(a)l = [Nk o(a)| < 2 pr — /| discO| - [N(I)] = m - [N(I)],

as desired. O

7.4.2. Corollary. FEvery ideal class contains an integral ideal of norm at most m.

PROOF. Let [I] be the inverse of the target ideal class, then there exists a € I, such that |[N(a)| <

m - [N(I)|. This means that (a)I~! is an integral ideal in the target ideal class, whose norm is at most
m. n

7.4.3. Lemma. There are finitely many ideals of norm at most m.

PRrROOF. It suffices to show that Z" has finitely many subgroups of a given index. This is because any
subgroup of index ¢ contains (¢Z)", so there can only be finitely many. (]

7.4.4. Theorem. The class group of a number field is finite.
7.4.5. Proposition. /disc O > ’;—T(%)S > %(%)"/2.

PrOOF. Take I to be the unit ideal, so that its norm is 1. Because the norm of any nonzero element is
at least 1, m > 1. O

7.4.6. Corollary. If K # Q, then |discOk| > 1. In other words, there are no everywhere unramified
nontrivial extensions of Q.

7.4.7. Proposition. There are finitely many number fields K with |disc Ok| < B, for any real B.

PRrROOF. By proposition 7.4.5, it suffices to show that there are finitely many such number fields of any
fixed degree n.

Case 1: K is totally real. Let S := {(z1,...,2,) € R" : |z1] < 2BY2 |z;| < 1 for all i # 1}. Then
vol(S) ~ 271 B1/2 > 27| disc Ok |'/? = 2" covol(Ok ). By Minkowski, there exists a nonzero a € O C R”
in S. Then []|a;| = |N(«)| > 1 while |az], ..., |a,| < 1, which forces |ap]| > 1. If Q(a) # K, then each o
will be repeated [K : Q(«a)] times (by the norm formula), which is not the case because o is the only one with
absolute value larger than 1. The minimal polynomial of «, which is in Z[x], has finitely many possibilities,
since its coefficients, as symmetric functions in its roots which have bounded sizes, have bounded sizes. So
there are only finitely many possibilities for K also.

Case 2: The signature of K is (r,s), then Kg 2 R" x C*. Let S :={(x1,...,2r,21,...,25) €E R" x C*:
|212 < ¢BY2 |2, |2;] < 1 for all i and for all j # 1}, where c is large enough that vol(S) > 2" covol(Of).
The argument in Case 1 continues verbatim. (Il

7.4.8. Lemma. Let K be a number field of degree n, then for any prime p, v,(Dg) <n Llogp nJ +n-—1.

PRrOOF. We have v,(Dx) = vp(N(Dk)) = 22, fava(Pk) < 3q, faleq—1+vp(eq)) S n—1+n |log,, 7|
by trivial bounding. O

7.4.9. Theorem (Hermite). Let S be a finite set of places of Q, and let n be an integer. Then there are
finitely many number fields K of degree n that are unramified outside S.

ProOOF. Each valuation v,(Dy) is bounded, so D is bounded, so there are finitely many K’s. O
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7.5. Adéle ring. Let K be a global field, v a place, O, the valuation ring of K, (defined to be equal
to K, when v is archimedean). The normalized absolute value induces a topology on K,, under which it is
locally compact. Furthermore, if v is nonarchimedean, O, is compact.

We now define the adéle ring of K, which will be a topological ring:

7.5.1. Definition. The adeéle ring A of a global field K is the restricted product
!
I1 (.00,

which as a set is equal to
{(av) € HKU : all but finitely many a, € O, }.

It is easy to verify that this forms a ring. The topology on this is finer than the subset topology of the
product topology; instead, a base is given by open sets of the form [], U, where U, C K, are open and all
but finitely many U, = O,. (In particular, [, O, is a locally compact open.)

7.5.2. Proposition. A = Ak is locally compact.
ProoF. [], O, is a locally compact neighborhood of 0. |

Because any element of K has only finitely many absolute values where it is 1, K embeds into Ag
naturally.

7.5.3. Proposition. If L/K is a finite separable extension of global fields, A, = L ®x Ak as topological
TiNgs.

In fact, K < A is very much like the embedding Z — R:
7.5.4. Theorem. K is a discrete subgroup of A, and A/K is compact.

PRrROOF. We only prove this for K = @Q, and the number field case then follows from proposition 7.5.3.
The function field case follows from a similar argument, so we focus on Q form here.

Discreteness of Q: U = (—1,1) x Hp Z,, is an open neighborhood of 0 that contains no points of Q.

Compactness of A/Q: we claim that A = Q + [0,1] x [[, Z,. Given z = (2p)p<oco, expand z;, in powers
of p, and let y, be the decimal part of z, (i.e. ), —y, € Z, and the denominator of y, is a power of p).
Almost all y, are zero, so it makes sense to talk about = — Ep Yp, which belongs to every Z,. Now adjust
by an integer to get in [0, 1]. O

7.6. Idele group.
7.6.1. Definition. The idéle group is A* =[], (KX, OX), with the restricted product topology.

Remark: This is finer than the topology inherited as a subspace of A! For example, [[O) is open in
A but not in A. But the topology is induced from A via the map AX — A x A, x — (z,271).

7.6.2. Proposition. K* is discrete in A*.
PrOOF. K* = A* N (K x K) inside A x A, so it is discrete. O
7.6.3. Definition. For an idele a = (a,), € A%, define |a| =[], [av]o-

This is also the correct notion of “size” in terms of scaling the Haar measure.
7.6.4. Definition. The group A = ker(A* 1, RZ,)-
7.6.5. Proposition. K* embeds into A{ .

Let K be a number field for now. We also have a natural map A* — 7 assembled from each K’ NA
This is surjective (in contrast to the case where A* is replaced with the group of principal fractional ideals,
when there is a problem with the class group). Also, it is clear that ker(A* — Z) =], O.

The ideal class group Cl(Ok) can be recast in adelic language:

AX

(Og) =T/K* = — >
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7.6.6. Definition. The idéle class group is A* /K *.
7.6.7. Theorem. A'/K* is compact.
This is a hard theorem and directly implies finiteness of the class group.

7.6.8. Definition. For d = (d,), € A*, define the adelic parallelotope (box)
L(d) := {(zy) € A : |zy|y < |dylo for all v},

and

is the set of lattice points in the box.

Clearly L(d) is a compact neighborhood of 0. In the function field case, L(d) is like “functions with
prescribed orders of poles and zeroes”, cf. Riemann-Roch. Since K is discrete in A, L(d) is discrete and
compact, hence finite.

7.6.9. Theorem (Adelic Minkowski). There ezists a constant ¢ (depending on K ), such that if |d| > ¢, then
L(d) contains a nonzero element.

PROOF. We only prove this for number fields. Then d maps to some ideal I. For x € K, unwrapping
the condition |z|, < |dy]|, for archimedean and nonarchimedean v, we need x € I (which is a lattice in Kg)
and x belongs to a product of intervals and disks, a symmetric convex set in Kg. When |d| is big enough,
Minkowski’s theorem applies and we get a nonzero point in L(d). (I

7.7. Strong approximation. Let K be a global field. For any finite set of places S containing all
archimedean places, the S-integral adéles are elements of the ring

Ag =[] Ko x [] Ov-
vES vgS
This is equipped with the actual product topology. For S C T, there is a natrual Ag < Ap. Then

A= @As.
S

Here is a corollary of the adelic Minkowski theorem, about scaling a box by elements of K* to fit in
another box.

7.7.1. Corollary. If a,b € A* such that |b| > cla| (where) c is as in theorem 7.6.9. Then there ezists
u € K*, such that ulL(a) C L(b).

PRrROOF. By adelic Minkowski, there exists u € K* such that v € L(b/a). This is the same as ul(a) C
L(b). O

7.7.2. Lemma. There exists a € A*, such that A = K +L(a).

PROOF. Just for this problem, let L(d)’" be the same as L(d), except it is open for archimedean v. These
are open neighborhoods of 0 that cover A, so their images in A/K cover A/K. The image is open because
its preimage is the union of all translations of L.(d)" by elements of K. Since A/K is compact, we need only
finitely many IL(d)’s whose images cover A/K. So we can choose a big enough such that L(a) contains each
of the finitely many L(d)’s. O

7.7.3. Lemma. Ifbe A*, |b| sufficiently large, then A = K + L(b).
ProOOF. Combine the previous two claims. (I

7.7.4. Theorem (Strong approximation). Let K be a global field, and suppose that the set of places of K
are partitioned into S UT U {w}, where S is finite. For each v € S, fix a, € K, and a real €, > 0. Then
there exists x € K such that:

o |z —ayly <&y forallvesS;

o |z|, <1 forallveT.

Note that |z|, may behave wildly.
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PROOF. Define a, = 0 for all v ¢ S to make an adele a = (a,),. For v € S: we may shrink ¢, so that
€y = |by|y for some b, € K,. For v € T: let b, = 1. Let b,, € K,, be large enough that |b| =[], |by|, is large
enough, as in the previous lemma. Then there exists z € K, x — a € L(b), which is what we wanted. O

7.8. Compactness of AJ/K*.
7.8.1. Lemma. A{ is a closed subset of A and of A*, and the two subspace topologies coincide.

PRrOOF. First of all, we remark that A} is closed because it is cut out by an equation. So it suffices to
show that the two subspace topologies coincide.

We claim that for any idele a = (ay),, A7 NL(a) C A§ for some finite S. To show this claim, let S
contain the places v such that |a,|, # 1 and the nonarchimedean places whose residue field has size at most
la|, as well as the archimedean ones. If (z,), € A} NL(a), then at all w & S, |Ty|w < |aw|w =1, 50 Ty € Oy
If |xw|w < 1, then |zy]w < % where ¢ is the size of the residue field at w. Then |z| < |a|/q < 1, which is a
contradiction to € A{*. So « € Ay and the lemma is proved.

Now, because the topology of AF is just the product topology, it is the same in both A and A*. Because
A is covered by A{ NL(a)’s, we are done. a

7.8.2. Theorem. A'/K™ is compact.

PROOF. Choose d € A large enough for the adelic Minkowski. By the above lemma, A N L(d) is
closed inside L(d), which is compact. So A; N1L(d) is compact.

It remains to show that A; NIL(d) surjects onto A;/K*. Given any u € Ay, we have |d/u| = |d|, so
there exists a nonzero element z € K* in L(d/u) by adelic Minkowski. This is equivalent to ux € IL(d), but
ur € Af also. So the above map is indeed a surjection, which tells us that A /K> is compact. (I

7.9. Finiteness of the class group, second proof. We will use the compactness of A} /K> to show:

7.9.1. Theorem (finiteness of class group). We have:
(1) If K is a number field, then Cl(Ok) is finite.
(2) If K is a global function field, and X is the associated smooth projective curve, then Pic’(X) =
Div®(X)/im(K*) is finite.

PROOF. (1) Consider the natural surjective map A* — Z. The induced A} — 7 is still surjective because
we can always normalize at archimedean places. So we get a surjection Aj'/K* — Z/im(K*) = Cl(Ok).
The kernel of this map is open, so the LHS quotient the kernel is compact and discrete, hence finite.

(2) Consider the natural surjective map AX — Div(X), which induces A} — Div’(X). So we get a
surjection A /K* — Pic’(X), and we can argue as in (1). O

7.10. Dirichlet’s unit theorem.
7.10.1. Definition. Let S be a set of places containing all archimedean ones. Let
Os={r e K:|x,|l, <1lforallvé¢S}.
Then Og = As N K, and Oy = A5 NK*. Let it = (OF )tors = (K )tors be the group of roots of unities.
Define a continuous homomorphism
Log: A% — R®
(ay) = (loglavlv)ves-

7.10.2. Lemma. Let S be the set of archimedean places. Then the induced map Log : Agl — Rg 18
surjective. O

7.10.3. Lemma. The induced Log : O — RS has finite kernel and discrete image.

PROOF. Let B be a compact neighborhood of 0. Then Log™'(B) is contained in some L(d), so
Log_l(B) N K* is finite. In particular, Log has finite kernel, and 0 is an isolated point in the image,
i.e. the image is discrete. (]

7.10.4. Corollary. ker(Log : O — R%) = p, and Log(O%) is a free abelian group of finite rank.
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ProoOF. Clearly, p is in the kernel. Because the kernel is finite, it must be torsion. (I

7.10.5. Theorem (Dirichlet’s S-unit theorem). Let K be a number field, then OF is finitely genrated with
rank |S|—1=ry +ry— 1.

PROOF. We only prove this in the case where S is the set of archimedean places. By the previous
corollary, OF is finitely generated (u is contained in some adelic parallelotope intersect K, hence finite).

Consider the open and closed inclusion Ag < A, which induces a map Ag,/Og — Af'/K*. This
is open and closed, and the RHS is compact, so the LHS is compact also. Under the log map, A§/Og —
R§ /log(O%) is surjective, so the RHS is compact as well. This means that the lattice is a full lattice, i.e. is
of full rank |S| — 1. O

8. Cyclotomic fields

8.1. Cyclotomic fields. We transition to the next topic, cyclotomic fields. Let n be a natural number,
K be a field whose characteristic does not divide n, and let L be the splitting field of the separable polynomial
2" —1in K, ie. L = K((,). We get an injection Gal(L/K) < (Z/nZ)*, which is not always surjective.
However, this is surjective when K = Q. This amounts to showing that ®,,(z) is irreducible in Q[x]. Consider
the discriminant disc(z™ — 1) = £n™. Let f(x) be a factor of 2™ — 1, and ¢ a root of f. Let p be a prime
coprime to n. Suppose (P is not a root of f, then f((P) # 0 is a product of differences of roots of unity, hence
an algebraic integer dividing n™. But f(¢?) = f(¢)? = 0 mod p, so p | f(¢?), so p | n™, a contradiction. So
(P is a root of f. By induction, (" is a root of f for any m coprime to n, as desired.

Another way to write the proof is as follows:

8.1.1. Proposition. If a prime p is coprime to n, then Q(¢,)/Q is unramified above p, and Frob, acts by
Cn = Gh-

So all primes coprime to n lie in the image of Gal(Q((,)/Q) — (Z/nZ)*, so it must be surjective.
8.1.2. Corollary. If p { n, then f, = [Fq : F,] is equal to the order of Frob, in G, which is equal to the
order of p in (Z/nZ)*.

8.1.3. Proposition. The ring of integers in Q(¢,) is Z[Cx).

PROOF. Induct on the number of primes dividing n. Suppose n = mp", p t m. We have a tower of

extensions K = Q((,)/Q, and K({,r)/K. By induction we know that O = Z[(,].

We claim that O [(,-] is integrally closed. This can be checked after localizing at each prime p in K,
ie. (Ok)plCpr] is integrally closed. Consider
P —1

Py (2) = 1 142" a2

1

Lt x(Pfl)pT_l'

If p lies above p, then ®,-(z + 1) is Eisenstein at p (this uses that p { m, which implies p is unramified),
0 (Ok)plCpr] is a DVR (see §2.6). But there can be no nontrivial rings between a DVR and its field of
fractions, so (Ok)p[(pr] is integrally closed.

If p | £ # p, then zP" — 1 is separable mod ¢, and so is ®,(z) mod p. So (O)p[¢y-] is a DVR (?), and
therefore integrally closed. O

9. Analytic number theory

9.1. Zeta functions. We transition to yet another topic: analytic number theory. A good reference is
Davenport’s Multiplicative Number Theory.

9.1.1. Definition (Riemann zeta function). For Re(s) > 1,
1 —s
=T =Y
V4 n>1
9.1.2. Definition (Dedekind zeta function). Let K be a number field,
1
Cr(s) = — = N(a)™".

nonzero p nonzero a

where N(p) is the absolute norm, i.e. N(p) = plF»rFrl = |Og /p|.
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9.1.3. Proposition. There are infinitely many primes. Even better, Z% diverges.

Proor. Clearly, lim, ,;+ ((s) = oo, so log((s) = >_, —log(1 — p~%) also tends to co. Expanding as a

Taylor series, the main part is ) -= and the rest is obviously bounded. O

L
pS
9.1.4. Proposition. ((s) = =15 + ¢(s), where ¢(s) extends to a holomorphic function on Re(s) > 0.

PRrROOF. For Re(s) > 1,

n>1
= n(n " —(n+1)77)
n>1
n+1
= Zprn/ sz ldx
n>1 n

s/oo |z] 2~ tdx

:—+pr1—s/ {z}z*"'da,

where the latter term (which we call ¢(s)) converges absolutely for Re(s) > 0, and uniformly so on Re(s) > ¢
for any € > 0. O

9.1.5. Proposition. The following are true about ((s):

(1) memoromorphic on C; has a simple pole at 1, and no other poles

(2) functional equation

(8) trivial zeros at negative even numbers

(4) (infinitely many) all other zeros lie in the critical strip 0 < Re(s) < 1, conjectured to all lie on
Re(s) =1/2.

9.2. Character theory of finite abelian groups.

9.2.1. Theorem (Dirichlet). If gcd(a,m) = 1, then there exist infinitely many primes congruent to a mod
m.

9.2.2. Definition. A mod m Dirichlet character is a character on (Z/mZ)*, i.e. a homomorphism
X : (Z/mZ)* — C*.
Extend to x : Z>o — C by mapping to zero the numbers a not coprime to n.

We review some character theory of finite abelian groups.

9.2.3. Proposition. For a character x € CA;?,

|G| if x is trivial,
> x(9) = :

e 0 otherwise.
PRrROOF. When Y is nontrivial, there exists a € G, with x(a) # 1. Let s be the sum. Then
a)s = xlag) =Y xlg) =
g g

so s = 0. O

9.2.4. Proposition. For an element g € G,

Zx<9>={OG':G' fg=1.

pl otherwise.
x€G

The proof is similar.
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9.2.5. Theorem (Fourier transform on finite abelian groups). Any function f : G — C* is a linear
combination of characters:
fF=> Fx
X

. 1 )
JFx) = @l Zg:x(g‘ )f(g)

PRrROOF. By linearity, it suffices to prove this for a basis of functions G — C*. Take f to be the indicator
function for a € G. Then

where

N 1
FOO = =x(@™).
G|
So > f(X)x(9) = ﬁx(a_lg), which is 1 when a='g = 1 and 0 otherwise, i.e. the same as f. O

9.3. Proof of Dirichlet’s theorem, minus two theorems.
9.3.1. Definition. Let x be a Dirichlet character mod m. Define the Dirichlet L-series
L(s,x) = H — =Y x(mn*.
n>1
This a priori converges absolutely for Re(s) > 1.

9.3.2. Proposition. If x # 1 (the trivial character), then L(s,x) extends to a holomorphic function for
Re(s) >0

ProOF. Let T'(z) := 3., ., x(n) for z € R. This is periodic with period m, hence bounded. So

s,X) = x(mn™

n>1

/1OO x~%dT (z)

oo
=2 T (2)|° —/ ~T(zx)sz™* 'da
1

o0
:s/ T(x)z* dx
1

where we’ve used the Riemann-Stieltjes integral. (Here it is just a fancy way to justify summation by parts.)
This integral converges as long as Re(s) > 0. Furthermore, it converges uniformly on Re(s) > ¢ for every ¢,
so L can be extended holomorphically to Re(s) > 0. O

PROOF OF THEOREM 9.2.1, DIRICHLET’S THEOREM ON ARITHMETIC PROGRESSIONS. Writing the in-
dicator function as the sum of characters,

o= Zp pr oo Zx “Hx(p)
= —m Zx(a’l) prY_ x(p)p
Zx Y prlog L(s, x) + O(1)

= log L(s,1) + ZX Ylog L(s, x) + O(1).
e ) 2
We have
log L(s,1) =log ((1) + O(1) — o©
as s — 1T. The goal now is to show that the other terms are in fact O(1) as s — 1. It is then sufficient to
show that if x # 1, L(1,x) # 0. This would follow from the following two theorems, by analyzing the order
of vanishing at s = 1. O
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9.3.3. Theorem. Up to Euler factors at primes dividing m,

CQ(em) (8) = 11 L(s,x).

x:(Z/mZ)* —-CX*
9.3.4. Theorem. For any number field K, (x(s) has a simple pole at s = 1.

We first remark that the proof above in fact shows that é({p = a (mod m)}) = ﬁ

PROOF OF THEOREM 9.3.3. We compare the two sides. Consider a prime p t m (so unramified), and
consider primes p | p. So e, = 1, f, is the order of p in (Z/mZ)*, and g, = ¢(m)/fp. The corresponding
term on the LHS is

[[a-N@E) =) =0 @)k
plp
So it suffices to show that
[1@ = x@p) =@ = (p==)%)e.
X
Among the characters x of (Z/mZ)*, the values of x(p) are 1, uiy, ,U,?c, —,ufP7L where pif is a primitive f-th
root of unity, each with multiplicity g,. This completes the proof. O

9.3.5. Theorem (analytic class number formula). Let K be a number field, then (i (s) extends to a mero-
morphic function in a neighborhood of s = 1 with a simple pole at 1. Moreover,

}LH}(S C )¢k (s) = Vovlc()ﬁgﬁf;;) _m (27T>T2|ZI;TK/wk7

where hg = # Clg, wx = #uK.

We will prove the latter equality and, in particular, define the volumes, so we will do a bit of review of
measure theory. The former equality will be proven next semester in 18.786, using methods in Tate’s thesis.

10. Analysis preliminaries
10.1. Measure theory.

10.1.1. Definition. Let X be a set, .# a collection of subsets of X. If .# is closed under countable unions
and complements, call .# a o-algebra.

10.1.2. Example. Let X be a topological space. The set of Borel sets & is the o-algebra generated by the
open sets.

The sets in .#Z are called measurable sets.

10.1.3. Definition. A function f : X — C is called measurable if the inverse image of measurable subsets
are measurable. (It suffices to check the inverse images of open disks.)

10.1.4. Definition. A measure on (X, .#) is a function p : .# — [0, 00] such that u(|J A;) = p(A4;) for
any countable collections of disjoint measurable sets. Call p the Borel measure if # = 98. A null set is a
subset N C X contained in a measure-0 set. It is easy to enlarge .# so that all null sets are measurable. A
function f: X — Cis a null function if {x € X : f(z) = 0} is a null set.

We now define in stages a notion of integrals. Fix (X, .#, u).

e Given S € .# with u(S) < oo, let 1g be the function that is 1 on S and 0 on X — S. Then define
J1s = u(S).

e A step function f is a finite C-linear combination of 1g’s. Define [ f linearly.

e Define the L' norm of f, ||f||; :== [ |f| € Rso. Call a function f : X — C integrable if outside a
null set, it is equal to the pointwise limit of some L!-Cauchy sequence (f;) of step functions. Then
define [, fdp = [ f =1lim; [ f; € C. (The pointwise limit of measurable functions is measurable,
so in particular integrable functions are measurable.)
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10.2. Radon measures and integrals. There is an alternative definition of integration for all mea-
surable functions f : X — [0, 00|, which agrees with the previous definition if f is integrable:

[ f=sup{[g:gisastep function and 0 < g < f} € [0, o0].
Also, for a measurable function f : X — C, f is integrable iff |f| is integrable, in which case we have

| [fI< [If1.

10.2.1. Theorem (Monotone convergence theorem). Suppose (fy) is a sequence of measurable functions
X — [0,00] such that 0 < f1 < fo < ..., then the pointwise limit f satisfies [ f =lim [ f,.

10.2.2. Theorem (Dominated convergence theorem). Suppose measurable functions fi, fo, - : X — C
converge pointwise to f : X — C. If there is an integrable g : X — C such that |fn| < |g| for all n, then f
and f, are all integrable and [ f =lim [ f,.

10.2.3. Definition. Let X be a Hausdorff topological space. X is locally compact if every x € X has a
compact neighborhood (i.e. z € U C K where U open and K compact).
10.2.4. Definition. An outer Radon measure is a Borel measure (a measure on %) such that:

e (locally finite) Every x € X has an open neighborhood U such that u(U) < oc;
o (outer regular) Every S € 4 satisfies p(S) = inf{u(U) : U D S open};
e (inner regular) Every open U satisfies u(U) = sup{u(K) : K C U compact};

Let C(X) be the C-vector space of continuous functions f : X — C, and let C.(X) be the C-vector
space of continuous functions with compact support.

10.2.5. Definition. A Radon integral on X is a C-linear map I : C.(X) — C such that I(f) > 0if f > 0.
(It is assumed that f is real-valued.)

Given an outer Radon measure z, we can define an integral I, : f — [ « fdp. The converse is:
10.2.6. Theorem (Riesz—Markov—Kakutani representation theorem). Let X be a LCH space, then the map
{outer Radon measures 1} — {Radon integrals on X}
by w1, is a bijection.
10.2.7. Example. Let X = R", the Riemann integral corresponds to the Lebesgue measure.

10.2.8. Example. Examples of LCH topological groups:

R,C,Zyp, Qp, A;

The unit groups A* of any of the above topological rings;
GL,,(A) of any of the above;

Any group equipped with the discrete topology.

10.3. Haar measures.

10.3.1. Definition. Let G be a LCH topological group. A left Haar measure on G is a nonzero left-invariant
outer Radon measure.

Theorem 6.1.4 says that such a measure always exists and is unique up to multiplication by a positive
constant.

10.3.2. Proposition. G is compact iff u(G) < oo. In this case, the normalized Haar measure is the unique
Haar measure with (1(G) = 1.

10.3.3. Example. Examples of Haar measures:

e On R", the Lebesgue measure is a Haar measure;
e On a discrete group, the counting measure is a Haar measure.

10.3.4. Definition. An LCA group is a locally compact abelian Hausdorff topological group. This forms a
category, with morphisms being continuous homomorphisms.

For example, T = R/Z is the unit circle in the complex plane; it is an LCA group.

10.4. Duality of locally compact abelian groups.
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10.5. Dec. 7.
10.6. Dec. 9.
10.7. Dec. 12.
10.8. Dec. 14.

11. Local class field theory: Setup
11.1. Kronecker—Weber theorem.
11.1.1. Theorem (global KW). Any finite abelian extension of Q is contained in a cyclotomic extension
Q(Cm)-

11.1.2. Theorem (local KW). Any finite abelian extension of Q, is contained in a cyclotomic extension

Qp(Gm)-

11.1.3. Lemma (Galois group of compositum). Let Ly, Lo/ K be finite Galois extensions that lie in some
bigger extension Q/K. Then LiLo is Galois over K, with

Gal(Lle/K) = {(0'1,0'2) € Gal(Ll/K) X Gal(Lz/K) : 01|L1QL2 = 02‘L10L2}~
11.1.4. Proposition. Local KW implies global KW.

PRrROOF. Consider each prime p € Z where a finite abelian extension K/Q is ramified. Fix p | p to be
a prime in K above p, and consider the extension K,/Q,, which is finite abelian with Gal(K,/Qp) = D,.
Assuming local KW, suppose Ky, € Qp((m, ). Let n, = v,(m,) and m = [[p"#, among all (finitely many) p
that ramify. Let L = K((,). It suffices to show L = Q((n,).

Because L = K - Q((m), L/Q is abelian as well. Pick a prime q | p in L/K, then L is also finite abelian
over Q,. Let Fy be the maximal unramified extension of Q, in Lq. Then Lq/Fy is totally ramified with
Galois group I =: I,, which only depends on p (since the Galois group is abelian).

We claim that [, = (Z/p"»Z)*. To show this, notice that Q,((y,/pmr) is unramified over Q,, so
K, C Fy(¢pv). Now, since Lq O Ky((m) and [Lq : Kp] = [L : K|, Lq = Ky(Gm) € Fy((pre), so in fact
Lq = Fy(Gyme). So we have the following field inclusions

Lyq
Fq Qp(@"”)
Qp,
where Q, = Fy N Q,({pnr) since one is unramified and the other is totally ramified. So
I, = Gal(Lq/Fy) = Gal(Qp(Gprr ) /Qp) = (Z/p"Z) ™.
Now, let I be the subgroup of Gal(L/Q) generated by I,,’s. Then
1 < [Tl =TT e0™) = ém) = (@) : Q)
Let L’ be the fixed field of I. Then L!/Q is unramified, so L’ = Q. This means
[L:Q=[L:L]=I<[Q¢n):Q <I[L:Q]
so L = Q((,,) as desired. O
11.1.5. Proposition. It suffices to show local KW for cyclic extensions with Galois group Z/¢"Z.

PRrROOF. For an arbitrary abelian extension K/Q,, decompose its Galois group into the product of prime-
power cyclic groups H;, and let K; = KHi. Then K = \/ K; (compositum), from which the proposition is
clear. 0

Now we begin the proof of local KW, with Gal(K/Q,) = Z/¢"Z. There are three cases:



11. LOCAL CLASS FIELD THEORY: SETUP 64

e tamely ramified case, ¢ # p;
e wildly ramified case with odd degree, £ = p > 3;
e wildly ramified case with even degree, £ = p = 2.

PROOF OF CASE 1. Let F' be the maximal unramified extension of Q, in K. Then F/Q, is already equal
to some cyclotomic extension (to see this, consider the corresponding finite separable extension of residue
fields; the Galois group of finite field extensions is cyclic). Furthermore, K = F(7'/¢) for some uniformizer 7
in ' (cf. 5.6.3). Assume that 7 = —pu, where u € O}. Then K lies in the compositum F((—p)/¢)- F(u'/®),
and it suffices to show both are included in some cyclotomic extension of F'.

For F(u'/¢)/F, it is unramified since the discriminant is disc(x® — ), which is a unit in F. This implies
that it is also equal to some cyclotomic extension.

Consider K (u'/¢)/Q,, which is the compositum of K and F(u!/¢), so it is also an abelian extension.
Therefore, since F((—p)'/¢) C K(u'/¢), Q,((—p)*/¢)/Q, is Galois as well, which implies ¢, € Q,((—p)*/¢)
because Q,((—p)!/¢) then must contain all e-th roots of —p. And it is totally ramified since the minimal
polynomial of (—p)'/¢, 2¢ + p, is Eisenstein. Since Q,((.) C Q,((—p)'/€) is unramified over Q,, we conclude
Qp(¢e) = Qp. Because the residue field of Q, contains only (p — 1)-th roots of unity, e | (p — 1). Then

@p((—p)l/e) c Qp(( )1/ P 1)) Qp(Cp)

by the lemma that follows. But from this we conclude that F((—p)/¢) is also in some cyclotomic extension,
so we are done. O

11.1.6. Lemma. Q,((—p)"/®=Y) =Q,(().

PROOF. Let a = (—p)l/(”’l). Then a?~! + p = 0, which is an Eisenstein polynomial of degree p — 1, so
a is a uniformizer for Q,(«). Let m = (;, — 1, whose minimal polynomial is also Eisenstein of degree p — 1, so
7 is a uniformizer for Q,({,). The goal now is to show that o € Q,((p), from which the lemma will follow
by a degree argument.

Let wu=—7P"!'/p=1 (mod ), so u is an unit in the valuation ring of Q,({,). Consider g(z) = 2P~ —u,
which, mod 7, has 1 as a simple root, so by Hensel’s lemma we obtain a root 8 of g(x). Then
- Pl 4 pgPt
(=/B) " +p = —g =0,
so a — 7/ gives an injection. O

PROOF OF CASE 2. Suppose K/Q, cyclic of degree p", p > 3. There are two obvious cyclotomic exten-
sions of degree p"; in the unramified case we have Q,((,»~_1), and in the totally ramified case we have the
index-(p — 1) subfield of Q,((,r+1). Suppose for contradiction K does not lie in Qp((pr+1(per —1))- Then

Gal(K (Gyre1 (o 1)) /Qp) € Gal(K/Qyp) x (Z/p"Z)* x Z/(p — 1)

surjecting onto the last two factors, and nontrivial in the first. So the Galois group has a quotient group
that is (Z/pZ)3, i.e. there exists an extension of Q, with Galois group (Z/pZ)*. We are going to show that
no such extensions exist. (I

11.1.7. Definition (semidirect product). Let G be a group, N < G a normal subgroup, and H < G a
subgroup. If H — G — G/N is an isomorphism, then we say G = N x H.

More generally, let H, N be groups, with a homomorphism ¢ : H — Aut(/N). Then N x H, as a set, is
equal to N x H, but the group operation is given by

(n1, ha)(ng, ha) = (n1¢n, (1n2), hahs).
This is the (outer) semidirect product.

11.1.8. Proposition (Schur-Zassenhaus lemma). Let N <G with |N| and |G/N| coprime, then there exists
a subsection G/N — G. Consequently G =N x G/N.

11.1.9. Proposition. Let p be an odd prime, then any totally wildly ramified Galois extension of Q,, is
cyclic.

PROOF. See 18.786 pset 1. O
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11.1.10. Theorem. Let p be an odd prime, then no (Z/pZ)>-extension K/Q, exists.

PRrROOF. We first only assume K/Q, is Galois. Let G = Gal(K/Q,), and let p C Ok be the unique
prime above p. Since Ok is a DVR, G = D,. Let the ramification groups G; = {0 € G : o(z) =z
(mod p**t1) for any = € Ok}, and let 7, : Dy — Gal(F,/F,) be the natural map whose kernel is I, = Gy.

Let U; = 1+ p* be subgroups of O for i > 1, and set Uy = O). Then Uy/U; = F, and U;/U; 41 = F,
as abelian groups. For each i > 0, there is an injection G;/G;+1 < U;/U;41 given by o — o(n)/m where
p = (m). Therefore, Go/G; is cyclic with order coprime to p, and G is a p-group. Consider the normal
subgroups G1 <1Gy <G (which implies that G is solvable), then the corresponding subfield K0 = K7 is the
maximal unramified extension of Q, in K, K G/ Q, is the maximal tamely ramified extension, and K/K G1
is totally wildly ramified.

By Proposition 11.1.8, Gy = Gy x Go/G1.

In the case G = (Z/pZ)3, since all nontrivial proper subgroups are Z/pZ or Z/p*Z, so G = I x H, where
H := Gal(F,/F,) is cyclic. Since K7 /Q, is totally wildly ramified (I = Gal(K/Q,) is a p-group), it is
cyclic. But G is not the product of two cyclic groups. ]

11.1.11. Remark. If p is odd, then there are exactly p ramified extensions with degree p, namely

Qplx]/ (2P + pz?~" + p(1 + ap))
for0<a<p-1.

PROOF OF CASE 3. In this case, Q2(C24)/Q2 has Galois group (Z/2Z)%. But we can still follow a similar
argument. Suppose K/Qs is cyclic with order 2". As usual, the suspects are Gal(Qa(C(o2r_1)/Q2) X Z/2"Z
and Gal(Q(Cor+2)/Q2) = (Z/27T27)* = 7J27 x Z/2"Z. We claim that K C Q(Cyr+2(227_1)). Suppose
otherwise, then either

Gal(K (Corvza2m 1)) /Q2) X (Z/277)? x Z/2Z x T./2°Z
for s > 1, or
Gal(K (Gor2(22m 1))/ Q2) = (Z/2"Z)* x /2°L

for s > 2. So it has a quotient equal to either (Z/2Z)* or (Z/4Z)3. In the first case, we can show that there
are 7 quadratic extensions of Qo, but (Z/27)* has 15 subgroups of index 2; in the second case, there are 12
cyclic quartic extensions of Qq, but (Z/4Z)? has 28 subgroups whose quotient is Z/4Z (see LMFDB). O

This finishes the proof of Kronecker—Weber theorem.

11.2. The Artin map. Now fix L/K an abelian extension of global fields, so that we have the Artin
symbol
L/K

pr = Frob, =: 0y

for unramified p. Let m be an ideal divisible by all ramified primes. Then we have the Artin map
Vi i Ik — Gal(L/K).
The first major step in proving class field theory is the following:
11.2.1. Proposition. Let K be a number field, L/K abelian. Then the Artin map '/’21/1{ 1§ surjective.
11.2.2. Proposition. The primes in ker i/ are the primes in K that split completely in L. (I

11.2.3. Proposition. Let K C L C M be a tower of abelian extensions of global fields. Then the Artin
maps commute with the restriction map Gal(M/K) — Gal(L/K).

11.3. Ray class groups.
11.3.1. Proposition. The Artin map is surjective for abelian extensions L/Q.

Proor. By KW it suffices to show this for L = Q((,,). In this case, (p) hits the residue class of p in
(Z/mZ)*, so the Artin map is clearly surjective. O
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For global field K, let Mg be the set of places of K. Finite places v are ones corresponding to prime
ideals, and the rest are infinite places. (Infinite places can be nonarchimedean; for example, since function
fields have characteristic p, all nontrivial places are nonarchimedean. Places of a function field correspond
1-to-1 with closed points of its associated smooth projective curve. For number fields, however, infinite
places are all archimedean, and are either real or complex.)

11.3.2. Definition. Let K be a number field. A modulus for K is a function m : Mg — Z>o with finite
support, such that m(v) < 1 for infinite places, and m(v) = 1 only when v is real.

This should be thought of as a product of prime ideals and some set of real places.

11.3.3. Definition. A fractional ideal I of Zx is coprime to m if v,(I) = 0 for finite primes p | m. The
subgroup of fractional ideals coprime to m is denoted by Z%. The subgroup of elements a € K* such that
(a) € I is denoted by K™. Finally, K™! is the subgroup of elements a where v,(a — 1) > vy (m) for finite
p | m, and a, > 0 for all infinite v | m where a, is the image of the embedding K — K, = R.

11.3.4. Definition. The ray group R% C I® is the image of K™! in Z%. The ray class group for m is
Clg =IpR/R%.

11.3.5. Definition. A finite abelian extension L/K unramified at all primes that do not divide m, for
which ker w?/K = RY% is called a ray class field for m. When m is trivial, it is the Hilbert class field, i.e. the

maximal unramified abelian extension (which we will show).
When m has only all the real places, this is called the narrow class group.

11.3.6. Lemma. Let A be a Dedekind domain, a an A-ideal. Then every ideal class in C1(A) contains an
A-ideal coprime to a.

PROOF. Let I be a nonzero fractional ideal. For each p | a, pick m, € p such that v,(m,) = 1 and
vg(mp) = 0 for all other q | a by strong approximation. Then I’ = ([],, W;v"(u))l is in the class of I and
satisfies I’ coprime to a. Then make it integral by multiplying by the appropriate elements again found by
strong approximation. O
11.3.7. Proposition. Let m = mgmy, be a modulus for K. We have an exact sequence
(%) 0= O0pNK™ - 0f - K™/K™! — ClI} — Clg — 0.
and K™ /K™ 2 {£1}#M~ x (O /mg)* canonically.

ProOOF. Consider the composition K™! ENYCIER Zp@®. Then f is injective, ker(g) = O, ker(go f) =

Ox N K™, coker(g) = I /im(K™) = Clk by the previous lemma, and coker(g o f) = Cl. The kernel-
cokernel exact sequence yields

0 — ker(f) — ker(g o f) — ker(g) — coker(f) — coker(g o f) — coker(g) — 0,

which becomes (x).
For the second statement, given o € K™, write a = a/b € K™ where a,b € Ok are both coprime to m.
Send

¢ K™ = {£1}#™ x (O /mg)*

by a mapping to (sgn(a,),@ = El_)_l). This is surjective by strong approximation, and the kernel is precisely
K™ This is canonical because @ does not depend on a, b. O

11.3.8. Corollary. Let h's = |Cl | be the ray class number. Then

mo_ ¢(m)hK
Ko og:0n K™

Here ¢(m) = (mo)¢(ma) = [K™ /K™, where
d(ma) = 2™, G(mg) = (O /mo)*| = [ 1(Ose/p™P)*| = N(mo) [] (1 = Np) ™).

pImo plmo
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11.4. Polar density.
11.4.1. Definition. Let S be a set of primes of a global field K. The partial Dedekind zeta function

1
CK,S = H TW

peSs

This converges on Re(s) > 1.

If S is finite then this is just holomorphic on a neighborhood of s = 1. If S is cofinite then this is (x
over a holomorphic function, hence meromorphic on a neighborhood of 1 with a simple pole at 1.

11.4.2. Definition. If (i ¢ extends to a meromorphic function on a neighborhood of 1, the polar density

m
S) = —
p(S) =
where m is the order of the pole.
The Dirichlet density is
N(p)~—* N(p)~—*
d(S) = lim Zpes (b) = 1li Zpes 1(13) ,
s—1t Zp N(p)—* s—1t log po
and the natural density is
:N(p) <
5(8) = lim PP ES NG <n}

11.4.3. Proposition. If S has a natural density, then it has a Dirichlet density, and the two densities agree.
Proor. 18.786 problem set 2. (]
11.4.4. Proposition. If S has a polar density, then it has a Dirichlet density, and the two densities agree.

PROOF. Suppose p(S) = m/n, then the Laurent series for (3% g is
a(s—1)"" + Z ar(s—1)".
r>—m
Since (k,s(s) > 0 for real s > 1, a > 0. Taking logarithms on both sides,
n Z N(p)™% ~ mlog
pes
as s — 17. This shows that d(S) = m/n = p(S). O

s—1

11.4.5. Proposition. Let S,T be sets of primes in a number field K. Let P be the set of all primes, and
Py the set of primes with f = 1. Then:

(a) If S is finite, p(S) = 0. If P\S is finite, then p(S) = 1.

(b) If S C T then p(S) < p(T) if both exist.

(c) If SNT is finite, then p(SUT) = p(S) + p(T) whenever two of the three exist.

(d) p(P1) =1, and p(SNP1) = p(S) whenever S has polar density.

PROOF. (d) Let P3 be the other primes. The key fact here is that there are at most n = [K : Q] primes
above p in Pa, each with norm at least p%. So (xk p,(s) < ("(2s), so (k p, is holomorphic and vanishing
around 1. (]

11.5. Surjectivity of the Artin map. We begin by commenting that all this works for global func-
tions as well, only the proofs will be sllightly different. Our goal in this subsection is to show the surjectivity
of the Artin map.

11.5.1. Theorem. Let L/K be Galois extensions of number fields of degree n. Let Spl(L/K) be the set of
primes in K that split completely in L. Then p(Spl(L/K)) = 1/n.
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PROOF. Let S be the set of degree-1 primes that split completely, it suffices to show p(S) = 1/n. For
these p,e=f=1. Let T'={q|p:p € S}, then Ny, (q) = p, and N(q) = #(O/q) = N(p), so q is degree
1 as well. On the other hand, any unramified q of degree 1 must lie above an unramified degree-1 prime p,
which is in S; so all but finitely many (ramified) degree-1 primes q € T'. This means p(T) = 1.

Each prime p € S has n primes above it in T". So

1 1 .
= U = Loy = ks

This shows p(S) = Lp(T) = O

3=

11.5.2. Corollary. Let L/K be a finite extension with Galois closure M /K of degree n. Then p(Spl(L/K)) =
p(SPI(M/K)) = 7.

PROOF. A prime p C K splits completely in L iff it splits completely in every conjugate of L in M, iff
it splits completely in M. O

11.5.3. Corollary. Let L/K be finite Galois with Galois group G, and H<\G. Then S = {p € K : Frob, C
H} has polar density p(S) = #H/#G.

PrOOF. We have Gal(L# /K) =~ G/H, and Frob, C H iff every Frob, fixes L¥ for q | p in L, iff p splits
completely in L. (I

Write S ~ T if SAT is finite; S < T if S — T is finite.

11.5.4. Lemma. Let L/K, M/K be finite Galois extensions, and LM be their compositum. Then a prime
in K splits completely (resp. is unramified) in LM iff it splits completely (resp. is unramified) in both L
and M.

PROOF. Use the fact that for a tower of Galois extensions M/N/K, if p C K and q C M lies above p,
then D(q) fixes N iff e,(N/K) = f,(N/K) = 1. Then since p splits completely in both L and M, for any q
in LM above p, both L, M C (LM)Pa, hence LM C (LM)P4, hence |D,| = 1. O

11.5.5. Theorem. If L/K, M/K are finite Galois, then
L C M <= Spl(M) C Spl(L) <= Spl(M) < Spl(L).

PROOF. The nontrivial direction is showing that Spl(M) < Spl(L) = L C M. Consider the composi-
tum LM, then a prime p in K splits completely in LM if and only if it splits completely in both L and M.
So Spl(LM) ~ Spl(M). This implies [M—lK] = m, so LM = M,so L C M. a
11.5.6. Theorem (the Artin map is surjective). Let L/K be finite abelian, m a modulus divisible by all
primes in K that ramify and all real places in K that ramify (that extend to a complex place). Then

vk Liyx — Gal(L/K)
1S surjective.
PROOF. Let H be the image, and F := L7; we will show F = K.
For any p € I}, wf/K(p) € H, so Froby acts trivially on F, so p splits completely in F". But I},
contains all but finitely many primes, so p(Spl(F/K)) = 1. But p(Spl(F/K)) = i, so F = K as

[F:K]
desired. U

11.5.7. Theorem. Let m be a modulus for K, and L/K, M/K finite abelian extensions unramified away
from m. If ker wz‘/K = ker wA“}/K, then L = M. In particular, the ray class field is unique (only depends on

m).

PrOOF. Consider the set S of primes not dividing m. Then p € S splits completely in L iff it is in
kerwz‘/K. So Spl(L/K) ~ SNkeryrx = SNkerp g ~ Spl(M/K), so L = M by applying Theorem
11.5.5 twice. 0
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By surjectivity of the Artin map, if the ray group R} C ker wz‘/K, then Gal(L/K) is a quotient of
Cl%, with equality iff L is the ray class field, which we denote by K(m). In general, the intermediate fields
between K and K(m) correspond 1-to-1 to subgroups between R% and Z®, by L — C = ker wa“/ x and
IR/C = Gal(L/K).

Given a finite abelian L/K, there may be many choices of m, and as we make m smaller, the ray group
R% gets bigger so that it might not be contained inside ker wg/ i+ Fortunately there is a minimal modulus
that works, called the conductor, for which RE C ker wf/ 5> which implies Spl(K(m)) C Spl(L), which
implies L C K (m).

11.6. Conductors.

11.6.1. Definition. A congruence subgroup for a modulus m in a global field K is a subgroup C C Z} that
contains the ray group R%.

11.6.2. Definition. For two congruence subgroups C; for my and Cs for ms, say that
(C1,my) ~ (Cqymy)
iff Zp' NCy = Z? NCy. This defines an equivalence relation, and if m; = my then C; = C.

The reason we are interested in this equivalence relation, is that if (C1,mq) ~ (C2,mg), then Z2' /C; =
Z7?/Cy canonically, and the isomorphism preserves cosets of ideals coprime to myms. And these quotients
are what we really care about.

If C is a congruence subgroup for two moduli m; and mgy, then (C,m;) ~ (C,m3). So each subgroup

C C Tk lies in at most one equivalence class. So we can just write C; ~ Cy without specifying the moduli.
Also, within one equivalence class, there can be at most one congruence subgroup with a specified modulus.

11.6.3. Lemma. Let (C;,my) be a congruence subgroup, and my | my. There exists (Co,my) in the same
equivalence class iff

It NRE CC,
in which case Co = CyRE?.
11.6.4. Proposition. If (C;,my) ~ (Ca,m2), then there exists a congruence subgroup C in the same equiva-
lence class, with modulus m = ged(my, mya).

11.6.5. Corollary. If (C,m) is a congruence subgroup, then there exists a unique C' ~ C whose modulus
divides that of any C" ~ C.

11.6.6. Definition. The unique modulus ¢ = ¢(C) given by the above corollary is called the conductor of
C. We say C is primitive if R} C C.

11.6.7. Proposition. IfC is a primitive congruence subgroup of modulus m, then m is the conductor of all
C' C C with modulus m. In particular, m is the conductor of R%.

PROOF. Suppose C’ C C with modulus m, and let (Cp, ¢) be its conductor. Obviously ¢ | m. On the other
hand,
IRNRY CIRNC=I,NC CC CC,
so if we let C” = CRY, then C” has modulus ¢ and
I5. NC=C=CIRNR%)=IRNCRY =IpnC",
so C ~ C". Because C is primitive, m | ¢. So ¢ = m. O

11.6.8. Example. Let K = Q, m = (2). Then Rg) = I(g) has conductor (1), since it is equivalent to I((;).
So (2) is not the conductor of any congruence subgroup of Q.

11.6.9. Example. Let K = Q, L = K[z]/(2® — 3z — 1), G = Gal(L/K) = Z/3Z. This is unramified away
from (3), since it has discriminant 81. So the Artin map makes sense for any modulus divisible by 3. The
ray class field for (3) is Q(¢3)™ = Q, and the ray class field for (3)oo is Q((3). These both have degree at
most 2, so cannot contain L; equivalently, R% is not contained in ker ¢E‘/ x- The correct modulus to use is
m = (9), and indeed L = Q((o)™ is the ray class field for (9).

In general, the ray class field for (n) is Q({,)™", and the ray class field for (n)oo is Q((y)-
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11.7. Ray class characters.

11.7.1. Definition. A totally multiplicative function x : Zx — C with finite image for which RE C
ker(x) := x~'(1) and Z2 = x~'(U1) (unit circle) is a ray class character of m. Equivalently, x is the
extension by zero of a character of the finite abelian group Clj.

11.7.2. Example. When K = Q, a ray class character of modulus (m)oo is just a Dirichlet character of
modulus m, and its conductor divides (m) iff the character is even, i.e. x(—1) = 1.

11.7.3. Definition. Suppose x1, x2 are ray class characters of moduli my | my. If xo(Z) = x1(I) for all
ideals I € 73, then we say x» is induced by x1. A ray class character is primitive if it is not induced by
any character other than itself.

11.7.4. Definition. The conductor of a ray class character is the conductor of its kernel (which is a
congruence subgroup).

11.7.5. Proposition. A ray class character is primitive iff its kernel is primitive, and every ray class
character is induced by a primitive one.

PROOF. Let x be a ray class character with (some) modulus m. Let x be the corresponding group
character on Z3/ker x. Let C be the primitive congruence subgroup equivalent to ker y, with modulus c,
the conductor, dividing m. We have a canonical isomorphism ¢ : Z§, /C — Z}2/ ker x. Let X be the ray class
character of ¢ that is the extension by zero of k o ¢. By definition of ¢, X(I) = x(I) for I € I}, so x is
induced by X (whose kernel is primitive).

In general, if (x2,my) is induced by (x1,m1), then ker x1 NZ? = ker x2 = ker xo NZRE*, so ker x1, ker x2
are equivalent. If, furthermore, x1 # x2, then Zp' # T? = my # my. Applying this to the above situation
of x and X: if X is induced by some other character with modulus ¢’, then ¢ cannot divide ¢/, a contradiction;
S0 X is primitive. Moreover, x is primitive iff y = x iff ker y = ker X is primitive. O

For a modulus m, ley X (m) denote the set of primitive ray class characters of conductor dividing m,
which is in bijection with the character group of Cl%. For a congruence subgroup C of modulus m, let X (C)
denote the set of primitive ray class characters whose kernels contain C, and X (C) is in bijection with the
character group of Z2 /C, a subgroup of X (m). (Why?)

11.7.6. Definition. A ray class character is principal if ker x = x~1(U;). We use 1 to denote the unique
primitive principal ray class group. (It is not the unique primitive character of conductor (1); when Clg is
nontrivial, any character on Clg induces a primitive character of conductor (1), but only one is principal.)

11.8. Weber L-functions.
11.8.1. Definition (Weber L-function). The Weber L-function L(s,x) of ray class character x is

1 —s
L(s,x) = pg{ T NG ;X(a) N(a)~*,

X
which converges absolutely to a nonvanishing holomorphic function for Re(s) > 1.

This generalizes Dirichlet L-functions (K = Q) and Dedekind zeta functions (x = 1), both of which
generalize the Riemann zeta function.

11.8.2. Proposition. Let x be a ray class character for a global field K. Then L(s,x) extends to a mero-

morphic function on a neighborhood of s = 1, with a simple pole at s = 1 if x = 1 and holomorphic
otherwise.
PrOOF. Wait for Tate’s thesis. |

11.8.3. Proposition. Let C be a congruence subgroup of modulus m for K. Let n = [IZ} : C], then
S = {p € C} has Dirichlet density

d(S) = {1/n, if L(1,x) # 0 for all x # 1 in X(C);

0, otherwise.

(Actually the second case never happens, but that will be shown later.)
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PROOF. By character theory,

S|

1, ifpec;
Z x(p) = {O otEerwise
XEX(C) ’ ’

log L(s, x) ~ ZX )

Because as s — 17T,

we have

Z log L(s,x) ~ Z ZX

XEX(C) XEX(C) p

=Y Np)™ > x(p
p

XE€EX(C)
=nY N(p)~
peC

By the above proposition, near s = 1, L(s,x) = (s — 1) g(s) where g is holomorphic and nonvanishing,
and e(y) = —1if x =1 and e(x) > 0 otherwise. So
- el

nz N(p)~ 1og

pecC X#1

as s — 11. This is equivalent to saying as s — 1T,

> pec N(p)~* _ 11— z1e(X)

log S_Ll n

0<d(S) =

)

which is either 0 or 1/n depending on whether one of the e(x) = 1. O

11.8.4. Proposition. Let C be a congruent subgroup of modulus m, n = [Z : C]. Then for any I € I}, the
coset {p € IC} has Dirichlet density the same as the trivial coset.

PROOF. Same proof, just change the indicator function. O

11.8.5. Corollary. The coset {p € IC} has Dirichlet density 1/n (so the second possibility never occurs),
and every non-primitive x € X (C) is nonvanishing at s = 1.

PROOF. Summing over all cosets, the Dirichlet densities should add up to 1. O

11.8.6. Corollary. Let L/K be a finite abelian extension, C a congruence subgroup of modulus m. If
SpI(L/K) S {p €C}, then [I} :C] < [L: K].
PRrROOF. We know Spl(L/K) has polar density (hence also Dirichlet density) 1/[L : K], and {p € C} has
Dirichlet density 1/[I} : C]. O
11.9. Second main inequality of CFT.
11.9.1. Definition. Let L/K be a finite abelian extension of local fields, then the conductor
1, ifL=C,K=R
¢«(L/K):= 10, if L = K archimedean
min{n : 14+ p™ € Np (L)}, otherwise.
For a finite abelian extension of global fields, ¢(L/K) is a map from Mg (the set of places of K) to Z, given

by mapping v — ¢(L,,/K,), where w is any place above v. (Since L/K is Galois, this does not depend on
the choice of w.)

11.9.2. Proposition. Let L/K be a finite abelian extension of local or global fields. For each prime p of K,

0 if p is unramified
vp(L/K) =<1 if p is tamely ramified
> 2 if p is wildly ramified.
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PROOF. See 18.786 pset 2. ]

11.9.3. Remark. The conductor and the discriminant are supported on the same primes (but the valuations
can be very different).

11.9.4. Lemma. Let L1, Lo be finite abelian extensions of local or global fields. Suppose Ly C Lo —>
«(L1/K) | «(La/K).

PROOF. In the local nonarchimedean case, N, x(L3) = Nz, /k(Np,/1,(L3)) € Nz, /k(Ly). In the

local archimedean case this is obvious. So this also holds for global fields. (]

11.9.5. Definition. Let L/K be a finite abelian extension of global fields, m a modulus divisible by ¢(L/K).
The norm group (also Takagi group) for m is

T7yx = Rg No/x(Z1),
where Z7" are the fractional Op-ideals coprime to myOy..

11.9.6. Proposition. Let L/K be a finite abelian extension of global fields, m a modulus divisible by ¢(L/K),
then SpI(L/K) S A{p € T7) 5 }-

PROOF. Suppose p is coprime to m, and splits completely in L, so e, = f, = 1. Pick q | p, then q € I}
and Nz /x(q) = p, so p is in T};“/K. a

11.9.7. Theorem (second main inequality). Let L/K be a finite abelian extension of global fields, m a
modulus divisible by ¢(L/K). Then
T2 TP < (L K],

ProoF. Follows from corollary 11.8.6. (]

The goal now is to show that this is actually an equality.

12. Global class field theory: Setup
12.1. Global CFT via ideals. What we are working towards is the following:

12.1.1. Theorem (global CFT, via ideals). The main theorems of ideal-theoretic CFT:

o The ray class field K(m) exists;

e For L/K finite abelian extension, L C K(m) iff ¢(L/K) | m.

o Artin reciprocity: If L C K(m), then kerwz‘/K = Tin/K, its conductor is ¢(L/K) | m, and
IR /1T i = Gal(L/K) canonically.

Artin reciprocity gives the following commutative diagram of canonical bijections:

L T"\
{finite abelian L/K with ¢(L/K) | m} 2>K{cong1ruence subgroups of modulus m}
L»—)Gal(L/K)l chIQ/C
{quotients of Gal(K(m)/K)}

- {quotients of CIj}
YLK

12.1.2. Definition. The Hilbert class field of a global field K is the maximal unramified abelian extension
of K (in some fixed algebraic closure).

From class field theory, taking the trivial modulus, we see in particular that this is a finite extension,
which is already not obvious.
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12.2. Simple pole of (i at s = 1. In this subsection we digress to show that (x(s) can be meromor-
phically continued to have a simple pole at s = 1. We use the following fact without proof:

12.2.1. Proposition. Let aj,as,--- € C be a sequence of complex numbers, p a nonzero real, and o € [0,1),
such that ZZ=1 ar = pt+O(t%), then Y a,n™° has a meromorphic continuation to Re(s) > o with a simple
pole at s = 1 with residue p. ]

So to show analytic continuation of (x(s), it suffices to show that #(a : N(a) < t) = pt + O(t?) for
o € [0,1). The strategy is to first count the principal ideals, then count the ideals by partitioning into ideal
classes: note that if we fix ideal class representatives a € Zx. Then

{integral ideals b € [a~'] : N(b) < ¢} =N {nonzero principal integral (a) C a: N(a) < tN(a)}
= {nonzero integral o € a: N(a) < tN(a)}/Ok.
by multiplying by a.

Recall that for a number field K, Kg := K ®g R = []

K* — Ky by embedding diagonally, and a map

Log : Ky — R ™
sending (z,) — log||zy|[,, where |||, is the usual norm in R and the square of the absolute value in C. By
Dirichlet’s unit theorem, O = pux x U, where Log maps Oj; into a full lattice Ax in RSlJrTz, with kernel
HEK-

Define v : Kz — Ky, by xN(z)~Y/" where n = r1 +2r2. Then Log(v(Ky )) = Ry "2, Let us fix a fun-
damental domain F for the lattice Ax (whose covolume is Ry, the regulator), and let S := v~ (Log™*(F)).
Then S is a set of coset representatives for Ky /U. Let S<;, = {z € S : N(z) < t} € Kg = R". It then
suffices to estimate #(S<; N Ok): the method only uses the fact that Ok is a lattice, so the same method
will work for counting #(S<; N a).

Since t1/"S<; = S<; (where we work in R"), what we want is:

12.2.2. Proposition. Let A be a lattice in V' = R™, let S be a “nice” (Lebesque) measurable set, then
#(ESNA) = Lt + O(t ).

v\ooKv = R"™ x C"™. We have an injection

This would imply that #(S<; N Ok) = pt + O(t*~ =), which is the bound we want. We now need to say
what it means to be “nice”.

12.2.3. Definition. Let X,Y be metric spaces. A map f : X — Y is Lipschitz continuous if there exists
¢ > 0, such that d(f(u), f(v)) < cd(u,v) for all u,v € X.

This is a stronger condition than uniform continuity.

12.2.4. Definition. A set B in a metric space X is d-Lipschitz parametrizable if it is the union of finitely

many images for Lipschitz-continuous functions f : [0,1]¢ — X.

12.2.5. Lemma. Let S C R"™ be measurable with boundary (n — 1)-Lipschitz parametrizable. Then #(tS N

Z") = p(S)t" + Ot 1). O
So what we need to show is that dS<; is (n — 1)-Lipschitz parametrizable. The kernel of Log is (£1)" x

U(1)™. We thus have a continuous isomorphism of locally compact groups

K — R x {£1}7 x [0,27)"
mapping (T1,...,Tpy, 21, .., 2r,) — (Logz) X (sgnay,...,sgnw,, ) X (argzy,...,arg zp, ).
Analyzing S<1, it has 2™ connected components, each parametrized by n parameters:
e 71+ 79 — 1 parameters in [0, 1) encoding a point in F' as an R-linear combination of Log applied to
a basis of U,

e 75 parameters in [0, 1) encoding an element of U(1);

e one parameter in (0, 1] encoding the n-th root of the norm.
This gives a continuously differentiable bijection from [0,1)"~1 x (0, 1] to a connected component of S<1. So
its boundary is clearly (n — 1)-Lipschitz parametrizable, proving the theorem.

12.2.6. Remark. If we keep track of the coefficient of the linear term, we actually get the analytic class
number formula.
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12.3. Group cohomology.

12.3.1. Definition. Let G be any group, a left G-module is an abelian group A with a compatible G-action:
gla 4+ b) = ga + gb. Equivalently, A is a left Z[G]-module. A morphism of G-modules is a morphism of
Z|G]-modules. The category of G-modules is denoted Mod. Since it is just the category of modules over a
ring Z[G], it is an abelian category.

12.3.2. Remark. When G is a topological group, we need to require the G-action to be continuous.

12.3.3. Example. Examples of G-modules:

e If A is any abelian group, A can be made into a trivial G-module, i.e. G acts trivially.

e For L/K Galois extension, the abelian groups L, L™, O, OF are all Gal(L/K )-modules.

e For A, B € Modg, the abelian group Homay, (A, B) has a natural G-module structure: (g¢)(a) =
99(9~"a).

12.3.4. Definition. For A € Modg, the subgroup A% = {a € A : ga = a for all g € G} is the subgroup of
G-invariants.

12.3.5. Example. Homg (A, B) = Homay, (A4, B). In particular, Homg(Z, A) = AC.

Any morphism of G-modules A — B restricts to a morphism A® — B®. We thus have a functor
e¢ : Modg — Modg (in fact the subcategory of trivial G-modules, which is just Ab), which is left exact
because it is Homg(Z, e). (Recall that this is exact iff Z is a projective Z[G]-module, which is not true when
G is nontrivial.)

The category Modg is in fact a Grothendieck category (in particular, has enough injectives). So we
can define H"(G, A) to be the n-th right derived functors of the left exact #“ : Modg — Ab. In particular
HY(G, A) = AC.

Now, we give another definition of group cohomology using cochains.

12.3.6. Definition. Let A be a left G-module, n > 0. The group C™(G, A) of n-cochains is the abelian
group of maps of sets f : G" — A, under pointwise addition. The n-th coboundary map is a homomorphism
d": C"(G, A) — C"t1(G, A) given by

d"f(90,---19n) == 90 (91,2 9n) + (=1 F (o gim2, 6im19is Givrs---) + (1) F(go, -, gn1)-
=1

Define the n-cocycles and n-coboundaries Z"(G, A) = kerd" and B"(G, A) = imd"~!. Since d"*1d" = 0,
B"(G,A) C Z™"(G, A). In other words, we get a cochain complex

0— C°G,A) = CYG,A) = C*G,A) — ...,
and the n-th cohomology group of G with coefficients in A is

H™(G, A) = %”2.

12.3.7. Example. Low-degree cohomologies:

C°(G, A) = 4

d®: C%G,A) - CHG, A) sends a + (g +— ga — a);

H°(G, A) = kerd® = A%;

BY(G, A) is the group of principal crossed homomorphisms;

d': CY(G,A) = C*(G, A) sends f — ((9,h) = gf(h) — f(gh) + f(9))-

ZYG,A) = kerd! consists of f : G — A such that f(gh) = f(g) + gf(h). This is the group of
crossed homomorphisms.

HY(G,A) = Z1(G, A)/B(G, A) are the crossed homomorphisms modulo the principal ones.

o If A= A%, then H'(G, A) = Homg,p(G, A) = Homap, (G2, A).

We give a useful interpretation of H%(G, A).
12.3.8. Definition. Let A € Modg, a group extension E of G by A is a short exact sequence of groups:
0>A—-F—G—0,
1

such that for any set-theoretic subsection s : G — E, we have s(g)as(g)~' = ga.
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In other words, A has a G-action because it is a G-module, and G = E//A also acts on A by conjugation,
and we require these two actions to be the same.
Two extensions F, E’ are isomorphic if there is an isomorphism 6 : E — E’ such that

0 A E € 0
b
0 A E G 0

commutes.

12.3.9. Proposition. H%(G, A) is canonically the abelian group of isomorphism classes of extensions of G
by A, which sends f: G* — A to Ef = A x G (as a set) with the group law

(a’g) : (bv h‘) = (a+gb+f(gvh)vgh)‘
By definition, the image of 0 € H*(G, A) is A x G.

12.3.10. Lemma. Given a map of G-modules o : A — B, there is an induced map of cochain complexes
C*(G,A) — C*(G, B) (which in turn induces maps o™ : H"(G, A) - H"(G, B)).

PRrOOF. It suffices to show that " : C"(G, A) — C™(G, B) commutes with d". For f € C"(G, A),

M=

" f(gos .. gn) = algof (g1, 9n) + > (D) F(-.. gi-1Gir---) + f(gos- -1 Gn-1))

1

= goaf(go,---»9n) + ) _(=1)"af(....gi-19i,-- ) + af (g0, -, gn-1)

IV

Il
=

7

= dnanf(g()a v 7gn)

That a map of cochain complexes induces a map of cohomologies is clear. O
12.3.11. Lemma. If0 - A % B By ¢ = 0 is a eact sequence of G-modules, then 0 — C*(G,A) —
C'(G,B) — CYG,C) — 0 is exact for all i > 0, hence an ezact sequence 0 — C*(G,A) — C*(G,B) —
C*(G,C)—0. O

12.3.12. Theorem. Every short exact sequence 0 - A — B — C — 0 induces a long ezact sequence
0— H°(G,A) - H*(G,B) - H°(G,C)
— H'(G,A) - H'(G,B) - H'(G,C)
— H*(G,A) — ...
and this is functorial.

PrROOF. Apply the snake lemma to

coker dﬁ_l — coker d%‘l — coker d’CL_1 — 0

o e s

0 —— ker dzﬂ —— ker d%“ —— ker dg“

where the resulting connecting homomorphism § : H*(G,C) — Ht!(G, A) is explicitly given by sending [f]
to [a=1 o db(f)], where we lift f along 3 to f € H'(G, B). O

12.3.13. Definition (cohomological §-functors). Let € be abelian, ¥’ additive. A (covariant) cohomological
d-functor € — ¢ is:

e a system of additive functors T : € — ¢’ (i > 0), and
e connecting morphisms § : T*(A”) — T*t1(A’), for every i > 0 and each short exact 0 — A" — A —
A" - 0in €,

satisfying:
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e Given a map of short exact sequences

0 Al A A" 0
I
0 B’ B B" 0,

the diagram
Ti(A//) J Ti+1<A/)
Ti(B") s Ti+1(B/)
commutes;
e Given an exact sequence 0 — A" — A — A” — 0, the sequence
0= TO(A) = TO(A) = TO(A") S TH(A)) > ...
is a chain complex.
When %” is abelian as well, the d-functor is called exact if the above chain complex is exact.

In this context, H'(G, e) is the unique universal exact cohomological J-functor extending e©.
We will give yet another equivalent definition of group cohomology.

12.3.14. Definition. The standard resolution of Z by G-modules is

o Z[GMY s ziem) 2 s 706) Y 7 s o,

where Z[G™] is the free Z-algebra generated by the direct product G", with left diagonal action g-(g1,...,9n) =
(ggla e aggn), and

n

dn (9o, - -, 9n) = Z(—l)i(go, 3 im15Git 15 -5 Gn)-
i=0

Note that dy : Z[G] — Z is the augmentation map > ngyg — Y ng € Z.

12.3.15. Lemma. The standard resolution is exact, so that it is a free resolution of Z as a (trivial) Z|G|-
module.

12.3.16. Definition (Ext groups). Let A, B be R-modules. Take P, — B to be a projective resolution of
B. Applying the contravariant left exact functor Hompg(e, A) to P, — 0 and deleting the Hom(B, A)-term,
we get a cochain complex

0— HOHI(P(),A) — HOHI(Pl,A) — .,
then Ext's (B, A) is defined as its n-th cohomology.

12.3.17. Lemma. The groups Ext(B, A) do not depend on the projective resolution.

Applying this for B = Z, R = Z|G], we can use the standard resolution to compute Ext%[G](Z,A), as
the n-th cohomology of

0 — Homgg)(Z[G], A) 25 Homyg)(Z[G?), A) 25

12.3.18. Proposition. We have isomorphisms of abelian groups (n >0):
®" : Homyq (Z[G"T1], A) — C™(G, A)

by
¢ = [(gla s 7gn) — (b(laglaglg% - 9192 gn)}

Furthermore, this commutes with the coboundary maps, so that it defines a chain isomorphism.
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Proor. ®" is clearly a homomorphism.
Injectivity: let ¢ € ker ®™. For any g, ..., g, € G, define h; = gi__llgi. Then
(g0, -5 9n) = gop(1, h1, hiha, ... hiha -+ hy) =0,
so ¢ = 0.
Surjectivity: for f € C"(G, A), define ¢ € Homg ) (Z[G™ 1], A) by
(90s--+19n) = 90f(90 "1, Gn19n)-
This gets sent to f by ®".
Finally, we show that ®" commutes with coboundary maps, i.e. ®"1d* 41 = d"®". We compute:
‘I’n+1( Z+1(¢>>(91a e Gng1) = d2+1(¢>(1791>---,91 o Gnt1)
= ¢(dn+1(1, 91, -+, 91" gnt1))

n

= G(g1, - g1 gni1) = Y (—D'P( 01 Gin1, 91 i)

i=1

+ (—1)n+1¢(1vgl7 <o g1 g’fl)

= 1®"($)(92, -1 gnt1) — Y (1)@ (D) (-, 9i-1,9ii41,---)

i=1

+ (_1)n+1©n(¢)(g1’ cee )gn)
=d"®"(¢)(g1,- -, gn+1),
as desired. U

12.3.19. Corollary. H"(G, A) = Exty(Z, A).

We remark that Ext™ are also the right derived functors of Homgg)(Z, ) = ¢“  and right derived
functors of any left-exact functor F' is the unique universal exact cohomological d-functor extending F'. This
shows the equivalence of the four definitions of group cohomology we gave:

via injective resolutions, i.e. as right derived functors of ¢;

as the unique universal exact cohomological §-functor extending ¢
via cochains;

via the standard resolution.

12.3.20. Corollary. H"(G,A® B) = H"(G,A) ® H"(G, B).
Proor. This is because in general,
Exty(@D Mo, N) = [[ Extiz(Ma,N) and  Exti(M, ][ Na) = @D Extiz(M, N,)
for any R-modules M and N. O
12.3.21. Definition. Let H < G be a subgroup, A and H-module. The induced G-module
Indf;(A) := Z[G] @zm) A,

and the coinduced G-module
CoInd$j(A) := Homgp)(Z[G], A).

12.3.22. Theorem. If H has finite index in G, then Ind$(A) = Colnd{ (A).
When H = {1} we just write Ind® and CoInd®.

12.3.23. Lemma. Group cohomology of coinduced modules from the trivial group:

A, ifn=0;

0, otherwise.

H™(G, CoInd“(A)) = {
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PrROOF. For n > 1 we have isomorphisms of abelian groups

Homgy ¢ (Z]G"], CoInd“(A)) — Homg(Z[G"], A),

given by
¢ [z 6(2)(1)]
[z = [y = 6(y2)]] = ¢.
so H"(G, CoInd®(A4)) = H™({1}, A) for n > 0. Just use the stupid resolution 0 — Z — Z — 0. O

12.4. Group homology. A minor point concerning tensor products over noncommutative rings: for
M ®p N, it only makes sense when M is a right R-module and N is a left R-module, and the resulting
M ®p N is a priori only an abelian group. So, in the definition of Indg(A), we really think of Z[G] as
a right Z[H]-module, and then “manually” define the extra structure of Ind%(A) as a Z[G]-module, by
g(a ® a) = (go) ® a. Similarly, the Z[G]-module structure on Colnd$ (A) is given by (g¢)(a) = ¢(ag).

12.4.1. Lemma. When G is finite, there is a canonical isomorphism Colnd®(A) = Ind%(A) given by
oY g ' ®d(g)
geG
(g7'—a)—g®a.
where (971 — ) maps g’ to 0 for g # g~ 1.
12.4.2. Definition (group homology). The n-th group homology with coefficients in A is
Hn(G7 A) = TorrzL[G] (Zv A) = Ln(Z ®Z[G] .)(A) = Ln(. ®Z[G] A)(Z)

In practice, we use the last expression, with the standard resolution of Z by right Z[G]-modules (the same
as the standard resolution by left Z[G]-modules, except G acts diagonally on the right). This is the (unique)
universal exact homological ¢-functor extending e ®zq) A.

12.4.3. Lemma. H,(G,A® B) = H,(G,A) ® H,(G, B).

PRrROOF. This is just because Tor commutes with arbitrary direct sums and filtered colimits in each
variable. 0

12.4.4. Definition (coinvariants). Let A be a left G-module. The G-coinvariants Ag of A is the G-module
A/l A, where I is the augmentation ideal

Ig =ker(e: Z[G] = Z)=Z[lg—1:g € G].
In other words, Ag is the largest quotient of A which is a trivial G-module. Observe that naturally Z®z g A =
Ag, so that Ho(G, A) = Ag (just like HO(G, A) = A%).
Similar to group cohomology, we have:
12.4.5. Lemma. Group homology of induced modules from the trivial group:
A, ifn=0;
0, otherwise.

H,(G,Ind%(4)) = {

12.5. Tate cohomology.

12.5.1. Lemma. Let G be finite, and let Ng = decg be the norm element. Let Ng : A — A be the
multiplication-by-N¢g map. Then IgA C ker Ng and im Ng € A®. Consequently, we get an induced map
NG : AG — AC. (Il
12.5.2. Definition (Tate (co)homology). Define H™(G,A) = H™(G,A) for n > 0, and H°(G,A) =
coker Ng. Define H,(G,A) = H,(G,A) for n > 0, and Hy(G,A) = ker Ng. Define H (G, A) =
H, (G, A) and H_,(G,A) = H" (G, A) for n > 0.

Then, it is easy to check that a morphism of G-modules induces natural morphisms of Tate (co)homology
groups in all degrees. The key theorem is the following:
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12.5.3. Theorem. Let 0 - A — B — C — 0 be a short exact sequence of G-modules. Then we get a long
exact sequence of abelian groups

.. — H\(G,A) - H,(G,B) - H\(G,C)
— Ho(G,A) = Hy(G, B) — Hy(G,C)
— H°(G,A) - H°(G,B) — HO(G 0)
— HY(G,A) - HY(G,B) —» HY(G,C) —

Furthermore, this is functorial.

PROOF. Apply the snake lemma to the commutative diagram

Hy(G,0) Ac Bg Ca 0
e s n
0 A€ B¢ c¢ HY(G, A).

Furthermore, by diagram chasing, the image of Hy(G,C) lies in Hy(G, A), and C¢ — H'(G, A) factors
through H°(G, A). Finally, it is not hard to verify exactness at these two terms, and to check that a
commutative diagram of short exact sequences induces a commutative diagram of long exact sequences. [

12.5.4. Lemma. H"(G, A& B) = H"(G, A) ® H"(G,B), and H,(G,A® B) = H,(G,A) & H, (G, B).

12.5.5. Theorem. Let G be finite, and B = Ind(A4) = CoInd®(A). Then the Tate (co)homology groups
of G with coefficients in B all vanish.

PROOF. It suffices to show that for B = Z[G] ®z A, ker(Ng : B — B) = IgB and im(Ng) = BC¢.
Since G acts on B only on its Z[G]-component, it suffices to show this for Z[G], in which case it is easily
verified. O

12.5.6. Corollary. Let A be a free Z[G]-module, then it has trivial Tate (co)homology.

PROOF. Let B be the free Z-module generated by a Z[G]-basis of A. Then A = Ind®(B). O

Finally, we specialize to the case where G = (g) is a finite cyclic group. Then, instead of using the
standard resolution, we can use instead

(+) - 2[6) 2% zi6) £ z26) B9 716) £ Z[6) S Z — 0.

Since G is abelian, we may view Homgg)(Z[G], A) as a Z[G]-module by (g¢)(h) := ¢(gh), and Z[G] @z A
as a Z[G]-module by g(h®a) := (gh) ® a = h® (ga). Of course, both of these are canonically isomorphic to
A as G-modules.

12.5.7. Theorem. Let G = (g) be a finite cyclic group, then the even-indexed Tate cohomologies (i.e.
odd-indezed Tate homologies) of any G-module A are all equal to H°(G, A), and the odd-indexed Tate coho-
mologies (i.e. even-indexed Tate homologies) are all equal to Hy(G, A).

PrOOF. Apply the tensor and hom functors on (x). (]

12.6. Herbrand quotient.

12.6.1. Definition. Let G be a finite cyclic group, A a G-module. Let h°(A) = h°(G, A) = #H’O(G, A),
and ho(A) = ho(G, A) = #Hy(G, A). When both of these are finite, the Herbrand quotient is defined as

h(A) = h%(A)/ho(A) € Q.
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12.6.2. Proposition. Let G be a finite cyclic group, 0 - A — B — C — 0 be a short exact sequence of
G-modules. Then there is an exact hexagon

HO(A) —2 A(B)
P 2,
Hy(C) HO(O)

Hy(B) «— Ho(A)
where the map 6° is given by H°(C) = H~2(C) = H,(C) — Ho(A). O
12.6.3. Corollary. In 0 — A — B — C — 0, if two of h(A),h(B), h(C) are defined then so is the third,
and h(B) = h(A)h(C).
PROOF. We have h°(A) = #ﬁO(A) = # ker a’#im a® = # ker a’# ker 3°. Similarly, we obtain
RO(A)h2(C)ho(B) = # ker a®# ker B°# ker 6 # ker ao# ker Bo# ker 6o = ho(A)ho(C)R°(B),
as desired. 0

12.6.4. Corollary. If A is either (a) induced or coinduced, or (b) finite, then h(A) = 1.

PROOF. If A is induced or coinduced, then both h%(A) and ho(A) are 1.
If A is finite: consider the exact sequence 0 — A — A TN A Ag — 0, which implies

#HAC = Hker(g—1) = #coker(g — 1) = #Ag,
s0 ho(A) = # ker(Ng) = # coker(Ng) = h°(A). O

12.6.5. Corollary. Let A be a finitely generated abelian group, then h(A) = h(A/Aiors). Moreover, if A is
a trivial G-module, then h(A) = #(G)™4. O

12.6.6. Lemma. Let a: A — B have finite kernel and cokernel. Then h(A) = h(B).

PrOOF. Use the exact sequences 0 — kera« -+ A — ima — 0 and 0 — ima — B — cokera — 0 (]

12.6.7. Corollary. Let A C B be a submodule with finite index, then h(A) = h(B).

12.7. Herbrand unit theorem. We now apply all this to the class field theory setting. Let L/K be a
finite Galois extension of local or global fields. Then the abelian groups L, L™, Or, Of, Zr,, Py, (principal)
are all (nontrivial) G-modules, where G = Gal(L/K).

In the case G = (o) is cyclic, we can compute the Herbrand quotient for all of the above (recall, again,
that Ho(A) = ker Ng = ker(Ng)/im(o — 1) and H°(A) = coker Ng = ker(o — 1)/im(Ng)). Also, in the
case for L™, Of, T, Py, the norm map corresponds to the element norm and the ideal norm; in the case L
and Oy, the norm map corresponds to the trace.

12.7.1. Lemma (linear independence of automorphisms). Let L/K be finite Galois, then the set Auty (L)
is linearly independent in the L-vector space f: L — L.

PROOF. Suppose otherwise, then suppose n is smallest such that there exists distinct fi,...,f, €
Autg (L) and aq,...,a, € L* with > a;f; = 0. Since f1 # fa, there exists zy € L such that f1(zg) # fa(zo)-
Then Y a;fi(xox) = > a;fi(xo)fi(x) = 0 for all z € L. Canceling out the two equations gives us a linear
dependence among n — 1 automorphisms, a contradiction. O

12.7.2. Lemma. Let L/K finite Galois, G = Gal(L/K). Then:
(i) H°(G,L) = H'(G,L) = 0;
(ii) H(G,L*) = K*/N(L*), and H' (G, L*) is trivial.
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PROOF. For (i): first, since ker(c —1 : L — L) = L¢ = K, and im(Ng) = im(Try ) x) = K (L/K
Galois hence separable hence trace form nondegerate), we have H°(G, L) = 0. To find H'(G, L), we use its
description as the crossed homomorphisms f : G — L modulo the principal ones. Let f : G — L be any
crossed homomorphism, then let 8 = Y . f(7)7(a) € L, where o € L is a fixed element with trace 1.
Then for any o € G,

o(B) =Y o(f(M)al(r(a) =Y (flor) = f())(o7(a)) = B — f(0),
TEG TEG

so f(o) = B8 —0o(B), so f is in fact principal.

For (ii), (L*)¢ = K*, and im(Ng) = N(L*). To find H'(G,L*), let f : G — L* be any crossed
homomorphism. Let 8 = > . f(7)7(a) where a is chosen so that 3 € L* (by linear independence of
automorphisms). Then

7(8) =Y o(f(M)a(r(a)) = Y flo)f(o) " (o7(a)) = f(o) "5,

TeG TeG
so f(o) = B/7(B) is principal. O
Let L/K be a Galois extension of global fields. Then Gal(L/K) acts on the set of places My, via
llall,., = lloall,,- Also, for a fixed place v of K, it permutes the places w | v.

12.7.3. Definition. The decomposition group D,, of a place w € My, is the stabilizer
D, :={0 € Gal(L/K) : o(w) = w}.
We know Gal(L/K) acts transitively on {w | v}, so the D,,’s are conjugate.

12.7.4. Remark. For archimedean places for number fields, w | v, D,, is trivial unless w is complex and v
is real, in which case #D,, = 2. Also, in the archimedean case, we define I, = D,,. So f,, = 1 always, and
ew = 2 iff w is a complex place that extends a real place.

With these definitions, [L : K| = e, f,g, for all places v € M.

12.7.5. Definition. Let L/K be an extension of number field. Let ey = Hv’(oo ey, and e, = Hv‘mev,
e(L/K) = epeo-

12.7.6. Theorem (Herbrand unit theorem). Let L/K be a Galois extension of number fields, and let
Wi, ..., Wrts be the archimedean places of L. Then there exist €1, ...,e,15 € OF, such that:

o 0(g;) =¢j <= o(w;) = wj, foro € G;

® c1,...,&m45 generate a finite index subgroup of OF ;

® c16y...6r45 = 1, and all other multiplicative relations are multiples of this.

PROOF. Pick v1,...,v,45 € Of (ie. 1 at all finite places) such that |vil,, <1 wheni jand |v;,, >1
(which is then automatic). These can be picked as follows (say i = 1): we use the adelic Minkowski theorem.
Choose the idele d as follows: |dy|,, = 1 for nonarchimedean w, |dy,|,, = 4 for i # 1 (M a large number
chosen afterwards), and |dy, |, large enough such that |d| = ¢ (the bound in adelic Minkowski), so that
L(d) contains a nonzero point x € L. In fact, by construction, z € Or, and N(z) =[], |2|w, = ¢. To modify
x so that it lies in O, choose a generator + for all (finitely many) principal ideals of norm at most ¢. Then

dividing by the previously fixed generator of (x) gives a number in O . To control its absolute value under
w; (i # 1), let
M = max —,
il [yl
so that |x/v|; < 1 for i # 1. This concludes the process of choosing v, = x/7.
Let oy = HaeDwi o(vi) € OF. Then it is easy to compute |y, > 1 and ‘O‘i|wj < 1 for j # i, and
furthermore the stabilizer of «; in G is D,,,.
Now, the Galois group partitions w; into m orbits, where m is the number of archimedean places of K.
Reindex w; and a; such that wn, ..., wy, lie in distinct orbits. Fori=1,...,r+s, let r(4) = min{j : o(w;) =

wj for some o}, and call the corresponding o; (which is unique up to Dy, ).
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Now, let 8; = oi(a,(;)), which does not depend on the choice of o; since a.(;y is fixed by Dy, - Then
it is not hard to verify that §; satisfy the first bullet point. Furthermore,

1Bilw, = loi(er®)l,,, =l 5, ) »

SO wi'aflwr(i) > 1 and for all other places of L, |3;| < 1. Furthermore, it is clear that ai_lwr(i) are simply
a permutation of w;: if Ui_llwr(il) = ai_zlwr(iz), then r(i1) = r(iz) and Uilai_zl € Du,,)» 80 Biy = Biy,
which implies w;, = w;,, so i1 = ip. Thus, to show that j3;’s generate a finite index subgroup of Of,
we observe that in fact any r + s units satisfying the condition ; has this property (essentially because a
(r4+s—1) x (r+s— 1) matrix with positive row sums, where only diagonal elements are positive and the
rest are negative, is necessarily invertible).

Finally, because ;’s must have one relation, suppose [[, 3;"* is one with coprime exponents. By a rank
argument, these cannot have other relations. Then, we claim that taking ¢; = ;" finishes the problem.
Indeed, (iii) and (ii) are easy to verify. To show (i), we need n; = n; whenever w; and w; are in the same
G-orbit. But this is true, since applying o € G should not give any additional relations between ;. O

12.8. The ambiguous class number formula.
12.8.1. Lemma (Noether). For L/K finite cyclic with G = Gal(L/K), Ho(G,L) = Ho(G,L*) = 0.

PROOF. Let o be a generator of G. By normal basis theorem (theorem 1.7.6), there exists 8 € L™ such
that {0’} is a basis of L/ K. Under this basis, o acts by translating the coordinates. So for o € ker(Ng) C L,

a =Y, a;i(c'B), let us define v = >, v;(c'8) where v; = — > j=1 ;. Since 37, a; = 0, we have a = 0y — 7,

i.e. o € im(c — 1). This shows Ho(G, L) = 0. A similar proof works for Hy(G, L*). O

12.8.2. Remark. This also follows from the vanishing of H*(G, L) and H*(G, L*) in general, and that for
G cyclic, H' = H,.

12.8.3. Corollary (Hilbert 90, original form). Let L/K be a finite cyclic extension, with Gal(L/K) generated
by o. Then for o € L*, N(a) =1 iff a = B/o(B) for some g € L*.

12.8.4. Theorem. Let L/K finite cyclic, then

L/K)

noy) = LK)

1) [L: K]

PROOF. Let €1,...,&.45 be as in the Herbrand unit theorem, and let A be the finite-index subgroup of

Of they generate. Then A is also a G-module. For an embedding ¢ : K < C, let Ey4 be the free Z-module
with basis ¢ : L < C extending ¢. Then Ey are also G-modules; in fact, G acts on {¢ | ¢} freely and
transitively, so By = Z[G] = IndG(Z). Let vy be the place of K corresponding to ¢. Let A, be the free
G-module with basis w (places above v). Consider the G-module morphism 7 : Ey — A,, sending ¢ — w,,.
We have an exact sequence
O—>ker7r—>E¢l>Av—>0,
where ker 7 = (6™ — 1) Ey, where o is a generator for G and m = #{w | v}. If ¢ is unramified, then ker 7 = 0
and h(A4,) = h(Ey) = 1. If G is ramified, then a more careful analysis gives h(ker ¢) = 1/2, so h(4,) = 2.
In any case, h(A,) = e,.
Now, consider the exact sequence of G-modules

0—>Z—>@AU$A—>O,
v|oo
where ¢ sends w; — ¢;. We are done because h(Z) = #G = [L : K]. O
12.8.5. Lemma. Let L/K be a cyclic extension of global fields. Then ho(Zr) = 1 and h(Zy) = h°(Z1) =
eo(L/K)[Zk : N(Zp)).

PROOF. Suppose I € ker Ng, i.e. I € I, satisfies N(I) = Ok. By using the explicit description
N(q) = p’s, we can conclude that for each p in K, >_qlp va() = 0. Since G = Gal(L/K) is cyclic, we can
order {q | p} = {q1,...,q,} such that oq; = q;41 where o is a fixed generator of G (of course, oq, = q1).
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Let n; = vg,(I) and m; = — Z;Zl nj, and let Jy = 37 qi"". Then o(Jy)/Jp =[], q¥«(). The conclusion is
that I = o(J)/J, i.e. I € im(o — 1). This shows ho(Ir) = 1.

Now, we compute h°(Zy,). Suppose I € ker(oc — 1) = Z¢, then this is equivalent to vq(I) being constant
for q over a fixed p. Then I is a product of ideals of form (pOr)/¢. So [Z¢¥ : Tx] = eo(L/K), so
hO(IL) = [Ig . N(IL)] = [Ig :IK][IK . N(IL)] = eo(L/K)[IK : N(IL)] O

12.8.6. Theorem (ambiguous class number formula). Let L/K be a finite cyclic extension of number fields.

Then
e(L/K)+# Clg

o«
#ClL n(L/K)[L: K]’
where n(L/K) =[O : N(L*)NOk] € Z>;.

ProOF. Consider the long exact sequence in cohomology

0—PY - 1I¢ - QY - HY(PL) — 0,

since H'(Z1) = Ho(Z1) = 0. Therefore, # C1¢ = ho(Py) - [ZE : PE).

Consider the inclusions Pg C 73](3 C Py, so

G . G [Ig : PK] _ [Ig ZIK][IK : 'PK} o €0(L/K)# CIK
L Pkl [PL : Px] [P : Pk]
Now, consider another long exact sequence in cohomology
0— (05)Y = (L") = P, — HY(OF) — HY(L*) — H'(PY) — H*(Of) — H*(L*),

which can be simplified into

0= 0F = KX =P 5 Hy(OF) = 0 — Ho(PL) — H(OF) L K/ N(ILX).
Since K* /Oy = Pk, we get

WONL: K

[Pg . 'PK} == ho(@f) = —((2 L(l)}[/K) ]
The last three terms of the above long exact sequence also gives

M =#im f = [0 : N(L*)NOZ].

hO(PL) K K
Therefore,

#CIG _ ho(PL)e(L/K)# CIK _ 6<L/K># ClK
(OO K] n(L/K)L: K]’

as desired. (I

Some remarks on the ambiguous class number formula. First, if L/K is quadratic, then G = {1,0} has
order 2. In this case, for any I € Zp,, N(I) =1 -0l, so passing to Cl, gives [1] = [I][oI]. This means that
[I] is a 2-torsion element in Cly, iff [I] is G-invariant. In particular, when L/K is an imaginary quadratic
extension with discriminant D, e (L/K) = [L : K] = 2 and n(L/K) = 2, so the ambiguous class number
formula gives # Cl.[2] = %7 i.e. its Z/2Z-rank is #{p | D} — 1. This has applications in factoring
integers.

12.9. First main inequality of CFT.

[

12.9.1. Lemma. Let f : A — C be a map of abelian groups, such that ker f C B C A, then A/B =
f(A)/f(B).
Proor. Use snake lemma. ]

And now the payoff:

12.9.2. Theorem (first main inequality). Let L/K be a totally unramified cyclic extension of number fields
(i.e. e(L/K)=1). Then

Ik : T k) > [L: K],
where Ty, ) = Px N (Zr) is the norm group (Takagi group) for the trivial modulus.
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PROOF. Let us rewrite
[IK . PK]
[PrN(Zy) : Pk]
# Clg
[N(IL) . N(IL) N PK]
# Clk
[Zr : N=1(Pk)]
# Clg
[Zo/Pr : N1 (Pk)/PL]
# Clk
[CIL . CIL[NG]]
_ #Clg
- #Na(Cly)
Now, h%(Cl) = [CI§ : Ng(ClL)], so by the ambiguous class number formula:
#Clx hO(Cl)  hO(Cly)n(L/K)(L : K]
# CI B e(L: K)
as desired. ([

[IK . PKN(IL)] =

[Tx : Tr K] = =K' (Cly)n(L/K)[L: K] > [L : K],

12.9.3. Corollary (norm index equality, etc.). Let L/K be a totally unramified cyclic extension of number
fields, then:

Ik : To/k| = [L: K];

#C1f = #Clg /[L: KJ;

the Tate cohomologies of Cly, all vanish;

o cvery unit in O is the norm of an element in L.

PRrROOF. Equality follows from theorems 11.9.7, 12.9.2. In fact, because equality holds, the proof of the
first main inequality tells us more things: H°(Cly) = 0 and O} C N(L*) (every unit is a norm). The
ambiguous class number formula then says # C1¥ = # Clg /[L : K]. In addition, h(Cly) = 1 since Cly, is
finite, and since we know h°(Cly) = 1, ho(Cly) = 1 as well. O

In the homework, it will be shown that this implies ker ¢r, ) = T/, and a similar equality holds in the
ramified case where there is a nontrivial modulus. This then immediately implies that Z /T, x = Gal(L/K)
is an isomorphism, i.e. Artin reciprocity.

12.10. Local CFT. In this subsection we will focus on local class field theory. Since what we’ve shown
points to the importance of the images of norm maps, and norms can be computed locally, it makes sense
for us to start locally.

Let K be a local field, with a fixed separable closure K*°P, and let

K* = U L

LCK®°P:L/K finite abelian
Kunr — U L
LCK®°P:L/K finite unramified

be the maximal abelian and unramified extensions of K (inside K*P), so K C K" C K ab C [sep  The
middle inclusion is true because any finite unramified extension of K is cyclic. Infinite Galois theory tells us
that there is a one-to-one correspondence

{extensions L/K in K*} +— {closed subgroups of Gal(K*"/K)}

{Galois extensions} +— {closed normal subgroups}
{finite extensions} «— {open subgroups}.

The archimedean case is not very interesting, so let us assume K is nonarchimedean. Then the discrete
valuation ring Ok is a DVR, with prime p, and let IF, be the residue field.
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Let L/ K be unramified, then the Galois group Gal(L/K) is generated by the Frobenius element Froby, /.
The Artin map ¢y, : Zx — Gal(L/K) sends p + Froby k. Since Ok is a PID, we can extend vy, x
multiplicatively to a map ¢, x : K* — Gal(L/K).

12.10.1. Theorem (local Artin reciprocity). Let K be a local field. There is a unique continuous homo-
morphism O : K* — Gal(K* /K), such that for any finite abelian L/K in K*, we have an induced map
0k : K* — Gal(K**/K) — Gal(L/K), which satisfies:
o If K is nonarchimedean and L is unramified, then 01,/ (7) = Froby, /i, where 7 is any uniformizer
of K;
o 01,k is surjective with kernel N i (L*), hence induces an isomorphism K* /Ny (L*) = Gal(L/K).

12.10.2. Remark. Mentally compare this to the more complicated global CFT: there is no modulus since
K® covers everything, and Z% /Ty, /i is replaced with K*/N(L*). The analogue in global CFT is by
considering the ideéle class group, which contains everything and hides the moduli.

12.10.3. Definition. A norm group of a local field K is any subgroup of K* of the form Ny x(L*), L
finite ab. extension.

12.10.4. Remark. The word “abelian” can be removed without changing anything. If L/K is any finite
extension, not even necessarily Galois, then the norm limitation theorem implies that N(L*) = N(M™>),
where M is the maximal abelian extension of K in L.

12.10.5. Corollary. The map L — N(L*) induces an inclusion-reversing bijection between finite abelian
extensions L/K and norm groups of K, satisfying:

o N((L1L2)*) = N(L{) " N(L3 )

e N((Li N Ly)*)=N(LY)N(L).

PrOOF. The inclusion-reversal follows from transitivity of norms. We use Artin reciprocity to prove the
two bullet points.

To show N(L7)NN(L3) € N((L1L2)*): because Gal(L1La/K) — Gal(Ly/K) x Gal(Ls/K) is injective,
we can conclude by Artin reciprocity. The other direction is clear.

To show the map L — N(L*) is a bijection: surjectivity follows by definition. Suppose L1, Lo give
rise to the same norm group, then L;Ls also gives rise to the same norm group. By Artin reciprocity,
Gal(L1Ly/K) = Gal(L1/K) = Gal(L2/K), so L1 = L. This shows injectivity.

Finally, to show the second bullet point, note that N(L;) N(LJ') is the smallest subgroup of K* con-
taining both norm groups, and L; N Ly is the largest extension of K contained in both L; and Ls. So
N((L1 N L2)*) = N(Ly)N(LJ) by the bijection described above. O

12.10.6. Corollary. Every norm group has finite index in K>, and every group that contains a norm group
18 a norm group.

PROOF. By Artin reciprocity, K*/N(L*) = Gal(L/K) is a finite group, so every norm group has finite
index.

Suppose N(L*) < H < K*. Consider F = LH/NI™) wwhere H/N(L*) is viewed as a subgroup of
K*/N(L*) = Gal(L/K). Then Artin reciprocity shows that N(F*) = H. O

12.10.7. Lemma. Let L/K be any extension of local fields. If N(L*) has finite index in K*, then it is
open.

PROOF. The archimedean case is not interesting, so WLOG K is nonarchimedean. Since OF is compact,
its image N(OF) must also be compact, hence closed (K* is Hausdorff). Because for o € L*,

a € Of <= a| =1+= |Np/k(a)| =1 <= Ny k(a) € OF,

we have N(Of) = N(L*) N O, so it is the kernel of the map O — K* — K*/N(L*). This shows
0% /N(O;) is finite, and thus N(Of) is closed and of finite index in Oj, hence open. But O} is open in
K>, so N(OF) is open in K*, so N(L*) is open as well, being the union of cosets of N(O}). O

The two other main statements of local CFT are the following:
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e Existence: for any open H C KX of finite index, there exists a unique L/K in K such that
H = N(L*). By virtue of Lemma 12.10.7, this means that for subgroups of K*, finite index open
<= is a norm group.

e Main Theorem: 0x induces a canonical homeomorphism of profinite groups

Ok : KX =5 Gal(K™/K).

PROOF OF THE MAIN THEOREM. By Artin reciprocity and the existence theorem,

b KX KX —
a [ 1 o~ 1 — 1 o~ X
Gal(K*"/K) = L&n Gal(L/K) = l&n = . m 7 = Kx,
L/K f. ab. H norm group H finite index open
as desired. O

When K is archimedean, K* is either trivial (K = C) or has order 2 (K = R). So we focus on the
nonarchimedean case. By picking a uniformizer 7, we get a non-canonical isomorphism K* = O x Z.

So K* = Ok x 7= Ok X Z where O is already profinite because it is compact, Hausdorff, and totally
disconnected. More canonically, we have the commutative diagram of split exact sequences

1 o} K> v v/ 1

- b

1 —— Gal(K**/K"r) —— Gal(K**/K) —— Gal(K"/K) —— 1

where ¢ becomes the inclusion ¢ : Z < Z under the identification Gal(K""*/K) = Gal(F,/F,) = Z, and
sends 1 to the element (Froby k)r, called the arithmetic Frobenius. (Aside: ¢(—1) is called the geometric
Frobenius.) Taking the profinite completion of the top row yields the bottom row. The arithmetic/geometric
Frobenius is a topological generator (generates a dense subgroup) of Gal(K"™/K).

Now consider Gal(K?P/K). Because the top sequence splits, the bottom does as well (also non-
canonically): Gal(K**/K) = O} x Z. The fixed field of O = Gal(K®*/K"nr) is K" and let K, be
the fixed field of Ok (7). Then K ab — prunrgr - The fact that K. is not canonical reflects the fact that one
cannot say the “maximal totally ramified extension”. But what we can say is that K is the compositum of
all finite, totally ramified L/K in K" such that m € N(L*).

12.10.8. Example. Let K = Q,, and pick m = p (of course, we could have picked any valuation-1 element).
Then the picture looks like this:

Qap
sz = Un QP(CP”) (@ ) = Ung(m’p):1 Qp(Cm)

p)p
XQ/Z
P

12.11. Global CFT via ideles. Let K be a global field. Recall the group of ideles

!
I = AY = Hv(fgj,o;).

Standard caveat is that in the first equality, the topology of I is finer than the one inherited as a subset of

Ak . We have a natural map

@ : ]IK —)IK
avs [[or@.
p
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This ignores the infinite places. There is a natural commutative diagram

1 K~ Ix Ck 1
ol b
1 Px Tk > CIK 1

where C is the idele class group.
12.11.1. Definition. Given finite separable L/K, define the norm map
NL/K Iy = Ik

mapping
(@w)w = pr [ [Nz, k., (aw) -

wlv v

This behaves well with the other norm maps:

LX—>]IL—>IL

lNL/K lNL/K J{N

KX —— gy —— Ik,

so this induces a map
CL E— CIL

NL/Kl J/NL/K

CK e CIK.

We wish to glue together the local Artin homomorphisms to get a global Artin homomorphism.

Define ¢, : Gal(L,/K,) — Gal(L/K) by restricting o + o|r. Then the image of ¢, is just D,,.
Because L/K is abelian, D,, only depends on v. Furthermore, v, 00 /k, : K* — Gal(L/K) does not
depend on w. This is easy to see in the unramified nonarchimedean case.

Define i, : KX < I sending a — (1,...,q,...,1) at the entry corresponding to v. The image intersects
the principal ideles trivially. In addition, ¢, commutes with the norm maps L,, — K, and I, — k.

Now, for a finite abelian extension L/K, define a map

OL/K g — Gal(L/K)

mapping
(a"u)v — H ¢w (eLw/KU (av)>

where we fix a place w | v for each v; this does not depend on which w we pick. This product is well-defined,
because for unramified (all but finitely many) v, ¢.,(0r,/k, (av)) = Frob¥(®) which is 1 for all but finitely
many a,.

It is clear that 67,/ is a group homomorphism. It is also continuous, because its kernel is the union of
open sets. In addition, if L; C Lo are two finite abelian extensions of K, then 0, /i is the same as 0,/
composed with Gal(Ls/K) — Gal(L1/K). So we get a unique induced continuous homomorphism

O : I — Gal(K**/K).
12.11.2. Definition. This is called the global Artin homomorphism.

12.11.3. Proposition. The global Artin homomorphism is the unique continuous homomorphism charac-
terized by the property that for any finite abelian L/K, and any place w of L extending v of K, the diagram

0L/ Ky

KX 2 Gal(Ly /Ky

b

e —2%, Gal(L/K)

commutes. O
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Now we are ready to state the main theorems of the idele-theoretic formulation of global CFT.

12.11.4. Theorem (global CFT, via ideles). The global Artin homomorphism Ok satisfies:

e (Artin reciprocity) ker O contains K>, and the induced map 0 : Cx — Gal(K**/K) satisfies
that for any L/K finite abelian, the induced 0, : Cx — Gal(L/K) is surjective, with kernel
Nz/x(CL).

o (Existence theorem) For any finite index open H < C, there exists a unique finite abelian L/K
in K such that Np/x(CL)=H.

e (Main theorem) 05 induces an isomorphism

Ok : Cx — Gal(K*/K).
e (Functoriality) For any finite separable L/ K, the diagram

C, —% Gal(L**/L)

J,NL/K lres

Cx —25 Gal(K*™/K)
commautes.
12.11.5. Remark. There is then an inclusion-reversing bijection

{finite index open subgroups H < Ck} «+— {finite abelian extensions L/K in K"}

H — (Kab)QK(H)
NL/K(CL) — L.

12.11.6. Remark. When K is a number field, 0k is surjective with kernel he connected component of the
identity in Ix. When K is a global function field, 0k is injective with dense image.

Finally, we state the connection to ideal-theoretic CFT (Theorem 12.1.1). Let m =[] v® be a modulus
for K. Define the group

or, for vim
UR(v) := < Ry, for v real, v | m

1+ p®, for v finite, v | m, where p = {z € O, : |z|, < 1}.

Let Ug =[], UR(v), then this is an open subgroup of Ix. Its image U; in Ck is a finite index open

subgroup. Define
CR =l /(K*UR) = Cx /U,
then it turns out that
OR = Cl} = Gal(K (m)/K).

The existence of ray class fields K(m) is then the reincarnation of the existence of a field L such that
N(Cp) = Uh. - -

Finally, for a finite abelian L/K, N(Cp) contains U j for some m; in fact, the Uy forms a neighborhood

basis of 1 in Cf, and the smallest m for which Uy C N(Cp) is true is the conductor ¢(L/K). This then
shows that L is contained in some ray class field.

13. Cohomological tools

13.1. Dimension shifting. In the next few subsections we develop more cohomological tools to prove
local CFT.

To see the connection with cohomology: H(G, A) = AS /Ng(A), so taking A = L* and G = Gal(L/K)
gives precisely that H°(Gal(L/K),L*) = K*/N(L*) for any Galois L/K. We will use a theorem of Tate
to construct an explicit isomorphism Gal(L/K) = H°(Gal(L/K), L*).
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13.1.1. Definition. Let A be a G-module. Define another G-action on Ind(A) and CoInd®(A):
9(z®@a) = gz ® ga

g = [z gp(g7"2)].

This only makes sense when A is a G-module (while the usual Ind and Colnd make sense for any abelian
group A).
13.1.2. Lemma. Let A be a G-module, A° the corresponding abelian group by forgetting its G-module
structure. Then the maps

® : Ind®(4) — Ind“(4°)

gRa—g®g ta
and
¥ : Colnd(A) — CoInd®(A°)
¢~ g go(g7")]

are G-module isomorphisms.

PrOOF. It is straightforward to check these are G-module homomorphisms. The inverse of the first one
is g ® a — g ® ga, and the second one is its own inverse. (]

Recall the augmentation ideal I satisfies an exact sequence of G-modules
0= Ig—ZGlSZ =0

where ¢ : Y ngg — Y ng. As Z-modules, this sequence obviously splits. But the splitting is not a map of
G-modules: Z = Z1¢ is not a G-submodule of Z[G].

13.1.3. Lemma. Let A be a G-module, then the map
T IndG(A) — A
z®@are(z)a
is surjective with kernel I ®yz A, and the map
t: A — Colnd®(A)
a v [z e(z)al
is injective with cokernel Homgz(Ig, A). O
So we get two short exact sequences of G-modules
0= Ig®zA—Id%A) 5 A—0
and
0— A% Colnd“(A4) — Homg(Ig, A) — 0.
Recall that Ind® and CoInd® have trivial (co)homology at n > 0, and when G is finite, their Tate coho-
mologies all vanish (even as H-modules where H < @ finite index). So we have:

13.1.4. Theorem (dimension shifting). Let A be a G-module, H < G a subgroup of finite index. If G is
finite, then for any n € Z,
H"Y(H,A) = H"(H,Homg(Ig, A))
and
H" Y (H,A) = H"(H, I ®z A).
When G is any (not necessarily finite) group, this holds for H"™ and H, for n > 0.
Using this theorem, one could alternatively define Tate (co)homology using only the zeroth Tate coho-

mology. Dimension shifting gives us theorems about all cohomologies provided we have proven it in general
for the zeroth.

13.1.5. Proposition. When G is finite, A any G-module, then ﬁ"(G,A) is torsion with exponent dividing
#G.
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PrROOF. By dimension shifting, it suffices to show this for n = 0, where ﬁO(G, A) = A% /Ng(A). But
for a € A9, Nga = (#G)a, so #G kills HO. |

13.1.6. Corollary. Let G be finite, A any G-module. If multiplication by #G is an isomorphism A — A,
then A has trivial Tate cohomology.

In particular, this holds when A is the additive group of a ring and #G is a unit in it.

PROOF. [#G] then induces isomorphisms on all H’”(G, A), but they are all killed by #G, hence trivial.
O

13.1.7. Corollary. Let G be finite, A any finitely generated G-module. Then fI”(G, A) is finite for all
n € Z. In particular, the Herbrand quuotient will be defined.

PRrROOF. It is a finitely generated torsion abelian group, hence finite. (I

13.2. Restriction. Recall the functoriality of group (co)homology: a map of G-modules ¢ : A — B
induces maps
on: Hy(G,A) —» H,(G,B), ¢":H"(G,A) — H"(G,B).
In the other input, if ¢ : H — G is a group homomorphism, we get a homomorphism from the standard
resolution of Z by H-modules to the standard resolution of Z by G-modules. This induces maps

On : Hy(H,Res$(A)) — H, (G, A), " : HY(G, A) — H"(H,Res% (A)).

13.2.1. Definition. Let ¢ : H — G be a group homomorphism, A an H-module, and B a G-module.
Suppose ¢ : A — B or ¢: B — A is a map of H-modules, then we say ¢ is compatible with .

If ¢ : A — B is compatible with ¢ : H — G, we get homomorphisms
H,(H,A) 2% H,(H, B) £ H, (G, B)
and if ¢ : B — A then we get
H™G, B) £ H™(H, B) 2% H"(H, A).
13.2.2. Definition. Let A be a G-module, H < G. The morphisms
Res: H"(G,A) — H"(H, A)
CoRes : H,(H,A) — H,(G, A)
are the above maps induced by ¢ : H - G and ¢ : A 4.

13.2.3. Example. When n = 0, Res : AY — A is the natural inclusion, and CoRes : Ay — Ag is the
natural quotient.

13.2.4. Definition. Let A be a G-module, H < G of finite index. Fix S C G a set of left coset representatives
for H. Define
Nom =) s €Z[G], Ngly=> s'eZG]
seS seS
Define a restriction map on homology by
Res : H()(G,A) — Ho(H, A)
a+IgA— NC;}Ha +1IzA
It is easy to check that this does not depend on the set of representatives we choose, and for a: A — B
a map of G-modules, the diagram
Ho(G, A) === Hy(G, B)

lRes lRes

HO(HvA) i) HO(HvB)

commutes.
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If G is finite, then Res(ker Ng) C ker Ny, so we have an induced map
Ho(G, A) — Hy(H, A).
Similarly, define the corestriction for cohomology
CoRes : HY(H, A) — H°(G, A)
a— Ng/ga

and it is also functorial and does not depend on the coset representatives S.
Now, we extend Res to higher homologies. From the long exact sequence for 0 — Ig ®z A — IndG(A) —
A — 0, we can uniquely extend

0 —— Hy(G,A) —— Hy(G,Ig ®z A) —— Hy(G,Ind“(4)) —— 0

El lRes lRes
0 —— Hy(H,A) —— Hy(H,Iq ®z A) —— Hy(H,Tnd®(A)) —— 0
and similarly dimension shifting gives maps Res : H, (G, A) — H,(H, A).
Similarly, we get CoRes : H"(H,A) — H"(G,A). Restriction and corestriction are transitive and
o-functorial.

13.2.5. Proposition. Let A be a G—modulei H < G fintie index, then CoResoRes is multiplication by
[G: H] on Hy(G,A) and H"(G, A) (and all H"(G, A) when G is finite).

PROOF. Prove this for n = 0, and use dimension shifting. O
13.3. Inflation.

13.3.1. Definition. Let A be a G-module, H<1G. Then A, Ay are trivial H-modules, hence G'/ H-modules.
Then the map induced by ¢ : G — G/H and ¢ : A7 — A is the inflation
Inf : H"(G/H, A") — H"(G, A)
and the map induced by ¢ : G — G/H and ¢ : A — Ay is the coinflation
Colnf : H,(G,A) —» H,(G/H, Ag).
These are also d-functorial.

13.3.2. Example. In degree n = 0, Inf and Colnf are just the identity maps on Ag and A%.

13.3.3. Example. Let f : G™ — A be a n-cochain representing v € H"(G, A). Then Res(y) € H"(H, A) is
represented by the restriction of f to H™.

Let f: (G/H)™ — A be a n-cochain representing v € H"(G/H, A). Then Inf(y) € H"(G, A) is given
by composing f with the projection G™ — (G/H)™.

13.3.4. Theorem (inflation-restriction theorem). Let A be a G-module, H <G, n > 1. If H(H,A) = 0
for1<i<n-—1, then

0— H™(G/H, A" 2 gn(G, A) B 5 (H, A)

18 exact.

ProOF. Use induction on n.

In the base case n = 1, everything can be written down explicitly. Let f : G/H — AH be a 1-cochain
representing 7 € ker Inf. Since f composed with G — G/H must be of form [g — ga — a] for some a € AH,
f itself must be given by [§ — ga — a], so it is a coboundary, so v = 0. Next, since H - G — G/H is trivial,
imInf C ker Res. To show equality, let f : G — A be a 1-cochain representing v € ker Res. Then on H, f
must act as [k +— ha — a] for some a € A. Define f : G — A by g+ f(g) — ga + a, then f vanishes on H, so

flgh) = gf(h) + f(g9) = f(9)
and

f(hg) = hf(g)+ f(h) = hf(g).
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The first equation tells us that f factors through G/H, and the second tells us that the image of f is
H-invariant. So f gives an element in H'(G/H, A") whose inflation is f. This shows the case n = 1.

Now the induction step. Assume this holds for n (for all G, H, A), and we show this for n + 1. By
dimension shifting, if A satisfies the hypothesis for n + 1, then Homgz (I, A) satisfies the hypothesis for n.
By inductive hypothesis,

0 — H™(G/H,Homgz(Ig, A)") 25 H"(G, Homy(Ig, A)) 2 H™(H, Homgz (Ig, A))

is exact. By dimension shifting again,

0— H"NG/H, AHY 25 grti(q, A) B goti(m, A)

is exact. O

13.3.5. Remark. There is an analogous theorem for CoRes and Colnf:

Ho(H,A) <22 H,(G,A) S 1, (G/H, Ag) — 0

is exact, if H;(H,A)=0for1<i<mn-—1.
13.4. Tate’s theorem.

13.4.1. Theorem. Let A be a G-module, where G is finite. Suppose for all H < G, we have H'(H, A) =
H?(H,A)=0. Then H"(G,A) =0 for alln € Z.

PRrROOF. For G cyclic, this is clear since Tate cohomology is periodic with period 2.

For G solvable, let 1 = Hy << H; < -+ < H,,, = G be the shortest possible subnormal series, such that
all consecutive quotients are cyclic. Proceed by induction on m, with the base case clear. Let H # G be a
normal subgroup of G such that G/H is cyclic, then by induction hypothesis, H"(H, A) = 0 for all n € Z.

By the inflation-restriction theorem, we have H"(G/H, A") = H"(G, A) for n > 1 (since H"(H, A) =
H"(H,A)=0). So H'(G/H,A") = H?*(G/H, A®) = 0, and consequently for all n € Z, H"(G/H, A™) = 0.
This implies that H"(G, A) =0 for all n > 1, and also

0=HG/H,A") = (A")SH NG, p (AT).
Combine this with 0 = H°(H, A) = A /Ny (A), we have
AG = (AT = Noyu(A™) = Nej (N (4)) = No(4).

SO ﬁO(G,A) = 0. Since this holds for general A, we may use dimension shifting to address n < 0: since
H"Y(H,A) = H"(H, Iq®zA), the hypothesis H' (H, I®7A) = H*(H,I5®zA) = 0 holds, so H~1(G, A) =
HY(G,Ig ®z A) = 0, and repeating this proves that H™(G, A) = 0 for all n € Z.

In general, suppose G is not necessarily solvable. Let H be a Sylow p-subgroup of G, then H is solvable.
Consider the composition

H™(G, A) 2= H™(H, A) Z22% (G, A)

which is multiplication by (G : H), a number coprime to p. But for n > 1, this is also the zero map since
the middle group is zero. So H™(G, A) has no elements of order p. Since this is for any p, we conclude
ﬁ”(CLA) =0 for n > 1. For n = 0, since I;TO(H, A) = 0, the map Ny : A — A" is surjective, so for
any a € A% C AH | there exists a’ € A such that a = Y, ha', so Ng(a’) = [G : H]a. This shows that
multiplication by [G : H] kills H°(G, A) as well, so it has no elements of order p, and since this is for any
p we conclude H 9(G,A) = 0. Finally, for n < 0, again use the same dimension shifting argument as in the
solvable case. O

13.4.2. Theorem (Tate’s theorem). Let A be a G-module where G finite, and suppose for every H < G,
HY(H,A) = 0 and H*(H, A) is cyclic with order equal to #H. For any generator v of H*(G,A) and all
n € Z, there is a uniquely determined isomorphism

o, : H"(G,Z) — H"%(G, A)
compatible with Res and CoRes.

Tate’s theorem is the keystone of the proof of local Artin reciprocity, so we will walk through the proof
carefully.
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PROOF OF TATE’S THEOREM 13.4.2. Let ¢ be a 2-cocycle in C?(G, A) representing v € H%(G, A). Let
A(p) be the G-module

Ap =4 P 17y,
geG—{1}
where G acts on A as usual and gzj, 1= x4, — 24 + ©(g, h), where z, is the generator for the Zg component
for g # 1, and x1 := ¢(1,1) € A. Tt is easy to check that this is a G-action:
g1(g22n) — (9192)n = 91(Tgon — Tg, + ©(92, 1)) — Tgygon + g, g, — P(9192, h)
= g10(92, 1) — (9192, 1) + (g1, 921) — (91, 92)
= (d(p)<gl7g27 h) =0,

since ¢ is a cocycle.
Now, by definition, the 2-cocycle ¢ : G2 — A % A(yp) is the coboundary of the 1-cochain

Y=g ag) € CHG, Ap)),
since
(d) (g, h) = gz — zgn + 24 = (g, ).
So ~ lies in the kernel of the map
i?: H*(G,A) — H*(G, A(p)).

But since v generates H2(G, A), we conclude that 2 is the zero map.

Now define a morphism of G-modules ¢ : A(¢) — Z[G] sending a + 0 for a € A and sending x4 — g —1
(it is easy to check this is G-equivariant). Note that ker¢ = A and im ¢ = I, so we have a short exact
sequence of G-modules

(%) 0—>Ai>A(<p)—>Ig—>O.

In particular, for each H < @, this is a short exact sequence of H-modules. We also have our usual short
exact sequence

0—Ig—Z|Gl > 7Z 0.
Consider its long exact sequence of Tate cohomology. Because H™(H, Z[G]) = 0 for all n, we have H"(H, Z) =
H"1(H, I¢). In particular:

e H%*(H,Ig) = H'(H,Z) = Homay(H,Z) (this can be seen using cochains and the fact that Z is a
trivial H-module), but this is zero because H is finite;
o H'(H,Ig) = H(H,Z) = 27 Ny = 7/ (#1).

Now, we can write down the long exact sequence of Tate cohomology of (x):

HY(H, A) S HY(H, A(p)) 25 HY(H, 1) 25 H2(H, A) 5> H2(H, A(p)) <> H2(H, I¢)

which, given our current information, is

. 1 . 2
05 H(H. Alg)) “ H'(H,16) = 2/ (#H) > H*(H,A(¢)) 0.
Now, since i? is the zero map, H?(H, A(p)) = 0, so &' is surjective. But since H'(H, Ig) = Z/(#H), we
conclude that §! is an isomorphism, and H'(H, A(y)) = 0.
By theorem 13.4.1, we conclude that H"(G, A(p)) = 0 for all n € Z. Therefore, we have isomorphisms
H™(G,Ig) = H" (G, A). So we have isomorphisms

O, : H"(H,Z) = H" (G, 1) = H" (G, A).

Furthermore, the first map is canonical, and the second map only depends on ~ (choosing a different ¢ does
not change any of the maps in cohomology). Since Res and CoRes are both morphisms of -functors, they
commute with both maps. This concludes the proof. O
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13.5. Continuous cohomology. Let us switch gears to developing more cohomology theory, this time
for profinite (more generally, topological) groups, taking the topology into account.

13.5.1. Definition. Let G be a topological group. A topological G-module (or continuous G-module) is
an abelian topological group A on which G acts continuously, i.e. G x A — A is continuous. A discrete
G-module A is a topological G-module such that A carries the discrete topology. A morphism of topological
G-modules is a map of topological abelian groups compatible with the G-action.

In general, there are several inequivalent ways to define cohomology for topological G-modules. But we
are only interested in the case where G is profinite and A is discrete, and in this case there is a natural
choice, namely continuous cohomology.

Consider the continuous n-cochains C"(G, A), consisting of continuous maps G™ — A. This forms an
abelian group. Consider the continuous cochain complex, and it is easy to see that the coboundary of a
continuous cochain is necessarily continuous as well. So we may define H"(G, A) to be the cohomology
groups of the continuous cochain complex. Note that H(G, A) = A%. To distinguish this from usual group
cohomology, this is also denoted H'(G, A) or H} (G, A).

Let A — B be a morphism of topological G-modules. We then get induced maps C"(G, A) — C"(G, B),
hence H"(G, A) — H™(G, B). But warning! This is not necessarily a cohomological d-functor. But it is, in
the case we are interested in (G profinite and A discrete). This also makes sense, because the more connected
G is, the harder it is for a cochain to be continuous, and profinite groups are totally disconnected.

13.5.2. Lemma. Let G be a compact group, A a G-module, then the following are equivalent:

(i) A is a discrete G-module;
(i) For every a € A, Stab(a) is open;
(iii)) A =J A", where H ranges among open normal subgroups of G.

PROOF. (i) = (ii) is clear.

(ii) = (ili): Let a € A, then Stab(a) is open. Since G is compact, Stab(a) has finite index, hence
finitely many conjugates; their intersubsection is an open normal subgroup H that fixes a.

(iii) = (i): For each a € A, it is fixed by some open normal H <t G. Then for 7: G x A — A, 77 1(a)
is the union of open sets Ng x {b} where gb = a, hence open. (I

In general, (i) and (ii) are equivalent even when G is not compact.
13.5.3. Lemma. Let 0 > A — B — C — 0 be an ezxact sequence of discrete G-modules, then the induced
0—C"(G,A)—C"(G,B)—C"(G,C)—=0
is exact for all n.
Warning: this does not hold for topological G-modules in general (right-exactness may fail)!

13.5.4. Theorem. FEwvery short exact sequence of discrete G-modules 0 - A — B — C — 0 induces a long
exact sequence in continuous cohomology

0— H°G,A) - H°(G,B) - H'(G,C) — H'(G,A) — ...
and commutative diagrams induce commutative diagrams.
13.6. Cohomology of profinite groups.
13.6.1. Definition. Let G be a group, and H < K be two subgroups normal in G. We can view K/H as a

normal subgroup of G/H, and so we get an inflation map
Inf : H"(G/K, A®) — H"(G/H, A").
This is compatible with towers of inclusions H < K < L, all normal in G.
For any profinite group

G= lim G/N,

<_
N <G open

the inflation maps give us a direct system of H" (G /N, AN).
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13.6.2. Theorem. Let G be a profinite group, then for every discrete G-module A and n > 0,
H"(G,A) = hg H"(G/N, AN).

NG open

PROOF. Direct limits are exact in the category of modules over a ring, in particular in Ab. So it suffices
for us to show that the natural map

p: lim  C"(G/N,AY) = C"(G. 4)
N <G open

is a bijection, where for H < K, C"(G/K, AX) — C"(G/H, A™) is given by composing a continuous cochain
(G/K)" — AK with the quotient map (G/H)" — (G/K)™ and the map AKX — AH.

It is clear that ¢ is injective. To show it is surjective, let f : G™ — A be a continuous cochain. Then
since G is compact, so is im f. Since it is also discrete, it is finite. So the stabilizer of im f is open, and
intersecting it with its conjugates gives an open normal subgroup N; < G, such that im f C ANt. For any
a € im f, f~!(a) is open in G, so it contains a product of n open sets in G, each of which contains some
open normal subgroup, and intersecting them gives an open normal N, so that f(N) = a. Finally, let
N = NiNagim s Na then f induces a continuous cochain (G/N)" — AN. O
13.6.3. Corollary. For every profinite G and discrete G-module A, H™(G, A) is torsion for all n > 0.

PROOF. By proposition 13.1.5, each H"(G/N, AV) is torsion. The direct limit of torsion abelian groups
is torsion as well. (]

13.6.4. Corollary (Hilbert 90 for infinite extension). Let L/K be any (not necessarily finite) Galois exten-
sion, then H'(Gal(L/K),L*) is trivial.

Proor. Follows from lemma 12.7.2. O

13.6.5. Theorem. Let G be profinite, and suppose A is a direct limit of discrete G modules A;. Then A is
a discrete G-module, and

H™(G,A) = lim H"(G, 4;)
for allm > 0.

PROOF. Every a € A is represented by some a; € A;, so its stabilizer is open. This shows that A is a
discrete G-module. As before, since direct limits are exact in Ab, it suffices to show the natural map

@+ lim (G, Ai) = C™(G, A)

is an isomorphism. It is clearly injective. To show surjectivity, let f : G™ — A be a continuous cochain. It
has finite image since the image is compact and discrete. So there exists ¢ such that im f C A; (recall that in
the definition of directed limits, i ranges in a directed set I, so upper bounds always exist). Then f induces
a continuous cochain G™ — A;. This shows surjectivity. |

13.6.6. Definition. Let ¢ : G — G’ be a continuous homomorphism of profinite groups, A a continuous
G-module, A’ a continuous G’-module. Then a continuous map ¢ : A — A’ or ¢ : A’ — A is compatible with
@ if it commutes with the G-action.

We can similarly define Res and Inf for profinite groups G and discrete G-modules; equivalently, one
could define them as direct limits of the maps defined for finite quotients of G. Because direct limits are
exact, we get:

13.6.7. Theorem (inflation-restriction for profinite groups). Let H be a closed normal subgroup of a profinite
group G. Let A be a discrete G-module, and let n > 1. If HY(H,A) =0 for 1 <i <n—1, then

0— H™(G/H, A"y 25 gn(G, A) B B (|, A)

18 exact.
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13.6.8. Remark. As in infinite Galois theory, we need H to be closed because we require it to be profinite;
a subgroup of a profinite group is profinite iff it is closed. This follows immediately from the fact that a
topological group is profinite iff it is totally disconnected, compact and Hausdorff. Every subset of a totally
disconnected space is totally disconnected, but a subset of a compact Hausdorff space is compact Hausdorff
iff it is closed.

13.6.9. Remark. What cannot be extended to the discrete G-module case? When G is infinite, Z[G] will
not be a discrete G-module! This makes it hard to define homology and Tate cohomology directly, but one
can work around this by taking an inverse limit of quotients of G by open normal subgroups.

14. Local class field theory: Proof

14.1. The invariant map: unramified case. With our cohomological tools in place, let us return to
local CFT. Let K be a nonarchimedean local field, L/K Galois (not necessarily finite). Then G = Gal(L/K)
is profinite and L* and OF are discrete G-modules (any o € L* generates a finite extension K («)/K that
is the fixed field of a finite index closed subgroup, which is open).

We first do the finite unramified case:

14.1.1. Theorem. Let L/K be finite unramified, then ﬁ”(G,Of) =0 for all n € Z. Moreover, for any
subgroup H < G, H"(H,0}) =0 for alln € Z.

PROOF. Since G is then cyclic, it suffices to prove this for n = 0,1. For any uniformizer 7 for Oy,
L* = Of xZ by &+ (=} ,vr(r)). Since L/K is unramified, vy, extends vy with index 1, so we can pick
7 to be a uniformizer of Og. Then G acts trivially on the Z component in Op. Then for every n,

H™(G,L*) = H"(G,0}) ® H"(G,Z).

By Hilbert 90, H'(G,L*) = 0, so H'(G,0F) = 0. So we focus on the degree 0 case, where H*(G,0)) =
O%/N(O7F). So it suffices to show that the norm hits every element in Oj.

Let p,q,k, ¢ be the maximal ideals and the residue fields of K,L. Let U =1+ p" and U] =1+ q"
be subgroups of Oy and OF, so that U /U} = ¢* and U} /U™ = ¢ for i > 1. Now, since G = Gal(¢/k),
by Hilbert 90, H(G,¢*) = 0. Since £* is finite, its Herbrand quotient h°(¢*)/ho(¢*) = 1 (cf. Corollary
12.6.4). Consequently, k*/N(¢*) = HO(G,¢*) = 0, so the norm map on residue fields is surjective. By
Lemma 12.7.2, k/ Tr(¢) = H°(G, ¢) = 0, so the trace map on residue fields is surjective as well.

I claim that these are sufficient to imply that N(Of) = Oj. Suppose we are given u € Q). By the
commutative diagram

ox 2049, Xl px
[ [
O =8 05 UL =k,

we may pick v; € O such that the norm of the image of vy in £* is the image of w in k*. This implies that
u/N(vq) € Uj. By the commutative diagram

U —— U U2 =/

[ [

Uk — UL/UR =k,
we may pick wy € U} such that N(ws) = u/N(v1) modulo U%. Taking vy = wov1, we see that u/ N(v2) € Uz.
We may repeat this process with U7, U3, ..., and since these form a Cauchy sequence in OF , they approach
a limit v (because L is complete). Then u/N(v) lies in every U}, hence equals 1. This concludes the proof

that H™(G,OF) =0 for all n € Z.
For any subgroup H < G, H = Gal(L/L"). So we may just apply the above to the extension L/L#. [

In the proof, we have shown the following:

14.1.2. Corollary. Let L/K be finite unramified, then the norm map OF — O is surjective. O
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14.1.3. Corollary. Let L/K be unramified (not necessarily finite). Then H"(G,Of) =0 forn > 0.

PROOF. For any open normal subgroup N < G, the fixed field LY is a finite unramified extension, with
Gal(LN/K) = G/N, and H*(G/N,(Or)N) = 0. For n > 0, taking the direct limit gives H"(G,0}) = 0
(theorem 13.6.2). O

Now for L/K unramified, consider the exact sequence of discrete G-modules
0—-0f 5L —-7Z—0,
then by what we proved above, H?(G, L*) = H*(G,Z). Now consider the exact sequence of trivial G-modules
0-Z—-Q—-Q/Z—0.

Since #(G/N) is a unit in Q for every open normal N < G, H"(G,Q) = li_n}H"(G/N, Q) =0forn>0
(corollary 13.1.6). So

HY(G,Q/7Z) = H*(G, 7).
Since Q/Z is a trivial G-module, H'(G,Q/Z) just consists of continuous homomorphisms of abelian groups
G — Q/Z.

Now, consider the Frobenius element o € G that restricts to the Frobenius element Frob, /x in any
finite extension M/K in L.

14.1.4. Definition. The invariant map is defined by the composition
invy,x : H2(G, L) > H2(G,Z) » H'(G,Q/z) 2212, q/z.

Note that this is very canonical. In particular, it is functorial in L in the sense that for K C M C L
unramified,

H2(Gal(M/K), M*) Inf H2(Gal(L/K), L*)
im oz A{

commutes.

14.1.5. Theorem. The invariant map invy = invguw /g is the unique isomorphism

invg : H2(Gal(K"™ /K), K™ *) = Q/Z,
such that for any finite unramified L/ K in K", composing with the inflation map gives isomorphisms

1

invL/K : H2(Ga](L/K),LX) i [L . K]

7/Z.

PROOF. For any unramified L/K (not necessarily finite), o is a topological generator, so invy gk is
always injective.

For any finite unramified L/K, G = Gal(L/K), we have a cochain f € H'(G,Q/Z) mapping Froby ;- —
ﬁ, so the image of inv contains [TlK]Z/Z. But this must be an equality, since H' (G, Q/Z) = H?*(G,Z) =
HY(G,7Z) = 7)(#G). So invy,/x is an isomorphism onto ﬁZ/Z. Now, since K"™ contains unramified
extensions of every degree, invun g is surjective. So it is an isomorphism. It remains to show that
inv = invgun /g is unique. This is just because

H2(G,K“‘“X)’£ hg HQ(G/H, (Kuan)H)’
H <G open

where G = Gal(K"""/K), and knowing that invx restricts to invy,x already determines invg. O
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14.2. The invariant map: general case. Now we have to figure out how to deal with ramification.

14.2.1. Proposition. Let L/K be a finite extension, not necessarily unramified and not necessarily Galois.
There is a canonical homomorphism ¢ that makes

H2(Ga1(Kunr/K), Junr ><) ¢ HQ(Gal(Lum/L), [ unr ><)

ianl linvL

[L:K]
Q/Z Q/Z
commute. When L/K is Galois, we may identify ker ¢ with a subgroup of H*(Gal(L/K), L) isomorphic to
i Z] 7.
[L:K]

PRrROOF. Note that L"™ is just the compositum L- K" since finite unramified extensions are constructed
by adjoining appropriate roots of unity.

By Hilbert 90, H*(Gal(L""" /L), L"" *) = 0. Suppose L/K is Galois, then by inflation-restriction, there
is an exact sequence

0 — H2(Gal(L/K),L*) 2% H2(Gal(L"™ /K), L™ *) 2% H2(Gal(L"™ /L), L™ ).

Similarly, since H'(Gal(L"""/K"r), LUT ¥ ) = (), there is an exact sequence

0 — H2(Gal(K"™ /K), K" *) 255 12(Gal(L"™ /K), L™ %)

RLS/> H2 (Gal(Lunr/Kunr)’ [unr X )
Now, define ¢ : ResoInf’. Note that this is defined even when L/K is not Galois. But when it is, there
exists an induced injection ker ¢ — H?(Gal(L/K), L*).
Now we drop the condition that L/K is Galois. Then the discrete valuation vy, extends vx with index
e =er k- Let ox,or be the arithmetic Frobenii of K and L, and f = fr,/x be the inertia degree, so that
[L: K] = ef. Writing out the maps defining inv and invy,:

H?(Gal(K"™/K), K" ) — H?(Gal(K"™/K),Z) — H'(Gal(K" /K),Q/Z) — Q/Z
|# | Jtetoo |ieax
H?(Gal(L"r /L), L' %) — H?(Gal(L""/L),Z) — HY(Gal(L"™/L),Q/Z) — Q/Z,
where the leftmost square is induced by

Junr X VK 7

1 e

Junr X vL Z,

the middle square is just a pair of isomorphisms, and the right square is commutative because given any
cochain g : Gal(L"™" /L) — Q/Z (homomorphism of abelian groups), g(or) = g(o{{) = f-g(ok). Finally,
having argued that the diagram is commutative, it is then clear that ker ¢ is isomorphic to ﬁZ/Z, the
kernel of the rightmost map.

To extend the invariant map to arbitrary separable extensions, we first prove what Neukirch calls the
class field axiom:

14.2.2. Theorem (class field axiom). Let L/K be a cyclic extension of nonarchimedean local fields, and
G = Gal(L/K) has order n. Then #H"(G,L*) =n when k is even, and 1 when k is odd.

PROOF. Since G is cyclic, it suffices to show this for £ = 0, 1. By Hilbert 90, ﬁl(G, L*) is trivial. So it
remains to show HY(G, L*) has cardinality n. Consider the exact sequence

0—0f 5L 5 Z—0.
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Then h(L*) = h(O})h(Z). By corollary 12.6.5, h(Z) = n. Since #Ho(L*) = #H"(L*) = 0, it suffices to
show that h(Of) = 1. By corollary 12.6.7 it suffices to find a finite-index G-submodule A C O] with trivial
Tate cohomology groups.

Let p,q be the maximal ideals of Ok, Or, with uniformizers 7, . Let o generate G. By normal basis
theorem 1.7.6, choose a € L* such that {o’a} forms a K-basis of L. Write o = 3/ where 3,7 € Oy, then
v; = NL/K(’}/)O‘iOz € Or. Take z; € L™ to be the dual basis of v;, so that Try/x (z;v;) = ;5. Then one can
easily see z; = 0729. Again, scale zo by an element of Ok so that z; lie in Op; we may also assume they
have arbitrarily small absolute value, by scaling by a big power of w, say w™. Let

M = @ZioK Cc Op.

This is a G-submodule of Oy, isomorphic to Ok[G]. Also by, say, Atiyah-MacDonald proposition 5.17, a
multiple of Oy, sits inside M, so M has finite index in Oy,.
Now, to construct A, there are two ways. The easy way is to take A = exp(M), where

22
exp(ac)=1+x+?+...

is the exponential function (see section 4.5), whose radius of convergence is p_ﬁ. The drawback is that
this only works in characteristic zero. The hard way is to take A = 1+ 7™M, which is an open subgroup
of the compact group OF, hence finite index; and take a filtration A4; =1 + 7™+t M. These are all normal
subgroups of O} . Then

AJA; = M/x'M = (O /p")[G] = Ind® (Ok /p")
as G-modules, which has trivial Tate cohomology (theorem 12.5.5). In fact, they are cohomologically trivial,
i.e. for any H < G their Tate cohomology groups also vanish. Then, since

A= 1im A/A;,

it suffices to prove that an inverse limit of cohomologically trivial G-modules is cohomologically trivial. By
18.786 pset (add reference)... O

14.2.3. Corollary. For L/K finite Galois extension of monarchimedean local fields, H*(Gal(L/K), L) is
cyclic of order n = [L: K.

PROOF. We show this by induction on n. If L/K is cyclic, we are already done. (]

14.2.4. Theorem. Let K be a nonarchimedean local field. There is a unique isomorphism
invg : H*(Gal(K5P/K), K5 *) = Q/Z
which descends through Inf to isomorphisms

invy, : H*(Gal(L/K),L*) = ﬁZ/Z

for every finite Galois extension L/K, that coincides with the previously defined invy g in the unramified
case.
Moreover, for any finite separable extension L/K, then the diagram

H2(Gal(K®P/K), K50 %) 2S5 g2(Gal(KP /L), K5 )

@%Z K] Q%Z

commutes, and when L/K is Galois we have an isomorphism of exact sequences

0 — H2(Gal(L/K), L*) % H*(Gal(K*?/K), K> %) 5% H2(Gal(K*P /L), K*PX) — 0

J/inVL/K lian lian

[L:K]
0 Tr Z/Z Q/Z QZ—— 0
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14.3. Proof of local Artin reciprocity. Let K be a nonarchimedean local field.
Let us recall the invariant map
invy : H?(Gal(K*P/K), K5 *) = Q/Z

which descends to )

[L: K]

invy, g : H*(Gal(L/K),L*) = YAYA

for every finite Galois extension L/K.
We also defined the local Artin map, which is the inverse of

G = H\(G,2) = H*(G,Z) = H(G, L) = K*/N(L").

The first map is an isomorphism via G = Ig/I%, mapping g — (g — 1) + Ié. The last map is given by
Tate’s theorem 13.4.2, which requires choosing a generator uy x € H 2(@, L), the fundamental class, which
is the inverse image of ﬁ under invy k. It is nontrivial (and shown on the problem set) that the local

Artin maps are all compatible, so we may define the Artin homomorphism
O : K* — Gal(K*P/K)*™ = Gal(K**/K).

Our goal is to show part 1 of local CFT, i.e. 0 restricted to K" sends any uniformizer 7 of K* to the
arithmetic Frobenius Frobg. Clearly, it suffices to show this for finite unramified L/K. Let o = Froby,/k,
which generates the cyclic G = Gal(L/K). What we need to show is, the sequence of isomorphisms (writing
out the isomorphism in Tate’s theorem)

SL/K LN

G~ 1g/1% = Ho(G, I¢) S, H\(G,Z) = H (G, 7) 2 H NG, Ig) H°(G,L*) = K*/N(L*)

sends o precisely to the coset of 7. Remembering that f[‘l(G,Ig) = fIO(G, I¢) = Ho(G, Ig), we see that
dp 0 0 ! = id. So this simplifies to showing that the map 4, /K appearing in the proof of Tate’s theorem
sends the class of 0 — 1 € I/I% to the class of 7 in K*/N(L*).

Let us look inside & r/K- It comes from the snake lemma

Ly —— L*(p)¢ —— Ig/Ig —— 0

| e |
0 —— (L9)¢ 2o L¥(p)¢ —— (Ia)°

where ¢ is a cochain in H?(G, L*) representing ur,/ k- By definition, one preimage of [0 — 1] under « is [2,],
so it suffices to show that Ng(x,) represents the class of the uniformizer. Let us compute

n—1 n—1
Ng(z,) = Z ino = H (P(o'iaa')'
i=0 i=0
So we have to write down an explicit 2-cochain ¢ representing ur k. Recall that uy, g is the element in
H?*(G,L*) that gets sent to the 1-cochain f : o — 1/[L : K] in the composition (invy k)
H*(G,L*) = H*(G,Z) = H'(G,Q/Z).

So let us trace through the steps. To pull f back to a cochain in H? LG, Z), consider the snake lemma again,
and we see that it is represented by the coboundary of a cocycle f : G — Q that agrees with f mod Z.
Computing this, we see

d'(f)o",07) =o' f(o?) = f(o"™) + flo') =

Now, pull this back to a cochain ¢ : G? — L*; this is just done by composing with valuation. In particular,
we can pick ¢ such that (0%, 07) = 7 when i + j > n. So, now we finally have

i+j (i+j)modn
n n '

n—1
Ne(zo) = [ elo',0) =,
=0

as desired. This proves the entirety of local CFT.
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Finally, we show the norm limitation theorem, which shows that all norm groups arise through abelian
extensions (i.e. you cannot extend local Artin reciprocity beyond K?P).

14.3.1. Theorem (norm limitation). Let L/K be a finite extension of nonarchimedean local fields, E/K
its mazimum abelian subextension. Then N(L*) = N(EX).

PROOF. It is clear that N(L*) C N(E*). When L/K is Galois, by local Artin reciprocity,
K*/N(E*) 2 Gal(E/K)™ = Gal(E/K) = Gal(L/K)* = K*/N(L*),

as desired. When L/K is not Galois, let M be its Galois closure. Let G = Gal(M/K), H = Gal(M/L), and
MGGl is the maximal abelian extension in M/K. Then E = MGG n MH = MIGCIH 5o Gal(M/E) =
[G,G]H. Since [H,H| = [G,G] N H, we then have the commutative diagram

M/L

L MUt geb — [/[H, H
J{N lL

K PR L geb — GG, G
T

K* 25 Gal(E/K) = G/|G, G)H.

Consider any a € Ng,x(E*), then a € ker(0g/k), so Oy/x(a) € kerm = im¢. By surjectivity of 0,1,
there exists b € L* with a/ Ny k(b) € kerOpr g = Npyyg(M*). Now let ¢ € M* such that Ny g (c) =
a/Np/k (D), then a = Nz k(b)) Nas/g(e) = Ny (bNag/n(c)) € N(LX), as desired. O

14.4. Lubin—Tate formal groups. See paper notes.

14.5. Proof of local existence theorem.

15. Miscellaneous topics

15.1. Extensions of absolute values. The appendix collects material not covered in the lectures (but
important nonetheless).

15.1.1. Proposition (Strong Hensel’s lemma). Let K be complete wrt a nontrivial, nonarchimedean absolute

value ||. Let Ok, mg be the corresponding valuation ring and mazimal ideal. Let f(z) € Oklx] such that
its image f in g; [x] is nonzero. Suppose f(x) = g(x)h(x) in %[m} where g is monic and g, h are relatively

prime. Then we have lifts g, h € Ok[z] such that f(z) = g(x)h(z), and g(z) is monic with degree equal to
degyg.

15.1.2. Corollary. Let f(x) be irreducible in K|x], with degree n. Then
[f] = max([aol, ..., |an[) = max(|aol, |an])-

15.1.3. Proposition (Complete archimedean fields). Let K be complete with respect to a nontrivial, archimedean
absolute value. Then (K, ||) is isometrically isomorphic to either (R,||%,) or (C,||L,) for some 0 < r < 1.

15.1.4. Theorem. Let K be complete wrt a nontrivial absolute value ||, and L/K a finite extension of
degree n. Then

1811 = | N1k (B)"
is the unique absolute value on L extending that on K, and L is complete with respect to ||||.

PRrROOF. If || is archimedean, then there is not much to show because of proposition 15.1.3. Assume for
the rest that || is nonarchimedean. We will show that so is || |.

LEMMA. For B € L, if ||B]| < 1, then |1+ 3| < 1.
PROOF OF LEMMA. Let g € L, ||B|| = 1. Let fg(z) € K|[z] be its minimal polynomial. Then
Np/k(8) = ((=1)% 7 f5(0)) - H ]
which implies | f3(0)] = [|8]°°*/* < 1. Then by corollary 15.1.2, fz(z) € Ok [z].
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Since the minimal polynomial of 1+ 8 is fg(z — 1),
1T+ 8" = INL/k(1+ B)| = [((=1)98 72 f(—1)) K@) < 1,
which proves the lemma. O
By the lemma, if [lal| < |8, we then have [la+ 8] = 8] |1+ aB~'|| < ||8]l, which is the nonar-
chimedean triangle inequality. Uniqueness follows because any two absolute values on L are norms on L (as
K-vector spaces), which must induce the same topology on L, so they must be equivalent absolute values,

so one must be a power of another, so they must be equal since they agree on K. Completeness is also
clear. -

Even better, it is easy to see that these extensions are compatible with each other, i.e. this gives us a
unique extension of an absolute value on K.

15.2. Cyclotomic fields. Let n be a positive integer, (,, a primitive root of unity. The goal in this
subsection is to show:

15.2.1. Theorem. The ring of integers in the cyclotomic extension Q((,)/Q is Z[(y).

We will in fact prove a bit more about the discriminant of cyclotomic extensions along the way.

Our strategy is to first show Theorem 15.2.1 in the case where n = p” is a prime-power, then use that
to deduce the general case.

For simplicity, let { = (,~ be a primitive p"-th root of unity. Let O be the ring of integer in Q(().

15.2.2. Proposition. Z[¢] N pO = pZ[(].
15.2.3. Proposition. discZ[(] is a power of p.

We first see how the above two propositions imply that O = Z[(]. Clearly Z[¢] C O. If p | (O : Z[(]), then
O/Z[¢] has a subgroup of order p. Then there exists a € O, a ¢ Z[(], such that pa € Z[(], so pa € Z[{]NpO =
pZ[¢], which implies a € Z[(], a contradiction. Thus, p (O : Z[(]). But (O : Z[¢])? - disc O = disc Z[(] is a
power of p, so O = Z[(].

PROOF OF PROPOSITION 15.2.2. It is clear that Z[¢] = Z[1 — (], and (1-¢) (0<i<p"~(p—1)—1)
forms a Z-basis for Z[1 — (].

LEMMA. Ng¢)/0(l—=¢) =p.

PrROOF OF LEMMA. The conjugates of 1 — ¢ are 1 — o, where « are the roots of

P(X) = XP =) o T e-2) o x4

The product of these (1 — «) is precisely P(1) = p. O

Let >, ¢i(1 = ¢)* € Z[1 — ¢{] N pO, where ¢; € Z. We will prove via induction on i that p | ¢;. Because
N1-¢) =p,pe(1—-C),s0(1—=¢)NZ=(p). Socy€ (1—¢)NZ implies p | ¢p. For the induction step,

suppose we have shown p | co,...,c;—1. It suffices to show that (1 — C)pr_l(’)fl) € pO, since then we can
cancel out factors of (1 — ¢) and repeat the same argument to show p | ¢;. We know that p is the product of

all p"~1(p— 1) conjugates of 1 — ¢, so it suffices to show % is a unit in O for all ¢, which is easy to see. [

PROOF OF PROPOSITION 15.2.3. discZ[¢] = disc(1,(,...,¢?" ®=D=1) which is equal to Ng ) 0(P’(¢))

up to sign. After a easy computation (using the lemma above), we in fact have disc Z[(] = :l:ppr_l(r(p’l)*l).
|

This finishes our proof of theorem 15.2.1 in the case n = p”. In general, use induction on the number of
distinct prime divisors of n, with the additional claim that disc @,, divides n®(™. The base case is handled
above. Say n = p"m, where p { m. It is clear that then Q((,) = Q(¢pr)Q(¢m) and [Q(¢) : Q] = ¢(n) =
d(P")o(m) = [Q(Gr) : Q)Q(EGm) = Q. It suffices to show that O, the ring of integers in Q((,), is included
in Opr - Op,, which by induction hypothesis is Z[(r |Z[(n] = Z[(,).

Given an element o € O,,, it must be of the form

1 P e
a = a ZCi7j<pr<$n
2
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where d, ¢; j € Z, since (}-(J, forms a Q-basis of Q((,). Because the discriminants disc Z[(,r] and disc Z[(pn)
are coprime, it suffices to show d divides each of these determinants.
Let o be the automorphism on Q((,) sending (- +— (5 and (> (- Then
1 ai ~j ai
oo = E Zci,jg‘prCﬁn = Z prLi
ij i
where x; := > .¢; j¢J,/d. Varying a and solving for z; by Cramer’s rule, we see that z; - disc Q((pr) is

j
integral over Z. So d | discQ({pr), and similar for discQ((y,). Finally, it is easy to show disc O,, divides

n?(") through a direct computation. This completes the proof.
15.3. Kummer theory.

15.3.1. Definition. Let G be a group which acts upon an abelian group (M,+). Then H!(G, M) is the
group of functions f : G — M such that f(gh) = f(g) + ¢gf(h), modulo functions of the form f: g — gz —x
(x € M).
15.3.2. Theorem (Hilbert’s theorem 90). Let L/K be a finite Galois extension, G = Gal(L/K), then
HY(G,L*) = 0.

In the case where G is cyclic and generated by o, suppose a € L* with norm 1. Then the function
f: G — L* given by

oc"—a-ola) - o™ a)

must be of form o™ +— o™ (b)/b for some b € L™, so in particular a = b/o(b).

15.3.3. Theorem. Let K be a field that contains (,. Then every degree-n cyclic extension L/K is of form
K(a'/™), where o'/* ¢ K for1#d|n.

PrOOF. Let L/K be a degree-n cyclic extension with o € G generating the Galois group. By Hilbert
90, there exists t € L* with ¢/ = 6" (t)/t. So t" is fixed by G and t" = a € K, and L = K(t) = K(a'/™).

Conversely, it is clear that there is an injective map Gal(K (a'/")/K) — Z/nZ. Surjectivity is clear in
the case n is prime, and in general, the image of this map cannot be contained in pZ/nZ for any p | n, and
therefore is the whole group Z/nZ. O
15.3.4. Definition. Let K be a field that contains (,,. The Kummer pairing

Gal(K/K) x K* = {1,¢n, ..., (07"}
is defined by: given o € Gal(K/K), z € K*, choose y € K, with y" = z, and define (0, z) = o(y)/y.
15.3.5. Theorem. The Kummer pairing induces an isomorphism
K*/(K*)" = Homs(Gal(K /K), Z/nZ).

15.3.6. Proposition. Let n be an odd prime power, K a field with char K coprime to n. Let L = K((,)
and M = L(a'/™) for some a € L*. Define w : Gal(L/K) — (Z/nZ)* by w0 = 9(Cn). Then M/K is
abelian iff g(a)/a*9) € (LX) for all g.
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CHAPTER 7

Algebraic Geometry

1. Category theory

1.1. Lemma. Consider the following cochain complex:

. i—1 L g i
SNYoL S N ANy LIE ANYo LS BN
Then we have two pairs of short exact sequences:
e 0—kerfi = C'—imf'— 0 and 0 — im fi=! — ker f — HY(C*®) — 0;
e 0 —im fi=t — C" — coker fi=1 — 0 and 0 — H*(C*) — coker fi=1 — im f* — 0.

1.2. Proposition (FHHF theorem). Let F : &/ — 2 be a covariant functor between abelian categories, and
let C* be a cochain complex in <f .

(a) If F is right exact, there is a natural morphism FH®(C®) — H*F(C*®).

(b) If F is left exact, there is a natural morphism H*F(C*) — FH*(C*).

(¢) If F is exact, the two morphisms are inverses of each other.

PROOF. (a) Applying F on C* — C*! — coker f* — 0, we get a natural isomorphism F coker f! —
coker Fft. Applying F on 0 — im f? — C**! — coker f* — 0, we get a natural epimorphism Fim f? —
im Ff*. Applying F on 0 — H*(C*) — coker fi=! — im f? — 0 and chasing diagrams, we get a natural map
FHY(C®) — H'F(C®).

(b) Applying F on 0 — ker f — C* — C**1, we get a natural isomorphism ker F'f* — Fker f*. Applying
Fon0— ker fi - C?"— im f* — 0, we get a natural monomorphism im Ff* < Fim f’. Applying F on
0 — im fi=! — ker f* — H*(C*®) — 0 and chasing diagrams, we get a natural map H'F(C*®) — FH!(C*®).

(c) Carefully trace where each element goes. O

1.3. Proposition (Exactness and (co)limits). Limits commute with limits and right adjoints. In particular,
right adjoints and limits are both left exact since they commute with ker.

Colimits commute with colimits and left adjoints. In particular, left adjoints and colimits are both right
exact since they commute with coker.

In Mod 4, colimits over filtered index categories are exact.

2. Sheaves

2.1. The espace étalé of a (pre)sheaf. Let F be a (pre)sheaf on X. We can construct a topological
space F' and a continuous 7 : FF — X as follows:

o Asaset, F'=[] cx Fp
e Open sets of F' are generated by the following base: given an open U C X and f € F(U), the set
{(p,U, f) : p € U} is open.
Then 7 : F — U is a local homeomorphism.

2.2. Stalks and sheafification.

2.3. Sheaf on a base. Suppose X is a topological space with {B;} as a base of the topology. Suppose
we’re given the following information:
e To each B;, we have an associated set/abelian group/ring/module F(B;);
e For each B; C By, a restriction map resp, g, : F(B;) — F(B;); this should be the identity when
i =J;
o If B; C B; C By, then resp, B, = resp; B, ©I€Sp; B;-

105
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o If B=\JB;, then if f, g € F(B) restricts to the same function on each F(B;), then f = g;
o If B = JB;, and f; € F(B;) such that if for any By C B; N B;, f; and f; restrict to the same
function on By, then there exists f € F(B) such that f restricts on each f; on each patch.
This is called a sheaf on a base. Given this information, the sheaf on any open set can be uniquely determined
up to unique isomorphism.

2.4. Inverse image sheaf.

3. Affine schemes
3.1. Spectrum of a ring.
3.2. Hilbert’s Nullstellensatz.
3.3. Topological properties of affine schemes.
3.3.1. Definition. A topological space X is Noetherian if it satisfies the d.c.c. on closed sets.

3.3.2. Proposition. Let X be Noetherian. Then every nonempty closed set Z can be uniquely expressed as
a finite union Z = Z1 U ---U Z,, of irreducible closed sets, none contained in any other.

4. Schemes

4.1. Proj construction. Given a (commutative) ring A, Spec produces from it a locally ringed space
Spec A. If we take A = k[x1,...,x,], then Spec A is the affine n-space A}. Similarly, the Proj construction
takes a Z>o-graded ring S as input, and produces from this data a scheme (not necessarily affine!) Proj.s,
and in the special case S = k[zo, ..., x,], Proj S is the projective n-space P}.

4.1.1. Definition. Let S be a Z>(-graded ring. The scheme Proj S is given by:

e As a set, the points in Proj.S are the homogeneous prime ideals p such that S ¢ p;

e As a topological space, the closed sets are given by V(I) = {[p] € Proj S : I C p}, for homogeneous
ideals I C S . Equivalently, the topology is given by the base of distinguished opens D(f) = {[p] €
ProjS: f ¢ p}, for homogeneous f € S,.

e As a locally ringed space, the structure sheaf is given on the base by Opojs(D(f)) = (Sf)dego-

4.1.2. Definition. Let S be a finitely generated graded ring over A. Then a scheme of the form Proj S is
called a projective scheme over A. An quasicompact open subscheme of a projective A-scheme is called a
quasiprojective A-scheme.

4.2. Properties of schemes.

4.2.1. Proposition. Let X be a scheme. Then the points of X correspond bijectively to irreducible closed
sets of X, via the map L
x— {z}.

PROOF. Because the closure of an irreducible set is irreducible, this is a well-defined map. Conversely,
given an irreducible closed set T' C X, consider an affine open U such that TNU # &. Then TNU is an
irreducible closed set in U, so it corresponds to a unique generic point in U. For affine opens U,V both
intersecting T', U NV must also intersect T because T is irreducible. Pick an affine open W C U NV that
is distinguished in both U and V' and also intersects 7. Then the unique generic point corresponding to
T NW must simultaneously be the unique generic points corresponding to TNU and T'NV. In other words,
there is a unique point x € T that is the unique generic point corresponding to T'N U for all affine opens U
intersecting 7T'.

We claim that T' = m; indeed for any closed K C X containing x, and for any point ¢t € T, there is an
affine open U containing ¢ (and by default containing = too), K N U contains z, so it must contain TN U
(the closure of {z} in T'NU). In particular, t € K as well. O

4.2.2. Proposition. Let X be a quasicompact scheme, then any point has a closed point in its closure.

4.2.3. Definition. A scheme X is called reduced if all stalks are reduced rings. Equivalently, for all open
U, Ox(U) is reduced.
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4.2.4. Definition. A property P for affine open subsets of a scheme X is called affine-local if it satisfies:

o If an affine open Spec A satisfies P, then any Spec A satisfies P also.
o If f1,..., fn € A generate the unit ideal, and all Spec Ay, satisfy P, then Spec A satisfies P as well.

4.2.5. Lemma (Affine Communication Lemma). Suppose P is an affine-local property, and X = J;o; Spec 4;
where each Spec A; satisfies property P. Then any affine open in X satisfies P.

Properties defined in this way:

Locally Noetherian
Noetherian

Locally of finite type over B
Finite type over B

4.3. Varieties. An affine scheme that is reduced and of finite type over k is called an affine k-variety. A
reduced quasiprojective k-scheme called a projective k-variety. In general, a variety is a reduced, separated,
finite type k-scheme.

4.4. Normality and factoriality. A scheme X is normal if all of its local rings are integrally closed
domains.

Because being integrally closed is a local property, Spec A for A integrally closed is an affine normal
scheme. For a quasicompact scheme, this can also be checked at closed points only.

A scheme X is factorial if all of its local rings are UFDs. Since UFDs are all integrally closed, factorial
schemes are normal. Factoriality is not affine-local.

4.5. Associated points. In the affine case, the associated points of an A-module M are primes p C A
of the form p = Ann(m) for some m € M. (See here; also, taking M = A/I, we recover the usual associated
points of an ideal.) They have the following properties:

4.5.1. Theorem. Suppose A is Noetherian and M # 0 is finitely generated. Then:
(1) Ass(M) is nonempty and finite.
(2) The natural map M — [ cassar) My is injective.
(3) UpeASS(M) is precisely the set of zerodivisors of M.
(4) Associated primes commute with localization:
Assg-14(ST M) = Ass (M) N Spec S~ A.

In general (see here):

4.5.2. Definition. Let X be a scheme, and F' a quasicoherent sheaf. A point x € X is associated to F if
m, is an associated point of the Ox ,-module F}.

4.5.3. Proposition. Let X be locally Noetherian, F' quasicoherent. Let U = Spec A be an affine open,
x € U corresponds top C A, M =T(U, F), then x € Ass(F) <= p € Ass(M).

4.5.4. Definition. Let X be a scheme, F' a quasicoherent sheaf. An embedded associated point is an
associated point that is not minimal.

4.5.5. Proposition. Let X be locally Noetherian, and F coherent (e.g. Ox). Then the generic points of
irreducible components of Supp F' are associated points, and the rest of the associated points are embedded.

4.6. Weakly associated points.

5. Morphisms of schemes
5.1. Morphisms to affine schemes. These have a nice characterization:

5.1.1. Proposition. The following are equivalent:
o There is a morphism of schemes X — Spec A;
e For every open U C X, Ox(U) is an A-algebra;
e There is a ring map A — Ox(X).
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5.2. Morphisms from affine schemes. Given any point p € X, there is a canonical morphism
Spec Ox , — X. Composing this with the map induced by Ox,, — £(p), we get a canonical Spec k(p) — X,
often written just as p — X.

More generally: for a local ring (A, m), a scheme morphism 7 : Spec A — X sending m to p corresponds
bijectively to local homomorphisms Ox , — A.

5.2.1. Definition (functor of points). Let Z be a scheme, the Z-valued points of X (denoted X(Z)) are
the maps Z — X. (When Z = Spec A or Speck, they are the A- or k-valued points.)

If we’re working with schemes over a base scheme B, then this data should also include a Z — B making
Z — X — B commute.

5.3. Functoriality of Proj. Suppose ¢ : S — R is a map of graded rings (i.e. there exists N, such
that S, maps to Ry, for all n). This induces a morphism of schemes

¢" : (Proj R)\V(¢(54)) — Proj 5,

as follows: given f € S, there is a map of rings Sy — R(y), hence a map of rings (Sf)daego — (Rg(f))deg0s
hence a morphism of affine schemes Spec(Rg(f))dego — Spec(Sf)dego, i-e. D(¢(f)) — D(f) — Projs.
These glue together to form the desired morphism of schemes.

In particular, if V(¢(S4)) is empty, then we get an actual morphism Proj R — Proj S. This is satisfied
when rad(¢(S+)) = R4+. (Recall from §4.1 that the radical turns out to be equal to the intersection of all
homogeneous primes containing the ideal.)

5.4. Veronese subring.

5.5. The relative point of view. Instead of thinking of properties of objects, it might be better
to understand them as properties of morphisms between objects. For example, given a property P about
schemes, one often turns it into a property about morphisms of schemes as follows: say 7 : X — Y has P if
and only if for every affine open U C Y, 7~ 1(U) has P.

5.6. Green flags to look for in a property of morphisms.

(1) It is local on the target: for a morphism 7w : X — Y and a open cover V; of Y, 7 satisfies P iff all
| r-1(v;) satisfy P.

(2) It is closed under composition.

(3) It is closed under base change, pullback, fibered products, etc.

) ...

5.7. Finiteness conditions on morphisms. Recall that a scheme is called quasicompact if it is
the union of finitely many affine schemes, and a scheme is called quasiseparated if the intersection of any
two quasicompact open subsets is quasicompact. We turn them into properties of schemes as discussed
in §5.5. These are both affine-local on the target and closed under composition. Conversely, a scheme X
is quasicompact (resp. quasiseparated) if the canonical X — SpecZ is so. Note that many schemes we
commonly encounter are qcqs: in particular, all affine schemes are qcgs, and all Noetherian schemes are
qcgs.

5.7.1. Definition (affine morphisms). A morphism 7 : X — Y is affine if the preimage of any affine open
in Y is affine open in X. Affine morphisms are automatically qcgs.

5.7.2. Lemma (qcgs lemma). If X is qcgs, s € Ox(X), then the natural map Ox(X)s = Ox(X,) is an
isomorphism.

ProOF. Use the qcgs property as a finite presentation. (I

5.7.3. Proposition. Affineness is affine-local on the target. In other words, affineness of a morphism can
be checked on affine covers of the target.

PROOF. O

5.7.4. Definition (finite morphisms). An affine morphism 7 : X — Y is finite if for any affine Spec A C Y,
71 (Spec A) is the spectrum of a ring that is a finitely generated module over A.
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Finiteness is also affine-local on the target.

5.7.5. Example. Examples of finite morphisms:

e Branched covers: consider the map k[u] — k[t] given by u — p(t) for a polynomial p. Then
Spec k[t] — Spec k[u] is a finite morphism.

e Closed embeddings: A/I is a finite A-module (generated by 1), so Spec A/I — Spec A is a finite
morphism.

e Normalization: k[z,y]/(y* — 2? — 23) — k[t] by x — t> — 1, y — t3 — t induces a morphism of
schemes Spec k[t] — Speck[z,y]/(y?> — x®> — 2®). This is a finite morphism, and it is in fact an
isomorphism from D(t? — 1) to D(z).

5.7.6. Proposition (7.3.H). If X — Speck is a finite morphism, then X is a finite union of points with
the discrete topology, each point with residue field a finite extension of k.

PRrROOF. We must have X = Spec A, where A is a k-algebra that is finitely generated as a module. Then
A is Noetherian and any prime p C A is maximal, so the (finitely many) irreducible components of A, which
correspond to minimal primes, are all closed points. Therefore Spec A is finite discrete, and the residue field
at each point [p] is a finite extension of k. O

5.7.7. Corollary (7.3.K). Finite morphisms have finite fibers.

5.7.8. Definition (integral morphisms). A morphism 7 : X — Y is integral if it is affine, and for every
affine open Spec B C Y, Spec A = 7~ !(Spec B), B — A is an integral extension.

Because integrality is an affine-local property, a morphism being integral is affine-local on the target.
Also, finite morphisms are integral, and integral morphisms are closed (they map closed sets to closed sets).

5.7.9. Definition (finite type morphisms). A morphism 7 : X — Y is locally of finite type if for every
affine open Spec B C Y, and for every Spec A C m~1(Spec B), B — A expresses A as a finitely generated
B-algebra. We say 7 is finite type if it is quasicompact and locally of finite type.

5.7.10. Proposition (7.3.P). A morphism is finite iff it is integral and of finite type.

5.7.11. Definition (finitely presented morphisms). A morphism 7 : X — Y is locally finitely presented if
for every affine open Spec B C Y, 7 !(Spec B) = |J, Spec 4; with each B — A; finitely presented. We say
7 is finitely presented if it is locally finitely presented and qcgs.

It is clear that if Y is locally Noetherian, then locally of finite presentation is the same as locally of finite
type, and finite presentation is the same as finite type.

5.7.12. Proposition. Locally finitely presented-ness is affine-local on both the target and the source.
5.8. Elimination theory.

5.8.1. Lemma (Generic freeness). Let B be a Noetherian integral domain, A a finite type algebra over B,
and M a finitely generated A-module. Then there exists f € B such that My is a free By-module.

5.8.2. Theorem (Chevalley’s theorem). Let m : X — Y be a finite type morphism between Noetherian
schemes. Then the image of any constructible set is constructible.

5.8.3. Theorem (Fundamental theorem of elimination theory). The map P — Spec A is closed, for any
ring A.

5.9. Closed subschemes, and related constructions.

5.9.1. Definition. A closed embedding w : X — Y is an affine morphism where for each Spec B C Y and
Spec A = 7~ 1(Spec B), the induced ring map B — A is surjective.

5.9.2. Definition (equivalent to the above). A closed embedding = : X — Y is a morphism such that 7
induces a homeomorphism of the underlying topological space of X onto a closed subset of the topological
space of Y, and the induced map 7 : Oy — 7,0 of sheaves on Y is surjective.

Ideal sheaf, scheme-theoretic image, intersection and union of closed subschemes
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5.10. Effective Cartier divisors and regular sequences.

5.10.1. Definition. A locally principal closed subscheme 7 : X < Y is one for which there exists an
open cover U; of Y, such that each 7=(U;) — Uj; is isomorphic to a closed subscheme V' (s;) C U;, where
s; € Oy (U;). Equivalently, we may as well take all U; to be affine.

5.10.2. Definition. An effective Cartier divisor is a locally principal closed subscheme where the ideal
sheaf is locally generated near every point by a non-zero divisor.

5.10.3. Example. Consider Spec A, where A = klw,z,y, z]/(wz — zy). Let X be the open subscheme
D(y)UD(w). The closed subscheme defined by V' (z/y) on D(y) and V(z/w) on D(w) is an effective Cartier
divisor, but it is not generated by a single element of Frac A.

5.10.4. Definition. Let M be an A-module. A sequence x1,...,x, of elements in A is called an M -reqular
sequence if:
e For each 4, x; is not a zero divisor for M/(x1,...,x;—1)M (exists no m € M\(z1,...,2;—1)M such
that maz; € (z1,...,2;—1)M), and
o (x1,...,2. )M # M.

In particular, an A-regular sequence is just called a regular sequence.

5.10.5. Example. For any M-regular sequence z1,...,z,, and positive integers ay,...,a,, the sequence

x7t, ..., xln is a regular sequence too.

5.10.6. Example. Let A = k[z,y,z]/(z — 1)z. Then z, (z — 1)y is a regular sequence, while (z — 1)y, x is
not.

5.10.7. Theorem. Let A be a Noetherian local ring, and M a finitely generated A-module. Then any
M -regular sequence remains reqular when reordered.

5.10.8. Definition (regular embedding). Let 7 : X — Y be a locally closed embedding. Say that 7 is a
reqular embedding of codimension r at € X if in Oy r(,), the ideal of X is generated by a regular sequence
of length r. Say that 7 is a reqular embedding if it is at all points.

5.11. Fiber products.
5.12. An interlude on closed points.

5.12.1. Proposition. Let X be a scheme locally of finite type over a field k. If x € Spec A C X corresponds
to a mazimal ideal in some affine open subscheme of X, then x is a closed point in X.

PROOF. Suppose z corresponds to m C A, then x(x) = A/m. By the nullstellensatz, A/m is a finite
extension of k. Now, suppose Spec B C X is some other affine open containing z, and say x corresponds to
a prime p C B. Then x(z) = Frac B/p, so in particular ¥ C B/p C k(z). So B/p is an integral extension of
k, so it is a field as well, i.e. p is maximal. So {z} is closed in X. O

5.12.2. Proposition. Let X be a scheme locally of finite type over k. Suppose we have a morphism w :
Speck — X, then its image is a closed point.

PRrROOF. Let Spec A C X be an affine open subscheme. The morphism 7 factors through Spec A, so we
get ¢ : Speck — Spec A. Suppose m is the kernel of the corresponding map A — k, and p is the prime
ideal corresponding to the image of m. Then we get a map of stalks A, — k through which the map A — &
factors. Suppose a ¢ p, then a is invertible in A, so it is not in the kernel of A — k, so m C p. Since m is
maximal, m = p, so we conclude by the previous proposition. |

5.12.3. Proposition. Let X be a scheme locally of finite type over k = k. Then closed points of X are in
bijection with k-points of X.

ProOF. The bijection is given by:

e Given a k-point Spec k — X, this maps to its image, which is a closed point in X;
e Given a closed point z € X, its field of fractions is k& by the nullstellensatz, so we get Speck =
Speck(x) — X.
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It suffices to verify that these two are inverses. Given a closed point = € X, it is clear from definition
that the image of Speck(xz) — X is . On the other hand, given a k-point Speck — X, it is given by
Speck — Spec A C X, where A/k is the maximal ideal corresponding to the image x of the k-point. So
A/k = k(z), which finishes the proof. O

5.12.4. Corollary. Let f : X — Y be a morphism between schemes over k locally of finite type. Then
f maps closed points to closed points. In particular, maps between k-schemes map closed points to closed
points.

5.13. Separated morphisms.

5.13.1. Definition. A morphism of schemes 7 : X — Y is separated if the diagonal map A, : X = X xy X
is a closed embedding.

To see that this definition isn’t too crazy, we notice the following.

5.13.2. Proposition. Let 7 : X — Y be a morphism. The diagonal A, : X — X Xy X 1is a locally closed
embedding (i.e. a closed subscheme of an open subscheme).

ProOOF. Cover Y by affine opens V;, and 7=1(V;) by affine opens U;;. Then U;; xy, U;; is an affine
open subscheme of X Xy X by definition, and these cover the image of A,. Further, it is clear that
AN Uiy xv, Uj) = Usj, and Aly,, is a closed embedding. O

5.13.3. Definition. A wariety over a field k is a reduced, separated, finite-type k-scheme.

Because a locally closed embedding whose image is closed is in fact a closed embedding, to check that
m: X — Y is separated, it suffices to check that the image of A is closed.
Examples of separated morphisms:

Locally closed embeddings (also called immersions);

Morphisms between affine schemes;

All quasiprojective A-schemes (with morphism to Spec A);

Any morphism between varieties is automatically separated and finite type (this will follow from
the cancellation theorem).

5.13.4. Lemma (Magic diagram). Let X1, X5,Y,Z be objects in a category where fiber products exist.
Suppose we are given maps f1 : X1 =Y, fo: Xo =Y, andg:Y — Z. Then the following diagram is a
Cartesian square:

X1 XyX2 —>X1 XzX2

| et

5.13.5. Proposition. Let X be separated over a ring A. Then for U,V C X affine opens, U NV is an
affine open as well.

PRrROOF. Consider the following fiber product:

UNV ——= UxuV

| |

X2 3 X x4 X

Here, UNV = U xx V is the fiber product because of the magic diagram. Now, because the bottom map
is a closed embedding, so is the top map. Since U x 4 V' is an affine scheme, sois UN V. O

5.13.6. Proposition. Separatedness is well-behaved:

(1) affine-local on the target;
(2) stable under composition;
(8) stable under base change.
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PROOF. (1) This follows from the fact that 7 : X — Y is separated if and only if im(A) is closed.
(2) Suppose f: X = Y,g:Y — Z are separated. Consider the following commutative diagram

X 2 Xy X — 5 X xz X
Y
Y —2 Ly x,Y

The square is Cartesian by the magic diagram, so the top map X xy X — X Xz X is a closed embedding.
So the composition X — X Xz X, which can be verified to be the diagonal of g o f, is a closed embedding.

(3) Suppose
Y
W

is a pullback square, where Z — W is separated. It suffices to show that

—_

N >

—

X 25 Xxy X

| |

725 ZxwZ
is also a pullback square, which is a straightforward diagram chase. O

5.13.7. Proposition. Let w: X — Y be a morphism of Z-schemes, and Y — Z separated. Then its graph
(id,m)

I'p: X —> X xzY is a closed embedding.

5.13.8. Proposition (Cancellation theorem). Let X Ly Z, and suppose P is a property of morphisms,
such that:

P is stable under composition;

P is stable under base change;

go f satisfies P;

Ay Y =Y %, Y satisfies P.

Then f satisfies P also.

PRrOOF. We have the following Cartesian squares:
XxzY 1Y
| |
x L,z
Here, because g o f satisfies P, so does 7 : X Xz Y — Y. Also, we have
X=XxyY Lo Xx,Y
| l
Y — 2 vy x,Y,
and because A, satisfies P, so does I'. But 7o I is easily verified to be simply f, so f satisfies P also. O

5.13.9. Theorem (Reduced to separated theorem). Suppose X,Y are schemes over Z, where X is reduced,
andY — Z is separated. Let m,n’' : X —'Y be morphisms over Z. Suppose U C X is a dense open on which
m and 7' agree. Then m = 7'.

PROOF. Let V be the fiber product

(m57")

X Ay x,Y.
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Because A is a closed embedding, so is V — X. Because 7|y = 7’|y, we get a map U — V through the
universal property of V. But U is an open subscheme of X. Because U is dense, V = X as sets. Because X
is reduced, V = X as schemes. So m = 7’ on all of X. O

5.14. Dominant rational maps between irreducible varieties.

5.14.1. Definition. A rational map between schemes X --+ Y is a map U — Y where U is a dense open
in X. Two rational maps X --» Y are equivalent if a|y = |w on some dense open W C U NV.

5.14.2. Definition. A morphism of schemes is dominant if its image is dense.

Fix a field k (algebraically closed when necessary), consider the category of irreducible varieties over k,
with morphisms as dominant rational maps.

Given an irreducible variety X, because irreducible and reduced implies integral, it has a unique generic
point 1. The stalk at n is the function field K(X), which is equal to the fraction field Frac A of any affine
open Spec A C X. Given a rational map X --» Y, this induces a field homomorphism at the stalks of the
generic points.

5.14.3. Theorem. The functor described above gives an equivalence of categories between irreducible vari-
eties with dominant rational maps and finitely generated field L/k with inclusions of fields.

5.15. Ax-Grothendieck theorem.

5.15.1. Theorem (Ax-Grothendieck). Let X be a variety over C, f: X — X a morphism over C. Suppose
that the map of C-points X(C) — X (C) is injective (as a set), then it must be surjective.

We will define the spreading out of X, which is a finite type scheme over Spec R, for some finitely
generated Z-algebra R C C.

Cover X by (finitely many, since X is quasicompact) affine schemes U;, which are of the form Spec C[z, . . .

since X is finite type and by Hilbert’s basis theorem. Because X is separated, U; N Uj is also affine of the
above form. Even further, each f~!(U;) is covered by finitely many affine opens U;;, because morphisms
between varieties are automatically quasicompact, and the U;;’s are again of the above form. So we can take
R to be the Z-algebra generated by all coefficients of f; appearing in U;, U; NUj, and Uj;’s, and define & by
glueing together Spec R[x1,...,x,]/(f1,-.., fr). The map f: X — X also spreads out to amap F': X — X.
By definition, this satisfies the following Cartesian squares:

X —— X

fl lF

X — X

| l

SpecC —— Spec R.
Now, set U = X x¢ X\A(X), an open subscheme of X x¢ X. Let W be the fiber product
w X

| |

Ue—s X xe X 22 x we X,

and supposing x € X is a point, let Z be the fiber

Z —— SpecC

L,

x — ., x

Then X (C) — X(C) is injective implies that W = &, and we wish to show surjectivity at z, i.e. Z # &.
Because spreading out behaves well with fiber products, we can similarly define the spread-out of
z, UW,Z as x,U W, Z.
Sketch of proof:

sl /(fy -

?f?"
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e Reduce the problem into showing that given W = @&, show that Z # @.

e Spread out to get X, F, x, U, W, Z.

o W = @ implies W xr K = @, where K = Frac R. This implies the image of my : W — Spec R,
which is constructible by Chevalley, does not include the generic point ng. So nr ¢ immyy, so we
may invert finitely many elements of R so that immy = @, i.e. W = 2.

o Let t be a closed point in Spec R, F; : X; — X} be the induced map. Then «(¢) is a finite field F,.
Because W, (F,) = @, the map X}(F,;) — X3(F,) is injective, hence surjective. So Z; # @ for all
closed points t.

e So mz : Z — Spec R has image containing all closed points, which are dense in Spec R. So the
generic point 7g is contained in the image, which is constructible by Chevalley. So Z xgp K # &,
which implies Z # &. This concludes the proof.

5.15.2. Lemma. Let S be a constructible set in Spec R, R Noetherian. If ng ¢ S, then ng ¢ S.

Proor. Write S = [,(U; N K;) as the disjoint union of locally closed sets over a finite index set. Then
S = U; Ui N K;. Suppose for contradiction ng € U; N K; for some i, then SpecR = U; N K; C Kj;, so
K; = Spec R and U; is a dense open in Spec R, so ng € U;, which implies ng € S, a contradiction. (I

5.15.3. Lemma. Let k C C be a subfield, V' a k-variety. Then the following are equivalent:

o V=0
o Vo =V x,C=g;
] Vc(C)ZQ.

5.16. Proper maps. Just as separatedness captures the topological concept of a Hausdorff space,
properness is meant to capture the concept of compactness. Of course, quasicompactness won’t do the job.
Recall the topological notion:

5.16.1. Definition. A map of topological spaces is proper if the inverse image of any compact set is compact.

5.16.2. Definition. A universally closed map f : M — N of topological spaces is one such that for all
P— N, fp: Pxy M — P is a closed map.

We remark that the map from M to a point is universally closed iff M is compact.
The same definition moves over to schemes:

5.16.3. Definition. A universally closed morphism f : X — Y of schemes is one such that for all Z — Y,
fz:Z xy X — Z is a closed morphism.

5.16.4. Definition. A morphism of schemes m : X — Y is proper if it is finite type, separated, and
universally closed.

So, X — Spec k being universally closed corresponds to X being “compact”.

5.16.5. Example. Examples of proper morphisms:

Closed embeddings;

Properness is stable under composition and base change;

P4 — Spec A is proper; as a consequence, any projective morphism Z < P, — Spec A is proper.
In contrast, A(%: is not proper (this fits your intuition that a line is not compact). This can be seen
by the following square:

A? —— Al
Al —— o
But the left map is not closed: V(zy — 1) maps to D(x), which is not closed.

5.17. Chow’s lemma. Chow’s lemma says that “a proper morphism is fairly close to being a projective
morphism”. Note that by the fundamental theorem of elimination theory, projective morphisms are proper.
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5.17.1. Theorem (Chow). Let f : X — S be a separated, finite type morphism of Noetherian schemes.
Then for there exists a diagram

. f/
X s Py s PG

bk
X — 8

where the square is Cartesian, i is a closed immersion, f' oi is an immersion, and 7 o i is surjective and
induces an isomorphism on a dense open set U C X.

In the case f is proper, f/ must then be closed, so X’ is a projective S-scheme that surjects onto X and
is an isomorphism over a dense open of X.

5.18. Valuative criteria.

5.18.1. Theorem (valuative criteria). We have the following criteria:

e Let f: X — Y be quasiseparated, then f is separated iff for every valuation ring V. with field of
fractions K, Xy (V) = Xy (K) is injective.

o Let f: X — Y be quasicompact, then f is universally closed iff for every valuation ring V' with
field of fractions K, Xy (V) — Xy (K) is surjective.

o Let f: X — Y be quasiseparated and finite type, then f is proper iff for every valuation ring V
with field of fractions K, Xy (V) — Xy (K) is bijective.

(Aside: in fact, universally closed implies quasicompact. Also, a map of schemes is a closed immersion
if and only if it is a proper monomorphism.)

6. Dimension and smoothness

6.1. Definitions of dimension. The Krull dimension of a scheme is a purely topological construction
and does not depend on the sheaf structure.

6.1.1. Lemma. Let X be a topological space, U C X open. Then there is a bijection between closed
irreducible subsets of U and closed irreducible subsets of X that meet U, given by

KCU—KCX
LNUCU+— LCX.

Proor. First, we show that given a closed irreducible set K C X that meets U, K "U = K. Because
K meets U, KNU® # K, so because K = KNU U (K NU®) is irreducible, K = KN U.

Next, we show that given a closed subset K ¢ U, KNU = K. Clearly K C K NU. Since K is closed
inU, K=LNU for some closed L C X. Then KNUCLNU=KCKNU, so equality holds.

Now we are ready to show the bijection. It suffices to show both maps are well-defined, since the above
two paragraphs shows that the two maps are inverses of each other. Given a closed irreducible K C U, it is
clear that its closure K is closed in X and meets U. To show it is irreducible, suppose K = C; UCs for closed
Cy,Cs. Then K =KNU = (ClﬂU)U(CgﬂU>, so WLOG C;NU = K. Then (4 QF:Cl NU C (4, so
equality holds and C; = K.

Conversely, given a closed irreducible L C X that meets U, LNU is closed in U. To show it is irreducible,
suppose LNU = (C; NU) U (CaNU), where Cq,Cy C X are closed. Then

L=LnU=(Cn0)UCNU)=CinTUCNT,

so WLOG C;NU = L. Then LNU =C,NUNU = C1NU. This shows LNU is irreducible, which completes
the proof. O

6.1.2. Corollary. Suppose X = J, U; is an open cover of a topological space. Then
dim X = supdim U;.
i

In particular, the dimension of a scheme can be checked on any affine open cover.
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ProoOF. Consider any sequence
S#LoC 721G C 2, CX,
where Z; are irreducible and closed. Because Zj # @, there exists U; such that Zy N U; # @. Then
@#ZoNU; CZiNU; C---CZ,NU; CU;

is also a chain of irreducible closed sets by the above lemma. This shows dim X < sup, dim U;. Conversely,
for any 7 and a chain of irreducible closed subsets

of Ui,
CGE LG G G CX

is a chain of irreducible closed sets in X, again by the above lemma. So dim X > sup, dim U;, so equality
holds. O

6.1.3. Definition. The codimension codimx Y of an irreduciblﬁ subset Y C X is the supremum of lengths
of increasing chains of irreducible closed subsets starting with Y. The corresponding ring-theoretic notion
is the height htp of a prime ideal p.

Warning: Noetherian rings can be infinite-dimensional. On the other hand, Noetherian local rings must
have finite dimension.

6.1.4. Theorem (Krull’s height theorem). Let A be a Noetherian ring, I a proper ideal generated by r
elements, then every minimal prime of I has height at most r.

6.1.5. Theorem (Algebraic Hartogs’s Lemma). Let A be a Noetherian integrally closed domain. Then

A= ) A,

ht p=1

Intuitively, this says that on a normal Noetherian scheme, a rational function that is regular outside a
closed set of codimension at least 2 can be uniquely extended to a regular function on the whole scheme.
Compare this with Hartogs’s lemma in complex analysis.

ProOF. This is trivially true when dim A < 1. In general, suppose for contradiction x € Frac A belongs
to A, for every prime of height 1, and © ¢ A. Let I = {a € A : ax € A}, then 1 ¢ I, so there exists a
minimal prime q 2 I. Because I; = {a € Aq : ax € Aq} is not equal to Ay, we see that q has height at least
2.

Localize at q to assume WLOG that (A4, q) is a local ring and q is the unique prime containing I. Then
q = rad(I), and because A is Noetherian, q is finitely generated, so I D g™ for some n. Take the smallest
such n. Consider an element ¢ € q"~\I, and let z = xt. Becauset ¢ I, z = xt ¢ A, but zq C xq” C 2l C A.

Now, if zq Z q, then zq = A, so q = %A is a principal ideal, contradicting ht q > 2. So we conclude that
2q C g, and we have a faithful A[z]-action on the finitely generated A-module q, so z is integral over A. But
A is integrally closed, so z € A, a contradiction. (]

6.2. Dimension of fibers. The main theorem here is the following:

6.2.1. Theorem. Let X,Y be irreducible varieties, m : X — Y a dominant map. Suppose dim X = a,
dimY =b. Then:

e For anyy € im7, dimm~1(y) > a —b.

e There exists a dense open U C Y, such that for any y € U, dim7~!(y) = a — b.

e Given a point x € X, define e(x) to be the mazimal dim Z, where Z ranges among the irreducible
components of m~(w(x)) containing x. Then e(x) is an upper semi-continuous function: the sets
X, ={z € X :e(x) > n} are closed.
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6.3. Cotangent and tangent spaces.
6.3.1. Proposition. Let X be a scheme, f € O,(X), p € V(f) a closed point, and f the image of f in
15 - Then
Ty p = Tx /()
6.3.2. Proposition (Jacobian computes Zariski cotangent space). Let X be a finite type k-scheme, so that

locally it is Speck[z1,...,zn]/(f1,..., fr). Then for any closed point p, T , = coker J, where J : k" — k"
is the linear map given by the Jacobian matrix

) af.
L) - S
J=|
) fyr
i) - F=(p)
PRrROOF. Translate p to the origin, and use the previous proposition repeatedly. O

Given a morphism of schemes f : X — Y, mapping p € X to ¢ € Y, there is a naturally induced ring
map Ty, — Tx ,. If k(p) = k(q), the above is a linear map, and we also get a map T'x , — Ty4.

6.4. Regularity and smoothness.
6.4.1. Proposition. For a Noetherian local ring (A, m, k), dim A < dimj, m/m?2.

PROOF. By Nakayama, a set of generators of m/m? over k lifts to a set of generators of m, which is at
least ht m = dim A. O

6.4.2. Definition (regular local ring). A regular local ring is a Noetherian local ring (A, m, k) such that
dim A = dimy m/m?.

6.4.3. Definition (regularity). A locally Noetherian scheme X is regular at p € X if Ox , is a regular local
ring. The word nonsingular is synonymous. Otherwise, we say X is singular at p.
X is regular if it is regular at all points, and it is singular otherwise.

6.4.4. Example. Regular local rings of dimension 0 are fields, while regular local rings of dimension 1 are
DVRs.

6.4.5. Proposition (Jacobian criterion). Suppose X = Spec(z1,...,z,]/(f1,..., fr) has pure dimension d.
(As usual, k = k). Then a k-point p € X is regular iff dim coker J(p) = d at p.

PrOOF. We know dim T , = dim coker J(p) = d. So it suffices to show that dim Ox,, = d. But this is
clear since p is a closed point and X has pure dimension d. O

In fact, for finite-type k-schemes, it suffices to check regularity at closed points (this is a hard fact).
So for such schemes, regular of pure dim d is equivalent to every irreducible component having dim d and
dim coker J(p) = d for all k-points p. But this still requires & = k. For general k, we have an alternate notion
of smoothness over Speck:

6.4.6. Definition. A scheme X/k is smooth of dimension d over k if there exists an affine cover by
Speck[z1,...,z,]/(f1,--., fr), for which the Jacobian matrix has dim coker = d at all points.

Remark: k-smoothness is equivalent to the Jacobian being corank d everywhere for every affine open
cover (and by any choice of generators of the ring corresponding to such an open set).
Regularity /smoothness correspond to the notion of “smoothness” in the world of manifolds. So:

schemes manifolds

Separated Hausdorff
Universally closed Compact

Proper Compact + Hausdorff
Krull dimension Dimension
Zariski (co)tangent space | (Co)tangent space

Regular, smooth Smooth

Singular Singular
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More or less by definition, for a finite type scheme X /k of pure dim d, where k = k, X is regular at all
closed points iff X is smooth over k.

6.4.7. Theorem. Comparison between reqularity and smoothness:

(a) If k is perfect, every regular finite type k-scheme is smooth over k.
(b) Every smooth k-scheme is reqular (with no hypotheses on perfection,).

6.4.8. Example. Let k = F,(¢), L a field extension given by L = k[z]/(2P —t). Let X = Spec L, then it is
regular since L is a field. But it is not smooth of dimension 0 since the derivative of P — ¢ vanishes.

6.4.9. Theorem. Regular local rings are domains, so reqular implies reduced. (In fact, they are UFDs, but
this is a much harder fact.)

6.5. Bertini’s theorem.

6.5.1. Theorem (Bertini). Suppose X is a smooth subvariety of Pj. Then there is a dense open U C Pp*
such that for any closed point H € U (corresponding to a hyperplane in P}), H does not contain any
irreducible component of X, and H N X s k-smooth.

7. Quasicoherent sheaves
7.1. Basic definitions.

7.1.1. Definition. Let X be a scheme. A quasicoherent sheaf £ on X is an Ox-module where there exists
an affine cover {U; = Spec A; C X}, such that &|y, & M; for A;-modules M;.

7.1.2. Proposition. Let X = Spec A, £ a quasicoherent sheaf on X, then £ = M for M =T(X,€).

PROOF. Define ¢ : M — & on each D(f) by the natural map My — I'(D(f),€). Check that these are
bijections using the sheaf axioms. |

7.1.3. Definition. Let X be Noetherian, then £ is a coherent sheaf if there exists an affine cover {U; =
Spec A; C X}, such that E|y, & M; for finitely generated A;-modules M;.

Warning: locally free of rank 7 is not an affine local condition.
7.1.4. Proposition. There is an equivalence of categories A-Mod «— QCoh(Spec A).
7.1.5. Corollary. Ezact sequences of qcoh sheaves implies exactness on affine opens.

7.1.6. Example. Tensor product of qcoh sheaves: on affine opens, (£; ® £2)(U) = £ (U) ® E(U). This is
the same as the sheafification of the obvious presheaf tensor product.

7.1.7. Proposition. Let F be a finite type qcoh sheaf on X, then its rank at a point is upper-semicontinous
on X.

7.2. f. and f*.
7.2.1. Proposition. Let f: X =Y be qcgs. If £ € QCoh(X), then f.E € QCoh(Y).
7.2.2. Definition. f* in the affine case: for f: Spec A — Spec B, F = N, then f*F = A%\;N.

In general, cover f: X =Y by f|ly : U = V between affine opens. Pull F back on each of them, and
glue together by universal property. Quasicoherence is obvious.

7.2.3. Proposition. f* 4 f,. O

7.2.4. Proposition. The pullback f* sends coherent sheaves (resp. locally free of rank r) on'Y to coherent
sheaves (resp. locally free of rank r) on X.

7.2.5. Proposition (base change map).

7.2.6. Proposition (projection formula). Let w: X — Y be gcgs, and F,G QCoh sheaves on X,Y. Then
there is a natural map T, F @ G — m(F @ 7*G), which is an isomorphism when either (1) G is locally free
or (2) 7 is affine.
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7.3. Invertible sheaves.
7.3.1. Definition. An invertible sheaf on X is an Ox-module locally free of rank 1.

Why are invertible sheaves so important?

e Use global sections of an invertible sheaf £ as replacement for I'( X, Ox).
e Invertible sheaves are “dual” to Weil divisors.

Invertible sheaves are preserved under ®.
7.3.2. Definition. The dual £V of a qcoh sheaf £ is defined on affine opens by
I(U, L") := Homp,0,)(T(U, £),T(U, Ov)).
This is also a qcoh sheaf. There is a natural pairing
LRLY = Ox
which is an isomorphism when L is invertible.

7.3.3. Definition. The invertible sheaves on X forms an abelian group, called the Picard group Pic(X).
Given f: X =Y, f*: Pic(Y) — Pic(X) is a group homomorphism.

7.3.4. Example. Consider X = P!, then there is a homomorphism Z — Pic(X) mapping a — O(a). This
is in fact an isomorphism.
In general, for X = P", then we can similarly define O(a), and Z — Pic(X) is again an isomorphism.

7.4. Weil divisors. Let X be a Noetherian irreducible regular scheme. (Regular local rings are UFDs,
so X will be factorial.)

In topology, for a smooth compact oriented manifold M with dimension d, H*(M) = Hy_,(M). For
schemes and k = 1, the left side is Pic(X), and the right side should be “codimension 1 subsets of X”.

Let p € X be a codimension-1 point. Then Ox , is a DVR. For f € K(X), we may define v,(f) by the
discrete valuation.

7.4.1. Definition. A Weil divisor on X is a Z-linear finite sum of irreducible codimension-1 subsets

> ay[Y].

For nonzero f € K(X), its principal Weil divisor
div f = ZUY(f)[Y]'
Y

This is a finite sum.

By Hartogs’s lemma 6.1.5, if f € K(X)* such that vy (f) > 0 for all Y, then f € Ox(X). If (f) =0,
then both f, f~1 € Ox(X), so f € Ox(X)*.

It is not hard to see that the principal divisors on P! all have degree 0. In contrast, all Weil divisors of
Al are principal.

7.4.2. Definition. The class group of X is Cl(X) = Weil(X)/ Prin(X).
7.4.3. Example. Let X = Spec Ok, then Cl(X) = Clk.
7.4.4. Theorem. There is a natural isomorphism Pic(X) — CI(X).

Given L € Pic(X), and a nonzero section s € I'(X, £), consider an irred codim 1 subset Y and its generic
point py. Pick an open neighborhood U of py (equivalently, U N'Y # 00), such that £L|y = Oy, so that we
can talk about vy (s) = vy (s|y). This is easily checked to be well-defined. So we can define

div(s) =Y vy (s)[Y] € Weil(X).
Y
7.4.5. Example. Consider the line bundle O(1) on P* = Uy U Uy, and the section s given by t € k[t] on Uy,
and by 1 € k[t71] on U;. Then div(s) = [0] has degree 1.

7.4.6. Definition. A rational section of L is a section of £ over some dense open V' C X, modulo equivalence;
two rational sections are the same if they agree on some smaller open.
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Given any nonzero rational section s of £, we may similarly define div(s): this time, s only represents
a section on U NV, hence a rational function on U, to which we may still associate vy (s). The set of (L, s)
with ® forms a group. What we will show is:

0 — K(X)*/Ox(X)* —— (L,s) — Pic(X) —— 0

I Eoo ]

0 —— Prin(X) —— Weil(X) —— CI(X) —— 0.

IR

To show theorem 7.4.4, we need to show bijectivity of the middle vertical map.
Injectivity: Suppose div(s) = 0 is defined on dense open V. For any irreducible codimension-1 D with
generic point p, pick an affine open neighborhood U = Spec A of p = [p], then there is an isomorphism

Lly 2, Oy . Then the rational function that s corresponds to belongs to A,. Since this holds for all height-1
pC A se A= 0py(U). So these glue together to form a global section s € Ox(X). We will show that
the map Ox — L defined by s is an isomorphism. Indeed, locally, after composing with local trivializations
¢: Lly = Oy, ¢s: Oy — Oy still has no zeros and no poles, so it belongs to Oy (U)*, i.e. is an isomorphism.
Since ¢ and ¢s are both isomorphisms, so is s locally, hence globally.

Surjectivity: suppose D is a Weil divisor. Define the sheaf O(D) as follows: on any U C X dense open,
define

I(U,0(D)) :={z € K(X)* : div(z|y) + D|y > 0}.

Define a rational section sp of O(D) to be 1 € I'(U, O(D)) C K(X)*, where U is the complement of Supp D.
We claim that (O(D), sp) is the desired preimage.

1. To show that O(D) is a line bundle: first, we find an open cover of X, where on each open set
U, D|y is principal. Suppose S = Supp D, then X\S is such an open. We then construct such an open
neighborhood of each p € S. Consider any irreducible divisor ¥ where p € Y. Since X is factorial, every
stalk Ox ;, is a UFD. Since any open neighborhood of p contains the generic point 7y of Y, there is a natural
injection Ox , — Ox,y, . For each affine neighborhood U = Spec A of p = [p] and ny = [q], this is the
natural localization A, — A4. The preimage of gA, under this map is a height 1 prime in Ox p, a UFD, so
it is principal, say generated by f € Ox,, C K(X). WLOG we may choose f € A, then f has no poles in
U, and if it has a zero at a divisor Y’ containing p, say with generic point 7y, then the preimage of m,_,
in Ox,, — Ox,y,, is another height 1 prime v containing f. Then q = (f) C v, which implies q = v. This
shows that f only has a zero of order 1 at ny.

Now, let

U =Un(X\ U Z)

Z irred codim 1
p¢Z

which contains p, so it is a dense open. On U’, div(f) = [Y].
Now, suppose p € Y1,...,Y, where D = Y n;[¥;]. Choose f; so that on an open neighborhood of p,
div(f;) = [Yi]. Then on their intersections, which is an open neighborhood U of p,

div | ([ [ £7) =D nilvil = Dlv.

This shows that we can find an open cover of X where D is locally principal. Now, fix one open U in the
cover, where D = div |y(s). For each affine open V' C U, there is an isomorphism I'(V, O(D)) = Oy (V) by
sending t — st. This is functorial, so they glue together to form O(D)|y = Opy. This shows that O(D) is
locally free of rank 1.

2. To show that O(div(s)) = L for (£,s): We claim that any open U that trivializes £ satisfies
O(div(s))|u = Op. Suppose L|y = Oy takes s to a rational function on U, which we also denote by s. Then
for any affine open V = Spec A C U,

['(V,0(div(s))) = {t € K* : divy (t) + divy (s) > 0}
={t € K* : divy(st) > 0}
={te K*:stec A}
=s 1A,
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which is isomorphic to Oy (V) = A as A-modules by sending ¢ to st. Furthermore, this isomorphism is
clearly functorial as V ranges among affine open subsets of U, so this induces an isomorphism of sheaves
O(div(s))|v =& Opy. Composing this with Oy = L]y, for sections over U, this is the bijection sending ¢ to st.
Now, the set of Us (open sets trivializing £) forms a base of the Zariski topology on X, and the isomorphism
I'(U,O(div(s))) — I'(U, £) is clearly functorial, so this defines an isomorphism of sheaves O(div(s)) — L.

Suppose the canonical section “1” is a section of O(div(s)) over U. Its image is a section which, on each
V in part (a) (i.e. affine opens that trivialize £), agrees with s|y. So its image is s by the sheaf axiom.

7.4.7. Corollary. Pic(P}) = Z.

PROOF. There is an exact sequence 0 — Z — Weil(P") — Weil(A") — 0, where A" = U is the

complement of a hyperplane, and Z is freely generated by that hyperplane. This induces an exact 0 — Z —
Cl(P") — CI(A™) — 0. But CI(A™) = 0. (|

7.5. Quasicoherent sheaf of graded module.

7.6. Sections of line bundles. One theme we see here is that global sections of line bundles on X
serve a similar purpose as functions on X.

7.6.1. Definition. Let X be a scheme, £ € Pic(X), s € I'(X, L), p € X. The value of s at p, s(p), is the
image of s in the fiber L|, := L,/m,L, = L, ®ox , £(p), which is naturally a 1-dim (p)-vector space. (In
general this makes sense for any quasicoherent sheaf.)

For s € T'(X, L), the locus of points where s does not vanish is denoted by D(s). This is open.

A map X — A} is equivalent to choosing n global sections of Ox. The analogous fact is:

7.6.2. Proposition. Let X be an A-scheme, for a ring A. The following data are equivalent:
o Amap f: X —PY%;
o A line bundle L € Pic(X), and sections So, ..., s, € I'(X, L), such that X = J D(s;).

When A = k, on k-points, this is the map X (k) — P"(k) given by p — [so(p),- - -, sn(D)]-

PROOF. (<=): Recall that affine schemes U; = Spec A[zq;, ..., 2y ;] cover P%. Given (L, so,...,5n),
we define maps D(s;) — U; by specifying a ring homomorphism A[z;, ..., 7, /] = T'(D(s;), Ox). Because
s; € T(D(s;),£) and s; ' € I(D(s;), L"), there is an element s;s; ' € I'(D(s;), Ox), which we map z;/; to.
To check that these glue together, it suffices to show that

Alzosis s Tnyila,,, — T(D(si) N D(s5), Ox)

! H

Alzoj, ... ,xn/j]zi/j —— I(D(s;) N D(s4),0x)
This is true because xy/; — xk/jx;/; — Sksj_l(sisj_l)—l = sksi_l.
(=): Let L = f*Opn (1), and s; = f*x; where z; € A[Zo,...,Tn]dego = (P, O(1)). Then D(s;) =
D(f*z;) = f~Y(D(x;)), so X = D(s;). a

7.6.3. Definition. Let F be a finite type quasicoherent sheaf on X. Say F is globally generated if for
any point p € X, there exists a set of s; € I'(X, F) such that s;(p) generate L|, over x(p). Equivalently
(Nakayama), there is a surjection of sheaves O®! — £ where I is an index set.

7.6.4. Definition. Let X be a k-scheme. A finite dimensional k-subspace W C I'(X, £) is called a linear
series. It is a complete linear series if W = I'(X, L) and is often written |£|. Given a linear series W,
the base locus is the set of points where all of W vanish. Then if W globally generates £, we get a map
X — P‘;im W=1 We say L is basepoint free if is is globally generated.

7.6.5. Example. The Veronese embedding P" — P("a")=1 can be seen as the map corresponding to picking
the degree-d monomials in I'(P™, O(d)) = k[zo, . . ., Tn]deg 4, Which globally generate O(d).

7.6.6. Example. All maps P" — P" are be characterized by choosing a d and n + 1 degree-d homogeneous
polynomials in k[zo, ..., Z;,] with no common zeros.
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7.6.7. Theorem (Serre’s Theorem A). Suppose S, is generated in degree 1, and finitely generated over
A =S5y. Then for any finite type quasicoherent sheaf F on Proj S, there exists ng such that for all n > nyg,
F @ O(n) = F(n) is finitely globally generated.

7.6.8. Theorem (Curve to projective extension). Let C/k be a smooth curve (i.e. pure dimension one), Y
projective over k, p € C a closed point. Then any map f:C —p —Y (uniquely) extends to C.

PROOF. Uniqueness follows from the reduced-to-separated theorem (regular local rings are reduced). To
show existence, we make several reductions:

e Assume C' is affine. This is because we can choose an affine neighborhood of p, and if the function
is extended to that neighborhood, then it glues with f to form an extension on the whole of C.

e Assume Y = P}. This is because: suppose we have proven the theorem for ¥ = P}?. Then we may
extend f: C —p =Y — P} toamap f: C — P}. Take affine open neighborhood Spec A C C
of p such that its image lands in A}. Then functions vanishing on ¥ N A} pull back to functions
vanishing at generic points of the irreducible components of C, hence they vanish on the entire C'
(by reducedness), so Spec A — A} factors through ¥ N A}.

Now, because C' is regular and p is a closed point, O¢c,, is a DVR, so we can pick a uniformizer 7. Pick
a neighborhood V of p, such that 7 € I'(V, O¢). Shrink V so that V' = Spec A is affine, 7 is nonvanishing
on V — p, and the line bundle £ induced by f is trivialized on V' — p. Suppose flv_p = [fo: fi 1 -+ ful,
fi € A (where V. — p = Spec A;). Let m = minuv,(f;), then t™"gq,...,t"™g, € A are (n+ 1) functions
with no common zeros, which gives a map V' — P} extending f. This glues with f to produce an extension
on the whole C. |

7.7. Ampleness. Ample line bundles are “positive” in certain senses, and ampleness roughly means
“having many sections”.

7.7.1. Definition. Let X be a proper A-scheme. An invertible sheaf £ on X is very ample if there exist
n + 1 sections that globally generate £ such that the induced map to P’ is a closed embedding.

Equivalently, X = ProjS,, where Sy = A and S is generated in degree 1. Then L is very ample if
L£=0(1).

7.7.2. Proposition. If £ is very ample, then so are LZ* (k> 1).

PROOF. Suppose £ = f*Opn(1) for f: X — P". Let g : P* — PN, N = (") + 1 be the Veronese
embedding, so that ¢*Opn (1) = Opx (k). Then (go f)*Opn (1) = f*Opn(k) = f*Opn(1)®* = LZ 50 LO* is
also pulled back from O(1) of a projective space, and £ < P < PV is a closed embedding. (]

7.7.3. Lemma (extending sections). Let X be gcgs, L a invertible sheaf, s € T'(X, L), F a quasicoherent
sheaf. Then for any t € T'(D(s), F'), there exists k > 0, such that

t® s € T(D(s), F @ L®F)
lies in the image of T'(X, F @ LZF). O

7.7.4. Definition (ample line bundles). Let X be a proper A-scheme. An invertible sheaf £ on X is ample
if any of the following equivalent conditions hold:
(a) L®* is very ample for some k > 1.
(a’) L®F is very ample for all k> 0.
(b) For all finite type quasicoherent sheaves F, F @ LZ* is globally generated for some k > 1.
(b”) For all finite type quasicoherent sheaves F, F @ LZ¥ is globally generated for all k > 0.
c) As f varies over global sections of £L&¥ (over all k > 1), the open sets D(f) form a base of the
topology on X.
(¢’) In the above, the affine ones already form a base.
(¢”) In the above, the affine ones cover X.

PRrROOF. Clearly, (a’) = (a), (b’) = (b), and (¢’) = (c), (¢”).

(¢) = (¢’): Consider p € X and any open neighborhood U of p. WLOG U is affine and trivializes L.
Then there exists f € ['(£L®*) such that D(f) C U. This D(f) is affine.

(a) = (c): Suppose L& is very ample. Then there is a closed immersion i : X < P™ and i*(Opn (1)) =
L Let Z be closed in X, and p a point in the complement of Z. We wish to find a neighborhood D(f) of
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p disjoint from Z. We can make Z into a closed subscheme. Then Z — X < P" is a closed subscheme, so
Z = Proj S, where S = Alzg,...,z,]/I for some homogeneous ideal I. Pick a homogeneous element s € I,
say of degree d, so that s € T'(P", O(d)). Then f :=i*s € T'(X, L&) vanishes on Z, and does not vanish at
p, which is what we want.

(b) = (c): Similar to above, we wish to find a neighborhood D(f) of p disjoint from Z. Pick F = 7z to
be the ideal sheaf of Z. Then since Zy ® L& is globally generated for some k, there exists s € I'(X,Z, @ LZF)
such that s(p) # 0. Since 0 — T — Oy is an injection, tensoring with the locally free L&* gives an injection
0— Iy ® L2 = LP Let f € I'(X,L%F) denote the image of s, and we claim that this works. For any
U trivializing £, f|y is the image of s|y under 0 — Zz|y — Oy, hence vanishes on Z N U. So s vanishes
on Z. Since p ¢ Z, there exists a neighborhood U of p trivializing £ where Zz|y & Opy. So since s(p) # 0,
f(p) # 0 as well, as desired.

(¢”) = (1"): Let X = JD(f;) be the union of finitely many affine opens, where f; € T'(X, £L®%). (By
scaling, a can be chosen not to depend on i.) On each D(f;) = Spec A;, F is just some finitely generated
A;-module, so it is globally generated by s;; € I'(D(f;), F). Extend these to 5;; € I'(X, F @ L®*) where k
can be chosen to not depend on 4,j. Then 5;; generates F ® L% on each stalk, hence globally generates
F @ L% In fact, this shows that F @ £L2*+7) is globally generated for all n > 0. Arguing similarly for all
residues mod a implies the desired statement.

(¢”) = (a): Let X = |JD(f;) be the union of finitely many affine opens, where f; € I'(X,£®%) and
D(f;) = Spec A; = Alai;]/1, where a;; € T'(D(f;),Ox). Extend these to a;; € I'(X, £L®"). We may choose
r so that f;,a;; are all global sections of £L®". We claim that these give a closed embedding to a projective
space. Since the linear series generated by f; is already basepoint-free, this gives us a map X — PY. We
index the coordinates of PY correspondingly with i and ij. Then it is clear that the ring homomorphisms
Alzi, i)/ (xr — 1) = T(D(fx), LZF) = Ay are surjective. This shows that X — P4 is a closed immersion.

(a), (b) = (a’): very ample tensor basepoint-free is very ample. O

There is another, more geometric, interpretation of ampleness.

7.7.5. Proposition (separating points and tangent vectors). Let X be proper over k = k, L an invertible
sheaf, and V' a basepoint-free linear series giving a map f: X — P". If:
e for any two distinct k-points x,y € X, there exists s € V with s(x) =0, s(y) # 0;
e for any k-point x and nonzero tangent vector 0 : Spec k(x)[e] — X, there exists a section s € V
vanishing at x such that the pullback of s along 0 is nonzero,

then L is very ample and f is a closed immersion.

7.8. Projective morphism. Recall that a morphism X = ProjS, — Spec A, where S; = A and S,
is finitely generated in degree 1, is called projective. We wish to define a notion of projectiveness over any
base scheme.

7.8.1. Lemma. Given a scheme Y, and the following data:
e for each affine open U CY, a scheme Zy — U;
o for VCU, amap pyv : Zv C Zy such that Zy = Zy xy V;
o for W CV CU, puw = puv © pvw,

then there exists a scheme : Z —'Y such that m=*(U) = Zy.

Given a scheme Y, and a graded quasicoherent sheaf of Oy -algebras /4 = @,,~ -"» such that
o S =0y; B
e Sym®.7 := @ Sym" A — 7, is surjective,
we can define Proj.%y — Y using the above gluing lemma. Also, the line bundles on each affine open glue
together over Proj.7,.

7.8.2. Example. Let & be locally free of rank r, then define .4y = Sym® £. Then Proj.%, is a projective
bundle that locally looks like U x P"~! on affine opens trivializing &.

7.8.3. Definition. A morphism 7 : X — Y is projective if X = Proj ., for some .%, as above.

REMARK. Hartshorne defines projective morphisms as X — Y x P — Y, where the first map is a
closed immersion.
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7.9. Curves.

7.9.1. Theorem. The following categories are equivalent:

(1) Integral reqular projective 1-dimensional k-varieties, and surjective k-morphisms.

(2) Integral regular projective 1-dimensional k-varieties, and dominant k-morphisms.

(8) Integral reqular projective 1-dimensional k-varieties, and dominant rational maps.

(4) Integral 1-dimensional k-varieties, and dominant rational maps.

(5) The opposite category of finitely generated fields of transcendence degree 1 over k, and k-morphisms.

8. Cohomology

8.1. Properties. Let X — Spec A be separated. (This isn’t absolutely necessary.) We will define for
each k > 0 a functor H*(X, —) : QCoh(X) — A-Mod, such that:

o HY(X,—)=T(X,-);

e Short exact sequences of QCoh sheaves gets sent to long exact sequences of A-modules;

e Let 7 : X — Y be a morphism of schemes, and F € QCoh(X). Then there exist oy, : H*(Y, m,.F) —
H*(X, F), which are isomorphisms when 7 is affine, that extend o : I'(Y, 7,F) — ['(X, F). This
gives, for G € QCoh(Y'), a composition

H*(Y,G) — H*(Y, 7.7*G) — H*(X,7* Q).

e If X is covered by n affine open charts, then H*(X,—) = 0 if £ > n. In particular, if X is affine,
then H'(X, —) = 0 (which we recall from earlier).

[ ] Hk(X,@]:]) = @Hk(X,fj)

A preview of what’s to come:

8.1.1. Theorem (cohomologies of O(m)). We have:
o HO(P?,O(m)) = AC") ifm>0, and 0 if m <0;
—m—1

o H*"(P%,0(m)) = Al if —m —1>mn, and 0 otherwise;
o All other cohomologies vanish.

8.1.2. Theorem. Let X be projective over A, and F a coherent sheaf. Then I'(X,F) is a finitely generated
A-module.

PRrROOF. We will show in fact that H*(X,F) are all finitely generated over A.

Let i : X — P be a closed embedding, then H*(X,F) = H¥(P%,i.F). So we may WLOG assume
X =P7. Use descending induction on k. In the base cases kK > n + 1, the cohomologies all vanish.

Recall that there exists a surjection O(m)®* — F — 0. Let K be the kernel, and unwind to a long exact
sequence. Suppose we want to show H™(X, F) is finitely generated. A segment of the long exact sequence
reads:

<o = H"(O(m)®*) — H"(F) = 0
and since H™ commutes with direct sums and by the explicit calculations, H™(O(m)®%) is finitely generate,
so H™(F) is as well. Suppose now we want to show this for n — 1. Then

o= HHOMM)®) — HYF) —» HY(K) — ...,
and since both the left and right are finitely generated, so is the middle. O

8.2. Definition. Let % = {U;}?_, be an affine cover of X, and let F be a quasicoherent sheaf. Define

the Cech complex
Ck (X, F):= 11 LU, N---NU;,, F)
[I|=k+1
I={io,...,ix }C[n]
with obvious differentials
d:Ch (X, F)— CH (X, F)

by alternatingly summing over the restriction maps. A short exact sequence of QCoh sheaves induces a short
exact sequence of Cech complexes (this is where it is crucial that we’re working with QCoh sheaves), which
then induces the long exact sequence. It is then obvious that if X is covered by n affine open charts, then
HPF vanishes for k > n.
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8.2.1. Theorem. Let X be quasicompact and separated. The Cech cohomology is independent of the (finite)
affine cover % .

PROOF. The proof proceeds in several steps.

Step 1: it suffices to show that the Cech complexes of {U;}~, and {U; ?:Jrll are quasi-isomorphic.

Step 2: The kernel of the surjection C'; yn+1 (X, F) = Cr,yr_, (X, F) is the chain complex whose k-th
term is the product over all I C [n + 1] containing n + 1, |I| = k + 1. The goal is then to show that this is
exact. But this is exactly the augmented Cech complex Cluin, 137, (Un+1,F). So it suffices to show that

for affine schemes X, the Cech cohomology vanishes except at degree 0.

Step 3: Suppose that X is affine and {U;} cover X, and suppose U, already is X. Then the augmented
Cech complex of X surjects onto the augmented Cech complex of U; N ---NU,_1, and the kernel is the Cech
complex for U,, which is just the Cech complex for X shifted by one. So by the cohomology long exact
sequence, the cohomology of the middle row vanishes.

Step 4: In general, suppose X is affine and {U;} cover X. Then there is an affine cover D(f;) where each
D(f;) lies inside some {U;}. Then the Cech complex localized at each f; is exact, so the original complex is
exact as well. |

More consequences of cohomology:

8.2.2. Proposition. Pushforwards of coherent sheaves by projective morphisms (of locally Noetherian schemes)
is coherent.

8.2.3. Proposition. Suppose Y is locally Noetherian. Then a morphism 7 : X — Y is projective and affine
iff it is finite.

8.2.4. Proposition. Suppose Y is Noetherian. Then a morphism m : X — Y is projective and has finite
fiber iff it is finite.

8.2.5. Proposition (fiber dimension of projective morphism is upper-semicontinuous). Let 7 : X — Y be
projective, and let Y be locallly Noetherian. Then the set {q € Y : dim71(q) > k} is Zariski-closed.

8.2.6. Theorem (Serre vanishing). Let F be coherent on a projective X/A. Then for allm > 0, H'(X, F(m)) =
0 for all i > 0.

8.3. Euler characteristic, Hilbert functions. We work with a projective k-scheme X, and F €
Con(X). The Euler characteristic

X(F) = dim H'(X, F).
i>0
For example, for X = P", F = O(m), then
1
x(O(m)) = S (m+1)(m+2)...(m+mn)
for all m,n. A general heuristic is that y is better behaved than individual cohomology groups, and we

study the individual cohomologies by proving vanishing theorems.
8.3.1. Proposition. Let 0 - F — G — H — 0 be an exact sequence of coherent sheaves. Then x(G) =
X(F) + x(H).

Let i : X < PY be a fixed embedding. Then by definition, Ox (1) = i*Opn (1).
8.3.2. Definition. The Hilbert function of F is defined by

hy(m) = dimy, H*(X, F(m)) = dimy H°(X, F @ Ox(1)®™).
8.3.3. Example. Let F = Zx be the ideal sheaf of X. Then we have an exact sequence
0—=>Zx = Opy —1i,0x — 0.
Tensoring with Op~ (m), we get
0= Zx(m) = Opn(m) = (i+Ox)(m) — 0.
By the projection formula, (i.Ox)(m) = i.(Ox(m)). Taking I'(P", —) gives us
0 — H(PYN,Zx(m)) — H°(PY,0(m)) = H*(X, Ox(m))
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where the last map is just restriction to X. So in other words, H°(PY,Zx (m)) should be interpreted as the
degree-m homogeneous polynomials in xg,...,xy that vanish on X. In particular, it depends on the way X
is embedded into PV.

8.3.4. Theorem. The function t — x(F(t)) is a polynomial in Q[t] whose degree is dim Supp F.

Hence, by Serre vanishing, for m > 0, the Hilbert function is a polynomial, called the Hilbert polynomial
pr(m). In particular, the Hilbert polynomial px(m) of Ox is a polynomial of degree dim X.

Proor. (TODO) O
8.3.5. Example. Let X = V(f) be a degree-d hypersurface. Then
1
px(m) = ppn(m) — ppn(m —d) = E((m—kl)...(m—l—n) —(m+1-=d)...(m+n—d)).
In particular, its leading term is %m”‘l.

REMARK. In general, for a closed subscheme X < P" its degree is defined as the positive integer a
such that the leading coefficient of px(t) is %. Another piece of information is the constant term px (0) =
X(X,Ox). This is one minus the arithmetic genus.

8.4. Riemman-Roch for line bundles on a regular projective curve. Let C' be a regular pro-
jective curve over k (not necessarily alg. closed), D a Weil divisor. Recall that if D = ) a,[p], then

deg D =" a, degp.
8.4.1. Theorem. We have deg D = x(C,O(D)) — x(C, O¢).
8.4.2. Definition. For a line bundle £ on C, define its degree deg £ = x(C,O(D)) — x(C, O¢).

8.4.3. Definition. For a scheme X, the arithmetic genus is defined to be g =1 — x(X,Ox). When X is a
integral projective curve over an algebraically closed field, it is true that h°(X,Ox) = 1, so h'(X,Ox) = g.

8.5. Remarks on sheaf cohomology.

8.5.1. Theorem (Kiinneth formula). Let X,Y projective schemes over k, F € QCoh(X), G € QCoh(Y).
Define F R G = niF ® m5G, where w1, 72 are projection maps from X x Y. Then

H™(X xY,FRG) = P H"(X,F)®x H(Y,G).

pt+g=m
8.5.2. Theorem (cup product). There is a ...
8.6. Baby intersection theory.
8.6.1. Definition. Let X be a smooth projective scheme over k. Given a line bundles £L4,..., L,

9. Curves of small genus
We use the machinery of cohomology of line bundles to study curves of small genus.

9.1. Definition. In this section, a curve C is a projective, geometrically integral, geometrically regular,
dimension-1 scheme over a field k.

9.1. Preliminary tools.

9.1.1. Definition (degree of a finite morphism at a point). Let 7 : X — Y be a finite morphism. Then
7.Ox is a finite type quasicoherent sheaf, so we may consider the rank d of f,Ox at a point y € Y. We call d
the degree of 7 at y. Equivalently, the degree is d = dim,,(,) T(Ox-1(,), 7 (y)) (just unwind the definition).

REMARK. The degree of 7 is upper-semicontinuous on Y.

9.1.2. Lemma. Let 7 : X — Y be a finite morphism of Noetherian schemes, whose degree at every point of
Y s either 0 or 1. Then 7 is a closed embedding.

9.1.3. Theorem (separating points and tangent vectors). Let k be algebraically closed. Let m : X — Y
be a projective morphism of finite-type k-schemes that is injective on closed points and injective on tangent
vectors at closed points. Then 7 is a closed embedding.
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PROOF. Since closed embeddings are affine-local on the target, we may WLOG Y = Spec B. Since 7
is projective, its fiber dimension is upper-semicontinuous on Y, so {y € Y : dim7~'(y) > 1} is closed. If
it is nonempty, then it contains a closed point, which contradicts with injectivity. So the fibers are finite
type and dimension 0 over the Spec of a field, hence finite. So 7 is projective with finite fibers, hence finite
(Theorem 8.2.4).

Now, for any closed point y € Y, we claim that the degree of 7 at y is at most 1. Suppose 7 1(y)
is nonempty, then it contains 1 point = that is finite over Speck, so it has to be Spec A, where A is a
finite k-algebra with one prime ideal m. Then k must be the residue field. Suppose for contradiction that
dimg A # 1, then Ay # k. But A, = Ow—l(y)’z = OX,gc R0y, k, so myOX,x # my,. So my/mfj — mx/mﬁ
is not surjective as maps of k-vector spaces, which contradicts 7 being injective on tangent vectors, i.e.
(mg/m2)¥ — (m,/m?2)" being injective. So we conclude that the degree of 7 at closed points is at most 1.
But since the degree of 7 is upper-semicontinuous, its degree at all points is at most 1. Hence we are done
by the previous lemma. O

9.1.4. Lemma. Suppose L is a degree 2g — 2 line bundle, then h°(C,L) = g —1 or g, with h°(C, L) = g iff
L= wce -

9.1.5. Theorem. Let k be algebraically closed. Suppose L is a line bundle on a curve C, and let g =
hY(X,0x) be the arithmetic genus of C.

o Ifdeg L > 2g, then L is basepoint-free.
o IfdegL > 29+ 1, then L is very ample (in fact, any basis of T'(C, L) gives a closed embedding
C o Ples ),

9.2. Genus 0.
9.2.1. Example. The curve 22 + y2 + 22 = 0 in PZ has genus 0, and is not isomorphic to P4.
9.2.2. Proposition. Any genus 0 curve C with a k-point is isomorphic to P}.
9.2.3. Proposition. All genus 0 curves can be described as conics in P%.

9.2.4. Proposition. Suppose C is a curve not isomorphic to ]P’,lc, then any degree 1 line bundle L has
RO(C, L) < 2. As a consequence, for degree-1 points p,q on C, O(p) = O(q) iff p = q.

9.3. Hyperelliptic curves. Assume k algebraically closed with characteristic not 2.

9.3.1. Definition. A genus g curve C is hyperelliptic if it admits a double cover (i.e. degree 2 finite
morphism) 7 : C' — P}, (which we may as well fix).

Then the preimage of any closed point consists of either 1 or 2 points.

9.3.2. Theorem (hyperelliptic Riemann-Hurwitz). Let C' be a hyperelliptic curve with double cover w: C —
P}. Then m has 2g + 2 branch points (closed points p € P}, where m~'(p) is a single point).

9.3.3. Proposition. Let py,...,p, be distinct closed points in P}. If r is even, then there is precisely one
double cover branched at those points. If r is odd, then there are none.

PROOF. Suppose 0 and oo are distinct from py,...,p,. Then all branch points are in A'. Any double
cover C' — Al gives rise to a quadratic field extension K/k(z), which must be Galois. Find y € K such
that the nontrivial element o in the Galois group maps y + —y. Then y? € k(z), so we can replace y by
an appropriate k(x)-multiple such that y? is a polynomial, monic with no repeated factors, say y? = f(z) =
oV +an_12V 1 4+ - 4 ag. This is a curve C} in A%, and by the Jacobian criterion, this curve is regular.
Thus C}y and C’ are both normalizations of A! in k[z](y), hence isomorphic. Because the branch points are
Pi,...,Pr, we conclude that f(z) = (z —p1)...(z — p,).

In the projective situation, we simply do the same for k[u], v = !, which gives rise to the curve C”

defined by 2?2 = (u — pll) co(u— p—lr) So the double cover C' — P! has to be glued using C’ and C”. Thus,

in K(C), we must have 22 = u" f(1/u) = f(x)/z" = y?/a". If r is even, then there is a unique way to glue,
i.e. identifying z = y/x"/2. If r is odd, = does not have a square root in k(x)[y]/(y* — f(z)), so there is no
way to glue C" and C” together compatibly. O
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PROOF OF HYPERELLIPTIC RIEMANN-HURWITZ. We now have an explicit description of 7 : C — ]P’}c,

in terms of covering it by two affine opens. Writing down the Cech complex then easily tells us that
g=h'(C,0¢) =% — 1, as desired. O

9.3.4. Proposition. Suppose g > 2. If L corresponds to a hyperelliptic cover C — P!, then L&) 2 4.

PRrROOF. Compose the hyperelliptic map with the (¢ — 1)-th Veronese embedding
C—P - pi!

then the pullback of Opy-1(1) along this composition is L2~ The pullback H(P9~1, O(1)) — HO(C, £L29~1)
is injective: if a hyperplane s € H°(P9~1, O(1)) is pulled back to 0, then s vanishes on all of the image of C,
so the image of C' (a rational normal curve) is contained in a hyperplane, which is impossible. So £206-1) g
a degree 2g — 2 line bundle that has at least g linearly independent sections, so it is equal to wc. |

9.3.5. Proposition. Any curve of genus at least 2 admits at most one hyperelliptic cover.

PROOF. The hyperelliptic map, if it exists, can be reconstructed from the canonical linear series given
by wc'- O

9.3.6. Proposition. A curve C of genus at least 1 is hyperelliptic iff it has a degree 2 line bundle L with
rO(C, L) = 2.

PROOF. Suppose L is a degree 2 line bundle with h°(C, L) > 2. We claim h°(C,£) = 2. Suppose
otherwise. Consider a closed point p, and the exact sequence 0 — O(—p) = Oc — O|, — 0. Tensoring
with £ gives 0 — L(—p) — L — L], — 0. Writing down the long exact sequence gives h°(C, L(—p)) + 1 >
RO(C, L) > 3, so h%(C,L(—p)) > 2. But L(—p) has degree 1, so this contradicts with Proposition 9.2.4.
So h°(C, L) = 2. Let s, s2 be linearly independent sections, we claim that this is basepoint-free. Suppose
div(s1) = p+ @1, div(s2) = p+ g2. Then O(q1) = L(—p) = O(gz2), which implies g1 = g2, so s1/s2 has no
zeros and no poles and therefore constant, which contradicts them being linearly independent.

Now, return to the original problem. Suppose C is hyperelliptic, then the pullback of Op: (1) is a degree 2
line bundle with at least 2 sections, so by our discussion above it has exactly 2 sections. Conversely, suppose
L is a degree 2 bundle with 2 sections, then it is basepoint-free and thus gives a map to P!, which has degree
2. O

9.4. Genus 1: elliptic curves.

9.5. Genus 2. We claim that in this case all curves are hyperelliptic. Let C' be a curve of genus g = 2.
Then we has degree 2g — 2 = 2, and has 2 sections. By Proposition 9.3.6, it is basepoint-free and gives a
double cover to P'. Conversely, any double cover gives a degree 2 line bundle with 2 sections, which must
be we.

9.6. Genus 3.

9.6.1. Proposition (canonical embedding). Let k be algebraically closed. Suppose C is not hyperelliptic,
then wc gives a closed embedding C' — P91,

PRrROOF. To show w¢ is basepoint-free, it suffices to show that given any closed point p,
h(C,we(-p)) = h’(C,we) — 1.
By Riemann-Roch: h°(C,wc(—p)) — h%(C,0(p)) = degwe(—p) —g+1=29—-3—g+1=g—2. But
R°(C,O(p)) = 1 by Proposition 9.2.4, so indeed h°(C,wc(—p)) =g — 1= h°(C,wc) — 1.

Now, to show w¢ is very ample, it suffices to show that given any closed points p, ¢ (not necessarily
different),

hO(C,we(—p - q)) = h°(C,we) — 2.
By Riemann-Roch: h%(C,we(—p—q)) —h°(C,O(p+q)) =degwe(—p—q) —g+1=2g—4—g+1=g—3.
Because C' is not hyperelliptic, then the degree 2 line bundle O(p + ¢) must have h°(C,O(p + q)) = 1. So
R (C,we(—p—q)) =g — 2 =h°(C,wc) — 2 as desired. O
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Specializing to the genus 3 case, the canonical embedding gives an embedding C' < P? as a degree 4
curve. Conversely, I claim that every quartic curve in P? is canonically embedded. The curve has genus
1—pc(0)=1- (3) + (_22) = 3. The embedding is given by a line bundle of degree 4 with at least 3 sections,
so it has to be we. In conclusion, there is a bijection between genus 3 non-hyperelliptic curves and quartics
in P? (up to PGL3(k)).

9.6.2. Example. The Klein quartic 23y + y>z + 23z = 0 has 168 automorphisms.
9.6.3. Definition. A curve admitting a degree 3 cover of P! is called trigonal.
9.6.4. Proposition. Every non-hyperelliptic genus 3 curve is trigonal.

9.7. Genus 4. The canonical embedding 7 maps a genus 4 curve C as a sextic curve in P3. We claim
that this is in bijection with regular complete intersections of a quadric surface and a cubic surface.
By Riemann-Roch,

R(C,i*0(2)) = h°(C,wE?) = degwd? —g+1=12—-4+1=09,
while h0(P%, 0(2)) = (3) = 10, so the pullback
H(P3,0(2)) — H°(C,i*O(2))

has a nontrivial kernel. The kernel (which is H(P?, Z¢:/ps @ O(2)) from the closed subscheme exact sequence)
is a quadric surface that contains C.

Now, this quadric surface @ is given by some quadratic form which can be represented by a matrix. We
may as well diagonalize it (assuming char k # 2). Its rank determines the shape of Q:

rank 1: double plane
rank 2: two planes
rank 3: cone

rank 4: regular quadric.

The first two cases cannot happen, i.e. C' does not lie in a hyperplane, because H°(P3, O(1)) — H°(C,w¢)
is injective. So we conclude that @ is irreducible.

In addition, we claim that C' cannot lie in two distinct quadric surfaces. Otherwise, by Bezout, their
intersection has degree 2 x 2 = 4 < 6, but C' is contained in this intersection, hence must have a larger
degree.

So we ask, does C' lie in a cubic surface? Repeating the same calculation, we see that

dim ker(H°(P?, O(3)) — H°(C,i*O(3))) > 5.

Since we require the cubic surface to not contain (), a 4-dimensional subspace is forbidden, so there exists
at least one cubic surface K not containing ). Now, K and ) share no components, so K N is a complete
intersection, containing C' as a closed subscheme. By Bezout’s theorem, K N has degree 6. By a calculation
on Hilbert polynomials, K N has genus 1 — (g) + (352) + (353) — (355) = 4. Since the genus and degree
completely determine the Hilbert polynomial (which has degree 1), we conclude that C' = K N Q.

Conversely, any regular complete intersection of a quadric () and a cubic K is a curve C of genus 4 and
degree 6. Then C' does not lie inside a hyperplane, because otherwise (say it lies inside H), then H N Q is a
degree 2 curve containing C, a degree 6 curve, which is impossible. Thus, O¢(1) has degree 6 and at least
4 sections, so it must be equal to we. This means that C' is canonically embedded.

9.8. Genus 5. We can mimic the genus 4 case: the dualizing sheaf we has degree 29 —2 =8 and g =5
sections, so it canonically embeds C' as a degree 8 curve in P*. By Riemann-Roch,

RO(C,w&?) = degw&? —g+1=16-5+1= 12,
while K%(P4,0(2)) = (*1?) = 15. So
dimker(H°(P*,0(2)) — H'(C,w&?)) > 3.

Then there exist 3 linearly independent quadrics containing C. (However, we will see later that not all
genus 5 curves are canonically embedded as the complete intersection of 3 quadrics; the exceptional ones are
precisely the trigonal curves.)
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Conversely, suppose C'is the regular complete intersection of 3 quadrics. Then its genus is given by the
inclusion-exclusion formula:

i (o () (1) (79 -

Also, C has degree 23 = 8 by Bezout’s theorem. To show it is canonically embedded, it suffices to show
Oc¢(1) has at least 5 sections, i.e. it does not lie in a plane. Suppose it does, then C is a closed subscheme of
the complete intersection of two quadrics and a plane, which is a curve of degree 22 = 4. But C has degree
8 > 4, so it cannot be contained in a curve of degree 4, a contradiction. So O¢(1) has degree 8 and at least
5 sections, so it must be isomorphic to we, as desired.

Unfortunately, this stops working for genus g > 6:

9.8.1. Proposition. Any canonical genus g curve, where g > 6, is not a complete intersection.

10. Differentials

In this section we take another familiar object in differential geometry (differential forms) and transport
it to schemes.

As motivation, consider the case where U is an open set in R™. Then we have amap d : C>=(U) — Q}(U),
mapping f — >, %dmi, which satisfies d(fg) = f(dg) + (df)g. On any smooth manifold M, we have

i

the same construction on every coordinate patch, which glue together. More generally, for a smooth map
M — N, we have the notion of a sheaf of relative differential forms.
The corresponding algebraic version is the “cotangent sheaf”.

10.1. Affine case. We start from the simplest (affine) case.
10.1.1. Definition. Let i : B — A be a map of rings. The module of derivations is an A-module M, and a
map of abelian groups d: A — M (not a map of A-modules!) such that:
e i(B) C kerd;
e d(aa’) = a(dd’) + (da)d’.
Note that then d is a map of B-modules.
10.1.2. Definition. The module of Kéhler differentials (€24,p,d) is the universal such module: given any

module of derivation (M,d’), there exists a unique map of A-modules p: Q4,5 — M, such that pod = d'.
It is constructed as

Q= pr P Ada / (d(i(b)),d(a + a') — d(a) — d(a’),d(ad’) — ad(a’) — d(a)a’).
acA
Note that if A is a finitely generated algebra over B by ai,...,a,, then Q4,5 is a finitely generated
module over A by day,...,da,. It is even finitely presented when A is.
10.1.3. Example. Let A = Blzy,...,x,)], then Q4,5 = @), Adx;, with df (1,...,2,) = D1 OF ;.

10.1.4. Example. Let A = Blz,y]/(f(z,y)). Then
Adx & Ady
(%dw + g—gdy)
Say A = k[z,y]/(zy), then Q4 = (Adx ®© Ady)/(ydx + xdy). Its rank at all points (z,y) # (0,0) is 1, but
the rank jumps to 2 at (0,0). This already indicates that €2,,5 captures smoothness information.

Q=

10.1.5. Lemma. Let T C B, S C A be multiplicatively closed sets such that i(T) C S, then
Qs-14/7-15=5"Q4/5.
10.1.6. Lemma. Let C — B — A be maps of rings. Then
A Qo — Qac — Qayp — 0
is exact, where the first map is given by a @ db — ad(i(b)) and the second map is da — da.

REMARK. In manifolds: let M =5 N — {*} be smooth, then 0 — Tayyn — Ty — 7Ty — 0 is exact.
Dualize to get a similar expression as in lemma 10.1.6.
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REMARK. If the maps of Spec A — Spec B — Spec C' are smooth, then the sequence in lemma 10.1.6 is
short exact (the leftmost map is injective).

10.1.7. Lemma. Let C — B — A be maps of rings, where A = B/I. Then we can continue the exact
sequence to the left:

I/IZ i)A(X)QB/C —)QA/C —0
where I /1% is a B/I = A-module, and § : i — 1®di; note that it is well-defined because §(ii') = i®@di'+i' @di €
I ®Qp/c, hence is zero.

REMARK. In the differential-geometric picture: M — N is an embedded submanifold, and we have an
exact sequence

0 — Tar — Tn|am — normal bundle — 0.

So I/I? is called the conormal sheaf of Spec A — Spec B.

In general, there is a way to extend the right exact sequence into a long exact sequence, analogous to
sheaf cohomology. The difficulty is that we’re starting with a sequence of rings, which is not an abelian
category. This is called André—Quillen homology.

10.2. The cotangent sheaf. Let 7 : X — Y be a morphism of schemes. Define the cotangent sheaf
Qx/y, a sheaf of Ox-modules, by gluing together on affine opens. The tangent sheaf T,y = Q}/(/Y.
There is another way to define this. In the affine case, let B — A be a ring map. Consider

a®a’+raa’

I =ker(A®p A ———— A),
which is generated by tensors of the form @ ® 1 — 1 ® a. Then one can show that I/I%, which is an
A= A®p A/I-module, is just Q4/p, with d : A — I/I? sending a — (a® 1 —1®a) (mod I?). We can use
this to directly define Qx,y, as the sheaf T/I?% where T is the ideal sheaf of A : X — X xy X.
The analogous versions of lemmata 10.1.6 and 10.1.7 are then:
10.2.1. Lemma. Let X L Y % Z be maps of schemes, then we have an exact sequence
f*Qy/Z — QX/Z — Qx/y — 0.

10.2.2. Lemma. Let X LY % Z be maps of schemes, where f is a closed immersion. then we have an
exact sequence

I/T* = f*Qy 7z — Qx/z — 0,
where T is the ideal sheaf of f, and T/I? is the conormal sheaf.
The following proposition justifies the importance of €.
10.2.3. Proposition. Suppose X is a scheme over k, and p € X (k). Then
isQyyp =T, =m/m?
s the Zariski cotangent space at p.

PROOF. When X = Spec A, a k-point is a maximal ideal m C A with A/m = k. So it suffices to show
Qa/k ®a k = m/m?. Taking the dual, we have to show
Hom(m/m?, k) = Hom(Qa/x ®a4 k, k).

The RHS is Hom(€2 44, k) by tensor-hom adjunction, and by the universal property this is just k-derivations
d: A — k. This necessarily kills & and m?, so induces a map m/m? — k. Conversely, any map m/m? — k
extends to a k-derivation d : A — k. (]

10.2.4. Example. Let X = P}, and consider Qp1/y, which is a line bundle. In fact, by taking an affine
chart A! = Spec k[z] and a rational section dz of the line bundle, because

1 —1
E

we conclude that Qp1/, =2 O(—2) = wpr. In fact, this is true for all smooth projective curves.

de =d(1/z™1) =
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10.2.5. Example. In the case X = P}, we have a map
OX ZOy Ty O(l)@(n+l)

and dualizing it we get the Euler sequence

0.y Tn

(%) 0 = Qpnp — O(=1)P D) 22y O 5 0.
(Intuition: C* — C"*1\0 5 P, which gives 0 — (> xia%i) — @(Ca%i — 7*Ipn — 0.)
PROOF. Write (%) as a map of graded modules: let S = k[zo, ..., x,], then S(—1) shifts the indexing
toward the left by 1. Then let M be the kernel
() 0—M— S(-1)20+) 55 50

where the latter map is given by e; — x; (e; is the generator of each copy of S(—1), which has degree

1). To calculate M on each D(z;), we localize (xx) at x; and take the degree 0 component. It is a free
k-vector space spanned by - (e; — Z¢;), and we take each of these to d(z;,;), which are free generators of
the sections of Qpn /3, over D(x;). It suffices then to check that these isomorphisms glue together to show

that Qﬂmn/k = M. O

The canonical bundle Kpn i, := \" Qpn /i, can then be calculated as O(—n — 1), which is just the sheaf
wpn /i, appearing in Serre duality. This will be true for all smooth projective varieties.

10.3. Smoothness. Recall the definition of smoothness over a field: X — Speck is smooth of dimen-
sion d if it can be covered with affine charts Speck[z1,...,2,]/(f1,..., fr) where the Jacobian matrix has
corank d at all points. We now make an equivalent, cleaner definition:

10.3.1. Definition. Let X be a k-scheme, then X is smooth of dimension d if X is locally of finite type, of
pure dimension d, and {x/;, is locally free of rank d.

10.3.2. Theorem (conormal exact sequence for smooth varieties). Let i : X < Y be smooth k-varieties of
dimension d,e. Then
0—=ZT/I*> = i*Qy — Qx =0

is exact, and T/I? is locally free of rank e — d. (Recall this is not usually left evact.) Conversely, if Y is
smooth, T/I? is locally free, and the above sequence is exact, then X is smooth.

The normal sheaf is Nx/y = (Z/Z?)Y. When X < Y is a (Weil) divisor, the conormal sheaf Z/Z? is
denoted by Ox(—X), by which we really mean Oy (—X)|x.

10.3.3. Proposition (adjunction formula). Leti: X < Y be a divisor, then
wx = i*(wy X Oy(X))

ProoFr. By the conormal exact sequence, we see that

dimY 1 dimY —1
Ky =i"( \ @)= \Z/>)e J\ Qx=i"0y(-X)® Ky,
and we know Kx = wyx for smooth projective varieties. O

10.4. Invariants. We can use Qx/;, and N’ Qx/p = Qg(/k to define invariants, such as the Hodge
numbers

hP (X, Q% / k)
What’s interesting is that for p = 0 we get birational invariants:
10.4.1. Theorem. Let X,Y be smooth projective varieties that are birationally isomorphic. Then h°(X, Qg(/k) =
RO(Y, Q. / k)

This works not just for A7, but for any covariant tensor operation.
10.4.2. Definition (plurigenera). The rth plurigenus of a smooth projective k-variety X is h°(X, K??T).

10.4.3. Definition (Kodaira dimension). By asymptotic Riemann-Roch, h°(X, K§") is eventually polyno-
mial in 7. The Kodaira dimension x(X) is the degree of this polynomial (defined to be —1 if the polynomial
is identically zero).



11. FLATNESS 133

10.5. Riemann-Hurwitz theorem.

10.5.1. Theorem. Let 7w : X — Y be a finite separable morphism of reqular projective curves, of pure degree
n. Then
29(X)—2=n(29(Y) —2) +degR,
where R is the ramification divisor.
As an application, we may count the number of tangent lines from a point p € P? to a degree d plane
curve C C P2, (The answer is d* — d.)

11. Flatness
The idea is to capture “nice families of schemes”.
11.1. Algebra.
11.1.1. Definition. Let X be a scheme, F € QCoh(X), then F is flat if F, is flat over Ox , (or equivalently,

affine locally instead of stalkwise).

Let f: X — Y be a morphism, then it is flat if for x € X, y = f(x) € Y, Oy,y = Ox, is flat.
11.1.2. Example. Closed embeddings in general will not be flat. For example, Speck 9 Al is not flat,
because k is not a flat k[z] module: take k[z] e, k[x].

11.1.3. Lemma. Let 0 — N3 — Ny — N3 — 0 be a short exact sequence of A-modules, where N3 is flat.
Then for any A-module M,

18 exact.
PRrOOF. Tor;(N3, M) = 0. O

Geometrically: suppose 0 — & — & — &3 — 0 are QCoh on Y, where & is flat. Then for any morphism
f: X =Y, pulling back to 0 — f*& — f*E — f*E3 — 0 is also exact.

11.1.4. Lemma. Suppose 0 — M; — My — Mz — 0, then:
e If My, M3 are flat, so is My;
e If My, M3 are flat, so is Ms.

11.1.5. Lemma. Suppose 0 — M; — -+ — M,, — 0 is an exact complex. If My, ..., M, are flat, then so
18 Ml-

11.1.6. Lemma. Suppose 0 — M; — --- — M,, — 0 is an exact complex, where all M; are flat. The for
any N, 0 > M1 @ N — --- — M, ® N — 0 is exact.

11.1.7. Proposition. Let (A, m,k) be a local Noetherian ring. Then any finitely generated, flat A-module
is free.

ProOOF. By Nakayama, we can pick lifts of generators of M ® 4 k to get
0—K— A% - M —0.
Since M is flat, tensoring with k gives an exact sequence
0> K4k—=k > Mek—0,
but k" 2 M @k, s0 K®4 k =0, so K =0 by Nakayama. O
11.1.8. Theorem. Suppose for any finitely generated ideal I C A, Tori(M,A/I)=0. Then M is flat.
11.1.9. Corollary. Let A be a PID. Then M is flat iff M is torsion-free.

11.1.10. Corollary. Let w : X — C be dominant, where X is integral and C is a reqular curve. Then m is

flat.

Proor. It suffices to check that Ox , are torsion free. But since 7 is dominant, this is automatically
true. (]

11.1.11. Example. The resolution of a node is not flat.
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11.2. Geometry. Assume all schemes are locally Noetherian or something.

11.2.1. Theorem. Let f : X =Y be a flat morphism. Given x € X, y = f(x) € Y, then
dim, (X,) = dim, X — dim, Y.
Here dim, means local dimension, i.e. dimension of the local ring at x.

Proor. Use induction on dim, Y. We may replace Y by Spec Oy, and X by X xy SpecOy,. The
base case dimY = 0 is easy, since then X,, = X (as topological spaces) and dim X, = dim X — 0. In general,
suppose dimY = n. Pick t € my C Oy,, a non-zero-divisor. By flatness (which is just torsion-free over
local ring), the image of ¢ under f# : Oy, — Ox,, is also a non-zero-divisor. By Krull’s principal ideal
theorem, every irreducible component of V' (¢) < Y has codimension 1, and so is every irreducible component

of V(f#(t)) — X. We are then done by inductive hypothesis. O
11.2.2. Theorem. Let X — Y be projective, F € Con(X) flat over Y. Then the map
y = x(Flx,)

is locally constant.

Remark: conversely, let X < P*" xY — Y, F € Con(X), and Y is reduced. If the Hilbert polynomials
PFix, (t) are independent of the choice of y € Y, then F is flat over Y.

PROOF. Reduce to Y = Spec A. It is enough to show that x(F(m)|x,) is independent of Y for m
sufficiently large. By Serre vanishing, pick m large enough so that H*(X, F(m)) = 0 for k > 1. Then the
augmented Cech complex associated to F(m)

0 — H(X,F(m)) = C°(X,F(m)) = --- = C™(X,F(m)) =0
is a long exact sequence, and since F is flat over Y, all but the first term are flat over A. Then so is
H°(X,F(m)). Since it is flat and finitely presented, it is projective (locally free).
Now, to restrict it to X, it is enough to tensor this Cech complex with (y), which by flatness

gives another exact complex. We then conclude that H*(X,,F(m) x,) = 0 for £ > 1, and is equal to
HO(X,F(m)) ®4 k(y) for k = 0. This number is dependent of y since H°(X, F(m)) is locally free. O

11.2.3. Corollary. Let X — P" xY — Y be flat, and Y is connected. Then the Hilbert polynomials px, (t)
are independent of the choice of y € Y.

11.2.4. Corollary. Let C x Y — Y be a flat morphism, where C' is a projective curve and Y is connected.
Let L be a line bundle on C xY. Then deg L|cy 1y} 45 independent of y € Y.

Suppose we have a family of schemes, parametrized by one parameter ¢t # 0. We would like to define
a limit at t = 0. In other words, if we have a scheme lying over, say, A — {0}, we would like to uniquely
extend it to be over Al

11.2.5. Theorem (uniqueness of flat limits). Let A be a DVR, K = Frac A. Let n be the generic point of
Spec A. Let X be a Noetherian scheme over Spec A. Given a closed subscheme Z, — X, of the generic
fiber, consider its scheme-theoretic closure Z = Z_77 — X. Then this is the unique closed subscheme Z — X
that is flat over Spec A, and restricts to Z, on X,.



CHAPTER 8

Riemannian Geometry

1. Curvature

1.1. Riemannian metrics. Let M be a smooth manifold. We will use Einstein summation notation
throughout: unless otherwise specified, an index repeated once in superscript and once in subscript is assumed
to be summed over.

1.1.1. Definition. A Riemannian metric g on M is a smooth (0, 2)-tensor field that is a positive-definite
symmetric bilinear form T, M x T,M — R for each p € M.

1.1.2. Definition. A smooth manifold M equipped with a Riemannian metric g is called a Riemannian
manifold.

In a coordinate chart x = (z!,...,2") : U — R", where U C M, g takes the form
g= gijd:vidxj

where g;; = g( a?ui , %). Given another coordinate chart z, the tensor transforms like

~ oz ozt
gij = %@gkb

Given an immersion f : M — N, if g is a Riemannian metric on N, f*g is naturally a metric on M. In
particular, submanifolds of R™ naturally inherit its metric.

1.1.3. Proposition. Any smooth manifold admits a Riemannian metric.

PRrooF. Pick a partition of unity (possible since smooth manifolds are assumed to be paracompact) to
glue together local Euclidean metrics. |

1.1.4. Definition. In any local coordinate z',..., 2", consider the inverse matrix (¢%) := (g;;)~", and
define the inverse metric g=! as a (2,0)-tensor as g~ !(dz?,da’) = g%.

PRrOOF. To see g~ ! is coordinate-independent, let T be another system of coordinates. Let A{ = gii

ind (é_l)g = g%é‘.‘ By tEe transformation rule of (O, 2)-tensors, (gi;) = A~ (gre)(A™1)". So under this basis,
g~ Hda", di) = g = ((gre) 1) = (A"(gre) T A)™.

Note also that dili = > %dzj, so g~ (d7t,da?) = kot gf,i gi;g’l(dxk, dz'). But this is exactly the
same as (A (gre)~1A)". So we have shown that ¢! = g~ ! is indeed coordinate-independent. ]

1.1.5. Definition. Given a metric, we can define:
e For v € T, M, define |v] = y/gp(v,v).
e For v,w € T,M, define their angle 6 by g, (v, w) = |v||w| cosf.
e For a € Ty M, define |a| = \/gy(a,a) (here we used the inverse metric, which is commonly and
abusively also written as g).
e In general, g defines a positive definite symmetric bilinear form on T, M®" @ Ty M®* for any (r, s).
e For a smooth curve v : [a,b] = M, define its length

b
Liy) = / I/ (t) .

e For an open set U C M with coordinates = : U — R"™, define its volume

Vol(U :/ det(g;;)dxy ... dxy,.
(U) m(U)\/ (9i5)dr

135
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Given a metric g, we can have a natural correspondence between vector fields (upper indices) and 1-forms
(lower indices), as follows.

1.1.6. Definition. Define a map b : I' — I'*, sending V — ¢(V, —). Similarly, we have § : I'* — I, sending
o> g (o, ).

In coordinates, this is given by
Vii= (V)i = V¥,
o = (o)’ = apgtt.
Similarly, we can raise/lower indices for arbitrary tensors.
1.1.7. Example. Let f € C*(M). Its gradient V f := (df)*. In local coordinates, this is Vf = gij%aj.

1.2. Affine connections.

1.2.1. Definition. An affine connection on a smooth manifold M is a map V : I'(M) x T'(M) — T'(M),
(X,Y) — VxY, satistying:

e (C°°(M)-linearity in X;

e R-linearity in Y;

e Leibniz rule in Y, i.e. Vx(fY) = X(f)Y + fVxY for f € C°(M).

For example, the directional derivative in R" is an affine connection.
Warning: affine connections are generally not (1,2)-tensors!
The data of an affine connection, in local coordinates, is encoded in the Christoffel symbols T'*

ij» which
are smooth functions on the coordinate patch.

1.2.2. Definition. Let z = (x!,...,2") be a local coordinate, then define the Christoffel symbols Ffj SO
that

Vo, () = T};0%.
For X = X'0;, Y =YJ9;, we then have
VxY = X' (0;Y7)0; + X'YIT};0%.

One can interpret the first term as the “naive guess” of the directional derivative, and the second term as a
compensation term to account for the manifold’s own geometry.

Note that the value of VxY at a point p only depends on X (p), but depends on Y on a neighborhood
of p.

We may extend Vx(—) to act on any tensor (not just vector fields), by the principle

Vx(T®98)=(VxT)®@ S+ T ® (VxS).

For example,
o Vx(f)= X(f)=df(X) for functions;
o Vx(a)(Y)=X(aY)) — a(VxY) for 1-forms.

The general formula is, for an (r, s)-tensor T, VT is an (r, s + 1)-tensor:

(VT)(CH, .. .,OéT,VO,Vl, . 7‘/5) = (VVOT)(Oll, .. .,ar,Vh. . .,VS)
=Vo(T(on,. .y, Vi, V) = D T(.., Vi (ap),...)
p=1

= T( Vi (Vy),. )

q=1
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1.3. Parallel transport. Let v : [a,b] = M be a smoothly immersed curve. Let I' = T'(y*T'M) denote
the space of vector fields along v, i.e. smooth functions V' : [a,b] — T'M such that V' (t) € T, M.
Define D : " — T in local coordinates x by

(DV)(t) = 2V (t) + (87 ()VE (£)T5) il o)

where V(t) = Vi(t)9;](), and ~*(t) = 2’ ((t)). We call this the covariant derivative of V along .
This satisfies the following:

(1) For any vector field W on M such that W (+(¢t)) = V(t), we have
DV)(t) = (Vyr iy W)(v(1))-
To see this, expand the RHS in local coordinates:
(Vo iy W)(r(#)) = 0" () - Vo, (W7 0;) (7(t))
= 0y (t) - (WITF,0k + 0:W70;)(7(t))
= 0y ()W (v(1))T55 (7(£)) Dk + (W 0)()0;
= 0" (VI ()T} (4(£)) O + V7 (£)0;
which, after re-indexing, is the same as what we defined.
(2) For smooth function f on [a,b], D(f - V)(t) = f/(t)V(t) + f(&)(DV)(¢).

1.3.1. Definition. A vector field V along v is parallel if DV = 0. Equivalently, a vector field W on M is
parallel if V., W = 0.

Note from the coordinate expression that being parallel is a system of n linear ordinary differential
equations for n functions (at least locally, where coordinate charts exist), so it is uniquely solved along the
curve. In particular, specifying V' (a) gives us a unique V' (b) which deserves to be called the parallel transport
of V(a) along ~.

1.4. The Levi—Civita connection. An affine connection V on a smooth manifold, equipped with a
metric tensor g (a nondegenerate symmetric smooth (0, 2)-tensor field) is called

o symmetric if VxY — Vy X = [X,Y]. (In local coordinates, this means Ffj = Ffz)
o metric-compatible if X(g(Y,Z2)) = g(VxY,Z) + g(Y,VxZ). (This means that the derivative
“misses” ¢.)

1.4.1. Theorem. There exists an unique affine connection on a Riemannian manifold (M, g) satisfying the
two conditions above. This is called the Levi-Civita connection.

PRrOOF. Using metric compatibility, we get
X(9(Y,2)) = 9(VxY,Z) + g(Y,Vx Z),
Y(9(X,2)) =9(VyX,Z) + 9(X,VyZ),
Z(9(X,Y)) = g(VzX,Y) + g(X,VzY).
Adding 1 and 2 and subtracting 3, and using symmetry:
X(9(Y,2)) +Y(9(X,2)) — Z(9(X,Y)) =29(VxY, Z) — g([X,Y], Z) + 9([X, Z],Y) + g([Y, Z], X).

This is called the Koszul formula. Note that since g is non-degenerate, this uniquely determines V xY', hence
uniquely determines the connection. |

In local coordinates, the Christoffel symbols can be shown to be

1
Tl = 59" (Digsp + 039 — Opis)-
This shows that the Levi-Civita connection is intrinsic to (M, g).

Recall that any affine connection can be extended to act on arbitrary tensors.

1.4.2. Definition. We say a tensor 7" on M is parallel if VI = 0.
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1.4.3. Example. Consider the (0, 2)-tensor g, then
(Vvog)(V1, V2) = Vo(9(V1, V2)) — 9(Vv, (V1), V) — g(V1, Vi, (V2)),

so Vg = 0 means precisely metric compatibility.

1.4.4. Example. For V = Vid;, a = a;dz’, and T = T} dz’ ® 8;, the component functions of VV, Va, VT
are '
V.VI =09,V +VFkrI,
Viaj = aiaj — akl“fj
k _ k Pk kg
VI =0Ty + 1715, =TT,
The general rule can be derived similarly. Note that V; is not the same as 0;.

1.5. The Riemann curvature tensor. Let (M,g) be a Riemannian manifold, and let V be the
Levi—Civita connection.

1.5.1. Definition. The Riemann curvature tensor is a (1,3)-tensor R: ' x I' x I' — T, defined as
R(X,Y)Z =Vy(VxZ) - Vx(VyZ) + Vixy)Z.
Commonly, this is also viewed as a (0, 4)-tensor via definition 1.1.6, i.e.
R(X,Y,Z,W)=g(R(X,Y)Z,W).
1.5.2. Exercise. Check that R is actually a tensor, i.e. C°°(M)-linear in X,Y, and Z.

1.5.3. Example. On Euclidean space with the usual inner product, V is just the covariant derivative, and
it is clear that R vanishes. So Euclidean space is “flat” in the sense that there is no curvature.

In local coordinates, we can write R(0;,0;)0k = Ri;i 0y, or as a (0,4)-tensor R(0;,d;, 0k, 0¢) = Rijre =
RijkPgpe. So it seems like we need n* parameters to specify the curvature tensor on an n-manifold, but
proposition 1.5.5 below shows that there is a lot of redundancy, and in fact R has only D(n) = %nQ (n?-1)
algebraically independent components. When n = 2, D(n) = 1, and this is precisely the Gauss curvature for
a surface, which also coincides with the scalar curvature (??7). When n = 3, D(n) = 6, and this is specified

by the % = 6 components of the Ricci curvature (definition 1.6.5).

1.5.4. Exercise. Verify that Rijk[ can be expressed only in terms of the metric components g, i.e. it is
intrinsic to the Riemannian manifold.

1.5.5. Proposition. We have the following identities:
(1) R(X,Y,Z,W)=—-R(Y,X,Z,W);
(2) R(X,Y,Z,W) = R(Z,W.X,Y);
(3) R(X7KZ7 W) = _R(Xv YJ/V,Z),
(4) (First Bianchi identity) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0;
(5) (Second Bianchi identity) (VxR)(Y,Z)W + (VyR)(Z, X)W + (VzR)(X,Y)W = 0.

1.5.6. Proposition. The second Bianchi identity can be also written as
(VxR)(Y,ZW,V)+ (VyR)(Z,X,W, V) + (VzR)(X,Y, W, V).
In coordinates: ViRjkem + VjRiitm + ViRijem = 0, where V;Rjiem = (Vo,R)(9;, Ok, O¢, Om) and so on.
This just follows from the metric-compatibility of V.

1.6. Sectional, Ricci, and scalar curvature. Let (M,g) be a Riemannian manifold, and R its
Riemann curvature tensor.

1.6.1. Definition. Let p € M, and 0 C T,M a two-dimensional subspace. The sectional curvature is

defined as
R(v,w,v,w)

K(p,o) =
( ) g(v,v)g(w,w) —g(v,w)2
for any basis {v,w} of o. This does not depend on the specific basis chosen.
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For example, when M is a surface, o = T, M is the only choice, and it turns out that K(p) = K(p,0) is
precisely the Gauss curvature.

1.6.2. Exercise. If (M, g) has constant sectional curvature k (for all p, for all ¢ C T,,M), then

1.6.3. Example. The sphere S" C R"*! with radius r with the Euclidean metric has constant sectional
curvature k = 1/r2. The hyperbolic upper-half plane H = {(z,y) € R? : y > 0} with metric y%(dm ® dr +
dy ® dy) has constant sectional curvature k = —1.

1.6.4. Lemma. Let V be an n-dimensional vector space, and g a symmetric bilinear form on V.

o Let T : V. — V be a linear map, then TrT = Y " g(Te;,e;) = g g(T9;,0;), where e; is any
orthonormal basis.

o LetT:V xV — R be a bilinear form, treated as a linear map V- — V' by raising index. Then its
trace Tt T = Y"1 T(ei,e;) = 7T (8;,0;).

1.6.5. Definition. For X,Y € T,M, the Ricci curvature

Ric(X,Y)=Tr(Z = R(X,2)Y) = zn: R(X,e;,Y,¢e)

i=1
where eq,..., e, is any orthonormal basis for T, M.

Note that due to symmetry of R, this is the only nonzero trace of R, and Ric(X,Y) = Ric(Y, X). In
local coordinates Ric;r, = Ric(9;, 0k) = Ripr” = ¢/*Rijre. Note also that

Ric(ei7 ei) = Z R(€i7 €j,€i, ej)
JF#i

is (n — 1) times the average sectional curvature of all 2-planes containing e;.

1.7. Cartan formalism. Let (M, g) be a Riemannian manifold, p € M, and Ey, ..., E, an orthonormal
frame of vector fields defined on some neighborhood U of p. Let w’ be the dual frame of 1-forms.

1.7.1. Definition. The connection 1-forms w] are defined by Vx E; = w!(X)E;. The curvature 2-forms
Q) are defined by R(X,Y)E; = Q!(X,Y)E;.

(2

1.7.2. Proposition. These differential forms satisfy the following:

(1) They are s0,-valued, i.e. w] = —w} and Q) = -
(2) dw' = w? Awj.

(3) dw! = —wF Awj.

(4) Wi A QL =0.

(5) Q¥ = w] AQF —wF Q.

3

PrOOF. (1) w/(X) = g(VxEi, E;) = —g(E;, VxE;) = —w?(X) by metric compatibility of V. Anti-
symmetry of ] follows from (3).
 (2) dw'(Bx, Ey) = Ex6} — EiS}, — w'[Bx, Ei] = —w'(Vg, Be — Vg, By) = —w'(w) (Ex)E; — wi(Bo)E;) =
wj,(Ee) — wy(Ex), where the second step uses symmetry of V. On the other hand, (w’ A w})(Ek, Er) =
5w (Ee) — 6ywi(Ey) = wj.(Ey) — wj(Eg), which is identical to dw’(Ex, Ep).
(3) Similar to (2), this is just a computation.
(4)(5) follows from (2)(3) by applying d again and using d? = 0. O

1.8. Application: Chern—Gauss—Bonnet theorem.



2. GEODESICS 140

2. Geodesics

2.1. The geodesic equation. Geodesics are the curves that naturally flow with the curvature on a
Riemannian manifold. In other words, its tangent vector field should be parallel along the curve itself.
Physically it is a free particle constrained to move on the manifold, with some initial position and velocity,
but no external force.

2.1.1. Definition. Let I C R be an interval. A curve v : I — M is a geodesic if V.7 = 0.

2.1.2. Exercise. Show that:
(1) Let V() = Vi(t)0; be a vector field along any curve v, then V.,V = (9,V*(t))0;.
(2) Geodesics have constant speed, i.e. d|v'(t)| = 0.

2.1.3. Example. Geodesics in R" with the Euclidean metric are straight lines. Geodesics in S™ with the
round metric are great circles. Geodesics in the upper-half plane model of hyperbolic space are half-circles
centered on the x-axis and vertical lines. But in general geodesics can be quite complicated.

In local qoordinates x = (x',... 2"), we can write 7' = 2% 0, and for a vector field V along v we can
write V = V*(t)0;. Then V..V = 0 becomes the parallel transport equation
(2.1.4) 0= (V¥ +TEV 0y ).
In particular, plugging in V' =+ gives the geodesic equation
(2.1.5) 0 = (977" 4+ T,007 0 ) O

Both of them are systems of ordinary differential equations, so we have the following;:

2.1.6. Theorem (Existence, uniqueness and smooth dependence of geodesics). The following are true:

(1) (Ezistence) For any p € M, v € T,M, there exists a mazimal existence time t, , € (0,00], and a
geodesic vy ¢ [0,tp ) = M with v, ,(0) = p, v, ,(0) = v.
(2) (Uniqueness) If v1 : I1 — M and 75 : Is — M are geodesics, and there exists t € Iy N Iz such that

71(t) = 72(t), 11(t) = 13(t), then y1 =2 on I1 N L.
(3) (Smooth dependence) The map (p,v) — t, , is lower-semicontinuous, meaning that the preimage of
(¢, 00| is open for any c € R; the map (p,v,t) = Yp(t) is smooth in all entries, when defined.

2.1.7. Exercise. Show that geodesics are homogeneous, i.e. for a € R, 7, (at) = ¥p,q0(t) whenever defined.

2.1.8. Example. Consider R?—{(1,0)} with the Euclidean metric. Suppose we start from a point p = (0, )
with initial velocity v = 0,. Then t,, = oo for all y # 0, but ¢, , = 1 for y = 0. So this space is not
“geodesically complete” since not all geodesics exist forever. Coincidentally, this space is not complete in
the sense of metric spaces either. Could these be related?

2.1.9. Exercise (Geodesics exit every compact set). Let p € M, v € T,M, such that ¢, , < co. Let K C M
be compact, then there exists tx < T, , such that 7, ,(t) € M\K for all t € (tx,tp).

2.2. The exponential map.

2.2.1. Definition. For each p € M, define O, C T,M by O, = {v € T,M : t,, > 1}. It is open and
star-shaped. Define O = Hp O, C TM; it is open.

2.2.2. Definition (Exponential map). Let exp : O — M be defined by (p,v) — vp(1). It is smooth by
theorem 2.1.6.

2.2.3. Definition (Distance function). Let (M, g) be a Riemannian manifold, we define for p,q € M:
d(p, q) = nf L(y),
where the infimum is taken among all piecewise smooth curves 7 : [0,1] — M, with v(0) = p, v(1) = q.

2.2.4. Proposition. The function d: M x M — R is a metric on M. In other words, it satisfies d(p,q) > 0
(with equality iff p = q), d(p,q) = d(q,p), and d(p,q) + d(q,r) = d(p,r) for any p,q,r € M.

To prove this (in particular the first part), we need to develop some theory about the exponential map.
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2.2.5. Lemma. For anyp € M, the exponential map exp, : O, — M is a local diffeomorphism at 0 € T;, M.

Proor. It suffices to show d(exp,)o : T,M = To(T, M) — T, M is invertible. In fact, it is the identity:
d(exp,)o(v) = %|t=0 exp,,(tv) = %|t=0'yp,v(t) = v by definition. O
2.2.6. Proposition (Normal coordinates). Let p € M. There exist coordinates x = (x,...,a2™) for some
neighborhood U of p, such that g;j(x) = §;; + O(x?).

- PROOF. Let eq,...,ep be an orthonormal frame at p, then in a neighborhood U of p the functions
z'(exp,(v)) = (v, e;) are well-defined coordinates. Since d(exp,)o = id, g(9;,0;)(p) = d0;;. Furthermore, in
these coordinates, the straight lines through p are geodesics, so they satisfy the geodesic equation

A* + 50 9’ =0
SO Ffj (p) = 0. Then 9ygi;(p) = 9(Vkdi, 8;)(p) + (i, Vi0;)(p) = 0, which implies g;;(z) = &;; + O(z?). O
In preparation for Gauss’s lemma, consider a smooth map F : (—e,e) — [0,1] — M, thought of as a

family of curves (this idea is important later in the variational theory of geodesics). Let Fy = dF(,4)0s,
Fy = dF(54)0; be vector fields along F' (i.e. sections of F*T'M).

2.2.7. Lemma. Vg Fy = Vg, F,. In other words, [Fs, F;] = 0.

PROOF. Around p € im F, choose local coordinates x'. Let Fi(s,t) = x'(F(s,t)). Then Fi(s,t) =
O F(s,t)0; and Fy(s,t) = 05F(s,t)9;, so

Vi Fy =V (0.F (s,1)0;) = @a-JraFiv 0 = @a + O F' 0, FIV 5. 0;
F. 't — Fs\Ut S, i) — 950t (2 t F Ui — 95Ot k t S 9; Y,
which is symmetric in s and ¢ since [0;,9;] = 0. g

Consider the special case where F' is a variation through geodesics: let p € M, v € Op, w € T, M, then
for e small enough, (v + sw) € O, for s € (—¢,¢), t € [0,1]. Let F(s,t) = exp,(t(v + sw)).
2.2.8. Theorem (Gauss’s lemma). For any s,t, |Fi(s,t)| = |v+ sw| and (Fs, F)(0,t) = t(v,w).
Commonly, this lemma is also written as (d(exp,),(v), d(exp,),(w)) = (v, w), i.e. exp, is a radial isom-
etry. This just follows from the second equation by plugging in ¢t = 1.
2.2.9. Theorem (Hopf-Rinow). Let (M, g) be a Riemannian manifold. Among the following, (1)—(4) are
equivalent, and all imply (5):
(1) There exists p € M such that exp,, is defined on all of T,M;
(2) M satisfies the Heine—Borel property, i.e. any closed and bounded subset (of course, with respect to

the distance function d) is compact.

(3) (M,d) is complete as a metric space, i.e. every Cauchy sequence converges.
(4) For allp € M, exp,, is defined on all of T,M.
(5) For any p,q € M, there exists a geodesic v from p to q, such that L(y) = d(p,q).

2.2.10. Remark. If any of (1)—(4) is satisfied, call M complete. It is not true that (5) is also equivalent:
consider say the open interval.

2.2.11. Corollary. Closed (i.e. compact without boundary) manifolds are complete.
2.3. Variational theory.

2.3.1. Definition. A wvariation of a curve « : [a,b] — M is a smooth map F : (—¢,¢) X [a,b] — M such that
F(0,t) = a(t). It is proper if F(s,0) = a(a) and F(s,1) = a(b) for all s. Often we write a,(t) = F(s,t).

2.3.2. Definition. The energy of a piecewise smooth curve « : [a,b] — M is E(«a) = %fab |/ (t)|?dt. Note
that unlike length, it is not invariant under reparametrization.

2.3.3. Exercise. For any piecewise smooth curve « : [a,b] — M, we have the inequality
d(a(a),a(d)) < L(a) < /2(b—a)E(a).

2.3.4. Definition. Define the variation field as V(t) = F5(0,t) € T'(«*T'M). Define the acceleration field
as X(t) = (Vg Fs)(0,t) € T(a*TM).
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2.3.5. Proposition (First and second variation of energy). Let a be a smooth curve, and F' a variation.
(1) LE(0s)|,_y = (V(O, 0" (D)],_, — [V (£), Varyo! (£))dt.
(2) 4= B(0)]_y = (X O, O)] = [} X(0), Vara' O)dt + [} (V) VO = R/, V.o, V).
2.3.6. Corollary. For a proper variation F of a smooth curve «,
(1) d%E(aS)’s:o iff a is a geodesic.
(2) If a is a geodesic, then j—;E(as)L:O = I(V,V), where I is the index form

b
I(Y,W):/ (Vo Y, Vs W) — R(, Y, o, W)t

2.3.7. Definition. Let a : [a,b] = M be a geodesic. A vector field V along « is called a Jacobi field if any
of the following equivalent conditions hold:

(1) V arises as a variation of o through geodesics. More precisely, there exists a variation F' of a such
that each ay is a geodesic, and V' is the variation field of F.
(2) Va VoV + R, V)d =0.

2.3.8. Remark. Suppose V is a Jacobi field, then
b
IV.V) = [TV + (TuTuV V)t

b
b 1,0 b
— [ ValVaViV)it = (V) = SV

2.3.9. Proposition. Suppose V is a Jacobi field along a : [a,b] — M from p to q, such that V(a) =0 and
(VarV)(a) =w € T,M. Then V(t) = d(exp, ) (tw), where v = o'(a).

Finally, we discuss conjugate points and stability.

2.3.10. Definition. A geodesic « : [a,b] — M is stable (with fixed endpoints) if for all vector fields V" along
a with V(a) =V(b) =0, I(V,V) > 0.

2.3.11. Exercise. If «a is length-minimizing, then it is stable.

2.3.12. Definition. We say to # t1 € [a,b] are conjugate points along «, if there exists a nonzero Jacobi
field V along a with V(tg) = V(¢1) = 0.

2.3.13. Proposition. Let « : [a,b] — M be a geodesic, then « is unstable iff there exists T € (a,b) such
that a(a), a(T) are conjugate.

PROOF. («<=): suppose there exists 7 € (a,b) such that a(a),a(r) are conjugate points. Let V(¢) be
the nontrivial Jacobi field along « that vanishes at a and 7. Define the piecewise smooth vector field V" along
aby V(t)=V(t)fora<t<7and V(t) =0 for 7 <t <b. Then

HV.7) = [ (Vv = R Vel V)t = (V)0 VO], = 0.

So, assuming stability, for any vector field X along a with X (a) = X (b) = 0, we have that 0 < I(V +sX,V +
sX) = 2sI(V,X)+s*V(X, X). Note that | _ I(V +sX,V +sX) = 2I(V,X). If I(V,X) # 0 then there
exists s (with small absolute value) such that I(V +sX,V +sX) < I(V,V) = 0, which contradicts stability.
So I(IN/, X) = 0. On the other hand, since V is a Jacobi field, R(a/,V, o/, X) = = (Vo VoV, X), so

0=1(V,X)= /T(<Va/V, VarX) + (Var Vo V. X))dt = (Vo V)(0), X (1)) |;_, = (VaV)(7), X (7))

for any X vanishing at @ and b. Since X (7) can be any vector, we conclude that (Vo V)(7) = 0. But
since V' is a Jacobi field, it is uniquely determined by V(7) and (V. V)(7), which are both zero, so V =0,
contradiction.

(=): suppose « is unstable, then the first (smallest) eigenvalue of the Jacobi operator (acting on the
completion of the space of all smooth vector fields along « which vanish at endpoints)

L:V i VauVaV — R, V)
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is negative. Let A\1(7) denote the smallest eigenvalue when L is restricted to act on vector fields along |, 7
(which vanish at endpoints). Then A;(b) < 0, and A; is non-increasing on (a,b] (because for 71 < 72, if a
vector field V' along /(4 -] satisfies LV = AV, then the vector field 1% along al(q,,) which is equal to V' on
[a,71] and zero on [r1, 7o) satisfies LV = AV). So, it is enough to show that A;(7) is positive for 7 close to
a, and conclude by intermediate value theorem that there exists 7 where L has a zero eigenvalue (i.e. Jacobi
field), so that a(a), a(r) are conjugate.

Now, for any smooth vector field V' along a\[aﬁ], vanishing at endpoints, we have

T T 2 T
Vo V2t > [ |9,|V]2dt > ——— | |V [2at
2
a a (T - a) a

where the first step by Kato’s inequality and the second step by Wirtinger’s inequality. Also, for any point

p € im(«a), the quantity W by some absolute constant not depending on V(p) by compactness,

and by compactness again there is a constant K such that R(a/,V,o/,V)(p) < K - |V (p)|? for any V and p.
So

/R(a’,v,a',V)dth-/ |V|?dt.
a a

2

Together, we get I(V,V) > (="~z — K) [ |[V|*dt. So, the Rayleigh quotient

(t—a)?
v, v 2
A1 (7) = inf T< V) > 5 — K
Vo [T|V[2dt ~ (T —a)
is positive for 7 sufficiently close to a. This completes the proof. O

2.4. Segment domain, cut locus, injectivity and conjugacy radii. Let (M, g) be a complete
Riemannian manifold.

2.4.1. Definition. Let p € M. The segment domain of p is
seg(p) = {v € T,M : d(p, exp,,(v)) = |v]}.

In other words, it is the set of tangent vectors whose geodesic is minimizing. Clearly, it is a closed and
star-shaped set.

Define also seg®(p) = {tv : v € seg(p),0 < ¢t < 1}. One of the main results in this subsection is that
seg®(p) is just the interior of seg(p).

2.4.2. Definition. Let p € M. The cut locus is cut(p) = M\ exp,(seg®(p))-

2.4.3. Proposition. Suppose v € T, M\ seg®(p). Then at least one of the following two things happen:
e d(exp,), is singular;
e there exists w # v, w € seg(p), such that exp,(v) = exp,(w).

2.4.4. Theorem. We have the following:
(1) d(exp,), is invertible for all v € seg®(p).
(2) If v € seg®(p) and w € seg(p), and exp,(v) = exp,(w), then v = w.

(3) seg®(p) is open.
(4) The exponential map exp,, : seg®(p) — M\ cut(p) is a diffeomorphism.

This motivates the following definitions:
2.4.5. Definition. The injectivity radius of p is
inj(p) = sup{R : exp,, |p,(r) is a diffeomorphism}.
The conjugacy radius of p is
conj(p) = sup{R : exp,, | g,(r) is nonsingular}.

By definition, inj(p) < conj(p). The two can differ in general: consider the flat torus (as a quotient of
R?), then some geodesics will close up, and exp,, is non-injective without ever becoming singular.
Finally, here are two results we state without proof. The second one is not easy.
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2.4.6. Proposition. Letp € M, q € cut(p) # &, such that d(p,q) = d(p,cut(p)). Then either q is conjugate
to p along a geodesic from p to q, or there exists exactly 2 minimizing geodesics from p to q which close up
to form a loop.

2.4.7. Theorem (Klingenberg’s estimates). The following estimates for the injective radius hold:

o Ifn is even and M is orientable, and 0 < sec < 1, then inj(M) > 7.
o Ifn >3 and M is simply connected, and % <sec <1, then inj(M) > .

3. Comparison geometry

3.1. Main theorems. We will be proving several theorems that deduce global topological information
of a Riemannian manifold from local curvature information.

3.1.1. Theorem (Bonnet-Myers). Let (M, g) be a complete n-dimensional Riemannian manifold, such that
there exists k > 0 with Ric(V, V) > k(n — 1)|V| for all vector fields V.. Then every geodesic of length greater
than m/+\/k is unstable. Consequently it is compact and has finite fundamental group.

3.1.2. Theorem (Synge). Let (M, g) be a closed n-dimensional Riemannian manifold with positive sectional
curvature. Then, if n is even and M 1is orientable, then M is simply connected; if n is odd, then M is
orientable.

3.1.3. Theorem (Preissmann). Let (M,g) be a closed n-dimensional Riemannian manifold with negative
sectional curvature. Then any nontrivial abelian subgroup of w1 (M) is isomorphic to Z.

3.1.4. Theorem (Cartan-Hadamard). Let (M,g) be a complete, simply connected Riemannian manifold
with non-positive sectional curvature. Then for any p € M, exp,, : T,M — M s a diffeomorphism.

3.1.5. Theorem (Space forms). Let (M,g) be a complete, simply connected Riemannian manifold with
constant sectional curvature k € {—1,0,1}. Then (M, g) is isometric to the hyperbolic space H", Euclidean
space R™, or the sphere S™, respectively.

3.2. Proof of the Bonnet—Myers theorem.
3.3. Proof of the Cartan—Hadamard theorem.

3.3.1. Definition. Let M be a Riemannian manifold, f € C°°(M). Define its Hessian V2 f = Hess(f) to
be a symmetric (0, 2)-tensor such that

(V2HX,Y) = g(Vx(V),Y) = X(Y(f) = (VxY)(f).
Recall that Vf is the gradient (example 1.1.7) of f. In local coordinates,

o%f r Of

Hess(f)(0;,0;) = ViV f = v~ Vi gk
3.3.2. Proposition. Let (M,g) be a complete Riemannian manifold. Let p € M and define a function
p(z) = d(p,x), so that p* is smooth on seg®(p). Forv € seg®(p), ¢ = exp,(v), w € TyM, let a(t) = exp,(tv),
and W the unique Jacobi field along o such that W(0) =0 and W (1) = w. Then,

* V(50%)(q) = /(D).

o V2(50%)q(w,w) = I(W, W) = 3 5|,_, WP,
3.3.3. Corollary. Let wo, w; € TgM such that wo is parallel to d(exp,),(v) = o/(1), and wy is orthogonal
to it. Then V2(4p?)q(wo,wo) = |wol? and VZ(5p?)q(wo,wr) = 0.

3.3.4. Theorem (Rauch comparison theorem). Let (M,g) be a Riemannian manifold with sec < p. Let

a:[0,4] - M be a unit-speed geodesic, and V' a Jacobi field along o which is orthogonal to o'. Suppose

f:00,4] = R solves f"(t) + pf(t) = 0 with initial condition f(0) = [V (0)| and f'(0) = %|t:O\V(t)|. Then
V()]

e O8 is non-decreasing for t € (0,¢). In particular, |V (t)| > f(t).

3.3.5. Corollary. Let (M,g) be a Riemannian manifold with sec < u. Let o : [0,¢] = M be a unit-speed
geodesic, such that o(0) and a(f) are conjugate along oe. Then >0 and £ > 7/ /.

3.3.6. Theorem.
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3.3.7. Corollary (Hessian comparison). Let (M, g) be a Riemannian manifold with sec < p. Let F(t) be
an antiderivative to f(t). For any p € M, we have the following estimate on on M\ cut(p):

V2F(p) > F"(p)g.
3.3.8. Remark. Equivalently, we can write this as VZp > ct,(p)(g — dp ® dp).
3.3.9. Definition. Define the divergence of a vector field V € I'(T'M) by
div(V) = g(Ve,Vie;) € C(M)
i=1
for any orthonormal basis e; of T, M. In coordinates, div(V) = V.Vi=0,Vi+ F::jVj.
3.3.10. Definition. Define the Laplacian of f € C°(M) by Af =div(Vf). Call f harmonic if Af =0.



CHAPTER 9

Etale cohomology

1. Flatness
1.1. Flat modules.

1.1.1. Proposition. Let A be a ring, M an A-module. TFAE:
(1) M is flat;
(2) Tor (M, N) =0 for any A-module N and i > 1;
(3) Tor(M,N) =0 for any finitely generated A-module N and i > 1;
(4) Tor1 (M,N) =0 for any A-module N;
(5) Torl (M,N) =0 for any finitely generated A-module N;
(6) Tor1 (M,A/I)=0 for any ideal I C A;
(7) Tor{ (M, A/I) = 0 for any finitely generated ideal I C A;
(8) For any ideal I C A, the map I @4 M — M is injective;
(9) For any finitely generated ideal I C A, the map I @4 M — M is injective.

PrOOF. Obviously:

The remaining implications:
(4) = (1): For any short exact sequence 0 = Q — P — N — 0, we have the Tor long exact sequence

<= Torf (M,N) > M®Q +M®P - M®N —0,

00> M®Q—>MP—M®N — 0 is exact.

(5) = (4): Let N be an A-module. We use the fact that N = ligN’, where N’ ranges among the
finitely generated submodules of N, ordered by inclusion. This is a filtered colimit, which is exact (AB5) and
commutes with left adjoints, such as tensor products. So for any short exact sequence 0 - Q — P — M — 0
that ends with M, tensoring with N is exact. Now we take P to be free (therefore flat), so Tor{ (N, P) = 0.
Then the Tor exact sequence reads

20— Tor}(N,M) Q&N - PN - M®N — 0,

so Tor{' (N, M) — Q is injective and its image is zero. So Tor{'(N, M) = 0 as desired.
(6) = (5): Consider a finitely generated N. Then there exists a filtration
0=NgoCN,C---CN,=N,
where each N;/N,;_; is generated by one element, i.e. isomorphic as A-module to A/I for some ideal I.
Induct on ¢ and we wish to show Tor‘{‘(M ,N;) = 0. The base case i = 1 is clear. For the induction step, we
have the exact sequence
0— Nifl — Nz — Ni/Ni,1 — 07

and by the Tor long exact sequence, Tor‘lq(M ,N;) = 0.
(7) = (6): Use the fact that A/I = @A/I " where I’ ranges among the finitely generated ideals
contained in I, ordered by inclusion. Then we can mimic the argument in the implication (5) = (4). O

1.1.2. Proposition. Let M be flat, then tensoring with M commutes with intersections. (I
1.1.3. Proposition (flatness and localizations). Let A be a ring, S C A a multiplicative subset. Then:

146
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(i) STYA is flat over A;
(ii) Let M be flat over A, then S™1M is flat over S™1A;
(iti) Suppose A — B is a ring homomorphism that sends S to a subset of a multiplicative subset T C B,
and let N be a B-module. If N is flat over A, then T~1N is flat over S™1A;
(iv) Suppose A — B is a ring homomorphism, and N is a B-module. If Ny, is flat over A for every
mazximal ideal m C B, then N is flat over A.

PROOF. (iii) Notice that T"!N ®4 @ = T71(N ®4 e) is an exact functor, so TN is flat over A. So
STIT=IN =T~!N is flat over S~ A.
(iv) Injectivity is a local property. O

1.1.4. Proposition (flatness and torsion-free). Let A be a ring.

(i) If a € A is a non-zerodivisor, and M is a flat A-module, then M — M given by m — am is
injective; in particular, if A is a domain, then M is torsion-free.
(ii) Let A be a Dedekind domain, then any torsion-free A-module is flat.

PROOF. (i) Because a is not a zero-divisor, the map A — A, is injective, and so is M — M x4 A,
since M is flat. Suppose am = 0 for some m € M, then m— m® 1 =am®a~! =0, so m = 0 as well by
injectivity.

(ii) Suppose M is torsion-free. It suffices to show that My, is flat over Ay for every maximal ideal
m C A, i.e. we may assume that A is a DVR. Let I C A be any ideal, then I is principal, say generated by
r, and the map A — I given by 1 — r is an isomorphism of A-modules. So M — I @4 M, m — r ® m is
an isomorphism. Composing this with the natural map f: I ®4 M — M, r ® m — rm, gives us the map
M — M, m — rm, which is injective since M is torsion-free. So f is injective as well, which shows that M
is flat. ]

1.2. Flat morphisms.

2. Faithfully flat descent
2.1. Faithfully flat morphisms.

2.1.1. Proposition. Let A be a ring, M an A-module. TFAE:
(1) The functor N — M ® N is exact and faithful;
(2) Any sequence N' — N — N" is exact iff M@ N' - M @ N - M ® N" is ezact;
(8) M is flat, and M @ N = 0 implies N = 0;
(4) M is flat, and M/mM # 0 for any mazimal ideal m of A. O

If any of the following holds, we say M is faithfully flat over A.

2.1.2. Corollary. Let A — B be a map of local rings that maps the maximal ideal of A into the mazimal
ideal of B. Then if a nonzero, finitely generated B-module M is flat over A, it is faithfully flat over A.

2.1.3. Proposition. Let A — B be a map of rings. If there exists a B-module M faithfully flat over A,
then Spec B — Spec A is onto.

PRrOOF. The fiber over p C A is Spec B®4 Ay /pA,. Since M ®4 Ap/pA, is faithfully flat over A, /pA,,
it is a nonzero B ®4 A, /pAp-module, so B ®4 A,/pA, # 0. O

2.1.4. Corollary. Let A — B be a map of rings. Suppose there exists a finitely generated B-module M
faithfully flat over A, whose support is Spec B. Then for any p € Spec A, if q is minimal among those
containing pB, then q°¢ = p.

PRrROOF. By corollary 2.1.2, M, is faithfully flat over Aqe. By proposition 2.1.3, Spec By — Spec Age is
onto. Then by minimality of q, B, is the preimage of pAge, so p = q° as desired. a
2.1.5. Proposition. Let ¢ : A — B be a map of rings. TFAE:

(1) B is faithfully flat over A;
(2) B is flat over A, and ¢* : Spec B — Spec A is surjective;
(8) B is flat over A, and for any maximal m C A, there exists a maximal n C B with m = n¢;
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(4) B is flat, and for any A-module M, M — M ®4 B is injective;
(5) For any ideal I of A, I ®4 B — B is injective, and ¢~*(IB) = I.
(6) ¢ is injective and coker ¢ is flat over A.

PROOF. It is clear that (1) = (2) = (3).

(3) = (1): It suffices to show that B/mB # 0 for any maximal m of A. Pick n C B such that n® =m,
then there is a surjection B/mB — B/n # 0.

(1) = (4): Since B is faithfully flat, it suffices to show M ®4 B — M ®4 B ®4 B is injective. But this
has a left inverse M ® 4 B®4 B — M ®4 B given by m ® by ® by — m ® b1 bs.

(4) = (5): Since A/I — (A/I)®4 B = B/IB is injective, ¢~*(IB) C I, so ¢~ *(IB) = I.

(5) = (3): We know B is flat, and ¢~ !(mB) = m, so any maximal ideal n containing mB pulls back to
n®=m.

(4) = (6): Putting M = A, we see that ¢ is injective. Let M be any A-module. The long exact
sequence reads
(%) 0 — Tory!(B, M) — Tor; (coker ¢, M) = M — M ®, B.
Since B is flat, Tor‘f‘(B, M) =0. Since M — M ®4 B is injective, we conclude that

Tor‘f(coker o, M) =0,

which implies that coker ¢ is flat.

(6) = (4): This time () tells us that Tor{'(B, M) =0 and M — M ®4 B is injective. O
2.1.6. Proposition (faithful flatness and completions). Let A be Noetherian, and let I C A be an ideal.
Then the I-adic completion A is flat over A, and it is faithfully flat iff I C rad(A). O

2.1.7. Proposition. Let A be a ring, I C A an ideal, and M an A-module. If either
e [ is nilpotent, or
e A is Noetherian, I C rad(A), and M is finitely generated,
then TFAE:
(1) M is free;
(2) M/IM is free over A/I, and Tor{ (M, A/I) = 0;
(8) M/IM is free over A/I, and

(M/IM)@a; (DI | = @ 1M/ M
n>0 n>0

18 an 1somorphism.
PROOF. O
2.2. The Amitsur complex.
2.3. Descent data, and stacks.

2.4. Descent of quasicoherent sheaves.

3. Quasi-finite morphisms
3.1. Finite morphisms.

3.1.1. Proposition (finite implies proper). Any finite morphism f :Y — X is separated, finite type, and
universally closed.

PROOF. Properness is affine-local on the target, so assume X,Y are affine. Then the first two require-
ments are obvious; the third follows from the going-up theorem and the fact that finite morphisms are stable
under base change. (I

3.1.2. Proposition. Let f: X — Speck be finite type, then TFAE:
(1) X = Spec A where A is Artinian;
(2) X is finite and discrete;
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(3) X is discrete;
(4) f is finite.

PROOF. (1) = (2): Artinian rings have finitely many prime ideals, and all primes are maximal.

(3) = (2): Discrete plus quasicompact implies finite.

(2) = (4): For any affine open Spec A C X, A is Noetherian and has dimension 0, so A is Artinian,
so it is uniquely the product of Artinian local rings. So X is affine (Ox(X) is the product of the Artinian
local rings corresponding to each point of X).

(4) = (1): Say X = Spec A. Then A is a finitely generated k-module, so dim A = trdeg Frac A = 0, so
A is Artinian. O

3.2. Quasifinite morphisms.

3.2.1. Definition. A morphism of schemes f : Y — X is quasifinite if it is finite-type and has finite
fibers. An A-algebra B is quasifinite if it is finite-type and for all prime ideals p C A, B x4 k(p) is a finite
k(p)-module (i.e. Spec B — Spec A is quasifinite).

Since finite morphisms have finite fibers, finite implies quasifinite.

3.2.2. Proposition. Quasifiniteness is stable under composition and base change, and any immersion is
quasifinite. |

It follows that any open subscheme of a finite morphism is quasifinite. Conversely:

3.2.3. Theorem (Zariski’s main theorem, Grothendieck’s form: EGA IV3, Thm 8.12.6). Let X be quasi-
compact, then any separated, quasifinite morphism f:Y — X factors intoY —Y' — X, where Y =Y’ is
an open embedding, and Y’ — X is finite.

3.2.4. Corollary (proper and quasifinite implies finite). Let X be quasicompact, then any proper, quasifinite
morphism f:Y — X is finite.

PROOF. Let f = go f/ where f’ : Y — Y’ is an open immersion and ¢ : Y/ — X is finite. Since g is
finite, it is separated (proposition 3.1.1), so A, is a closed immersion, which is proper. So A, and f are
both proper, so by cancellation theorem, f’ is proper as well, so its image is closed. Therefore, f’ is a closed
immersion, hence finite as well, so f is finite. (]

3.2.5. Exercise. Let f:Y — X be separated and finite type, X irreducible. If the fiber over the generic
point n € X is finite, then there is a nonempty open U C X such that f is finite over U.

Proor. (TODO) O

3.3. Zariski’s main theorem.

4. Unramified morphisms

In the next three sections, we introduce three classes of morphisms of schemes: unramified, smooth,
and étale morphisms. They correspond respectively to the notions of immersions, submersions, and lo-
cal isomorphisms in differential geometry. As is usual, we use our geometric intuition to guide algebraic
definitions.

4.1. Module of differentials. Given a ring homomorphism A — B, we may naturally define a B-
module Q3/4, whose classical analogy is the (relative) cotangent bundle on Spec B.

4.1.1. Definition. The module of Kdihler differentials of a ring map A — B is a B-module Qp /4 together
with an A-derivation d : B — Qp/4, defined equivalently by any of the following:

(1) universal property: it represents the covariant functor Modg — Set which sends M — Der (B, M).
(2) construction: it is the free B-module generated by symbols db, for b € B, modulo the submodule
generated by da (a € A), d(b+ ') — db—db’, and d(bb’) — bdb" — b'db.

(3) diagonal: it is I/I? where I = ker(B ®4 B Ll IN B), and d : B — I/I? is given by b —

1®b—-b®1.

4.1.2. Example. Some common and useful examples:
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e If A — B is a quotient map or a localization, 25,4 = 0.

o If B= Alzy,...,2,], then Qp /4 = P, Bdx;.

o If B= Alxy,...,x)/(f1,..., fm) then Qg 4 = (P, Bdx;)/(df1,...,dfm). In particular, Qg4 is
finitely presented (resp. finitely generated) as a B-module if B is finitely presented (resp. finitely
type) as an A-algebra.

e If L/K is a finite separable field extension, then Q /x = 0.

4.1.3. Example (Elliptic curves). Consider the affine plane curve > = 23 + ax + b over an algebraically
closed field k. Let A = k[z,y]/(y* — 2% — az — b) be its coordinate ring. The module of differentials is

kdx @ kdy
2ydy — (322 + a)dz)’

Consider the distinguished opens D(3z% + a) and D(2y) which cover Spec A if 4a® — 27b? # 0 (i.e. the curve
is nonsingular). On each of them, 2, is isomorphic to a free rank 1 module.

Qam = <

4.1.4. Proposition (Pullback of differentials). Let A — B, A — A’ be ring maps, and let B’ = A’ ® 4 B.
Then Qprjar = Qp/a @p B' as B'-modules.

In particular, taking A’ = S~'A for a multiplicative subset S, we have Qg-1p/a = Qg-1p/5-14 =
S_IQB/A.

4.1.5. Proposition (Cotangent exact sequence). Let A — B — C be ring maps. Then there is a natural
exact sequence of C-modules

QB/A ®pC — QC/A — QC’/B — 0.

4.1.6. Proposition (Conormal exact sequence). In the above situation, suppose the map B — C is a
quotient map with kernel I. Then there is a natural exact sequence of C-modules

I/I? = Qpa @ C — Qcya — 0,
where the first map is induced by d : B — Qp/a.

4.1.7. Proposition (Fiber at rational point). Let B be a k-algebra, and m C B a mazimal ideal with residue
field k. Then Qg ®p k = m/m?.

4.2. Unramified ring maps.

4.2.1. Definition. Let A — B be a ring map. Say B is formally unramified over A if any of the following
equivalent conditions hold:

(1) for any A-algebra R and an ideal I C R, such that I? = 0, the natural map Homu (B, R) —
Homy (B, R/I) is injective;

(2) in condition (1), replace I? = 0 with I nilpotent;

(3) the module of differentials Qp/4 = 0.

Intuitively, being formally unramified means that the map on tangent spaces is injective, i.e. tangent
vectors lift uniquely: take R = k[e]/(¢?) and I = (¢) for example.

PROOF. (1) = (3): Consider the A-algebra B®Qp /4, with (21,91)(z2,y2) := (v122, T1y2 +2291), and
map A — B®Qp,4 given by a +— (a,0). In this ring, /4 is an ideal of square zero, and the quotient ring
is B. But there are two lifts of the identity B — B to A-algebra homomorphisms B — B®p,4: one maps
b+ (b,0), the other b — (b,db). So db =0, and Qp/4 is trivial.

(3) = (1): Any A-derivation of B is zero. Suppose f,g : B — R both lift the same B — R/I, then
f —glands in I. In fact, since I? = 0, it is an A-derivation B — I, so it is zero. (]

4.2.2. Proposition (Formally unramified is a local property). Let A — B be a ring map. The following
are equivalent:

(1) A — B is formally unramified.
(2) For all primes q C B, A — By is formally unramified.
(3) For all primes q C B, and p = qN A, A, = By is formally unramified.
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4.2.3. Definition. Let A — B be a ring map. Say it is unramified if it is formally unramified and of finite
presentation (following EGA). For a prime q C B, say it is unramified at q if there exists g € B\q such that
A — By is unramified.

4.2.4. Remark. Some sources such as [1] use finite type instead of finite presentation hypotheses. In locally
Noetherian cases this of course doesn’t matter.

4.2.5. Definition. Suppose (4, m) and (B,n) are Noetherian local rings, and A — B is a local ring map
which is essentially of finite presentation (meaning that B is a localization of a finitely presented A-algebra).
We say A — B is an unramified local ring map if n = mB and B/n is a finite separable extension of A/m.

4.2.6. Proposition. Let A be a Noetherian ring, and A — B a finitely presented ring map. Let q¢ C B be
a prime and p = qN A. Then it is unramified at q iff A, — By is an unramified local ring map.

PROOF. (=) There exists g € B\q such that A — B, is unramified. Then q' = qB, is a prime ideal, and
(By)q = Bg. By pullback of differentials (proposition 4.1.4), x(p) = By @4 £(p) = (A\p) ' B,/p(A\p) ' B,
is unramified.

(=) O

4.3. Local structure theory.

4.4. Unramified morphisms.

4.4.1. Definition. A morphism of schemes f : Y — X is unramified if it is locally of finite presentation
and for all y € Y, the local ring map Ox ¢,y — Oy, is unramified.

5. Smooth morphisms

5.1. Smooth ring maps.

5.2. Smooth morphisms.

6. Etale morphisms

6.1. Etale ring maps.
6.1.1. Definition. A ring homomorphism A — B is étale if it is finitely presented, unramified, and flat.

6.1.2. Example (Etale over a field). An étale k-algebra, where k is a field, is a finite product of finite
separable extensions of k.

6.1.3. Example. A standard étale map is a map of form A — B = (A[z]/P)q, where P(z) € Alz] is
a polynomial and @ € A[z]/P such that P’(z) is a unit in the localization. It is clearly flat and finitely
presented, and it is unramified because Qp 4 = (Qaf21/p)/4)@ = (Alz]/(P,P"))q = 0.

6.1.4. Definition. A local ring homomorphism A — B is local étale (in EGA IV, étale essentiellement) if
B ~ C, (over A) for some étale A-algebra C' and prime ideal p above the maximal ideal m C A.

6.1.5. Proposition. Let A — B be local étale. Then B is

(1) regular,

(2) reduced,

(8) Cohen-Macaulay, or
(4) integrally closed,

if and only if A is.

6.1.6. Remark. The same does not hold for the property of being an integral domain.
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6.2. Etale morphisms.

6.2.1. Definition. A locally finitely presented morphism f : X — Y is called étale if one of the following
equivalent conditions hold:
e f is flat and unramified.
e (functorial description) For each affine scheme Y’ — Y and each closed subscheme Y of Y’ defined
by a nilpotent ideal sheaf, Homy (Y, X) — Homy (Y, X) is a bijection.

6.2.2. Proposition. The following facts are true about étale morphisms:

e Open immersions are étale;

If f: X —=Y and g:Y — Z are étale, then so is go f;

Iff: X=X and g:Y — Y’ are étale over S, then sois f Xxsg: X xgY — X' xgY'.
Ifg: Y - Z and go f : X — Z are étale, then so is f.

PrOOF. (TODO) U

7. Henselian rings
7.1. Henselian rings.

7.1.1. Definition (for proof, see [1], chapter 1). A local ring (A, m, k) is Henselian if it satisfies the following
equivalent conditions:
(1) (Finite algebra decomposes) For any finite A-algebra B, the canonical map B — [[, By is an
isomorphism, where n runs through all (finitely many, since B is semilocal) maximal ideals of B.
(2) (Hensel’s lemma) Suppose a monic F' € Alx] has image f € k[x] which factors as f = gh, where
g, h are coprime monic polynomials in k[z], then F = GH for monic G, H € A[z] whose images are
g, h.
(3) (Quasifinite implies finite) For any A-algebra B, if B = C), for some finitely generated A-algebra
C and p above m, and if A — B is quasifinite (B/mB is finite over k), then B is finite over A.
(4) (Geometric meaning) Let X = Spec A, x € X the closed point, then for any étale X-scheme Y and
y € Y, a k(z)-point, there exists a unique section X — Y mapping z +— y.

A Henselian ring A is strictly Henselian if k is separably closed.

7.1.2. Example. Here are some naturally-occuring examples of (strictly) Henselian rings:
o fields;

any ring with a unique prime ideal;

more generally, a local ring A is Henselian iff A,eq is;

complete Noetherian local rings;

the ring of convergent power series over R or C.

More examples can be obtained from Henselization (section 7.2).

7.1.3. Remark (Intuition about Henselian rings). There is an analogy: local rings are to Zariski topology
as strictly Henselian rings are to étale topology, as Henselian rings are to Nisnevich topology.

7.1.4. Theorem. Let (A,m,k) be a Henselian local ring. The map B — B/mB gives an equivalence between
the category of finite étale algebras over A and the category of finite étale algebras over k.

7.2. Henselization. Let (A4, m, k) be any local ring, and fix a local homomorphism ¢ : A — K, where
K is a field. Consider the set of all diagrams

11{7

where A — B is local-étale (definition 6.1.4) with trivial residue field extension, and B — K is local. A map
between two such diagrams is given by a local homomorphism B; — Bs that commutes with the rest of the
diagram.

7.2.1. Proposition (EGA 1V.18.6.3). The following are true:
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(1) There is at most one map between any two such diagrams;
(2) For any two objects, one can find an object which both objects map to.

Consequently, this poset actually forms a filtered category. So we get a filtered colimit A= ligB, with
local homomorphisms A — Aand A — k.

7.2.2. Proposition. The ring Ais Henselian, and s strictly Henselian if K is separably closed.
7.2.3. Proposition. The local ring map A — A s faithfully flat.

7.2.4. Proposition. The ring A is
(1) regular,
(2) reduced,
(8) Cohen-Macaulay, or
(4) integrally closed,

if and only if A is.

7.2.5. Definition (Henselization). When ¢ : k — K is an isomorphism, A = A" is called the Henselization
of A. When K is separably closed, A = A%" is called a strict Henselization of A.

7.2.6. Proposition (Properties of Henselization). The following are true:
(1) For any Henselian ring B, the map Hom,.(A", B) — Homy,.(A, B) is bijective.
(2) For any strictly Henselian ring B with residue field ¢ and a fized embedding ¢ — K, the map
Homloc(ASfﬂB) — Homyoo (A4, B) is bijective. Here the maps are assumed to respect their residue
field embeddings into K.
(3) mA" is the mazimal ideal of A", and the residue field map k — A" /mA" is an isomorphism.
(4) mAs" is the maximal ideal of AS", and the residue field map k — A" /mA*" is a separable closure
of k in K.
7.2.7. Example. Let X be a scheme, P : Spec{} — X a geometric point. Then Ox p is the strict
Henselization of Ox , with respect to x(x) — €.

8. Abelian categories
8.1. Additive categories.

8.1.1. Definition. An additive category is a category € where:

e Finite products and coproducts exist;

e A zero object exists;

e For any objects A, B € ¥, Hom(A, B) has the structure of an abelian group, and composition of
morphisms is bilinear.

8.1.2. Proposition. In an additive category, A @ B is isomorphic to A X B.

8.1.3. Definition. A functor F': € — €’ between additive categories is an additive functor if F(u+ v) =
F(u) + F(v) for morphisms u, v.

8.1.4. Proposition. Additive functors send the zero object to the zero object.

PROOF. An object A € ¥ in an additive category is the zero object if and only if id4 = 04, and both
are preserved by an additive functor. (I

8.1.5. Definition (kernel, cokernel, image, coimage). Given u : A — B in an additive category &, the kernel
ker(u), if it exists, is an equivalence class of monomorphisms ker : ker(u) — A, such that any C — A — B
is zero iff C'— A factors through ker(u) — A. It is unique if it exists.

Similarly, the cokernel coker(u) can be defined, and is a quotient object of B.

Finally, define the image im(u) = ker(coker(u)), and the coimage coim(u) = coker(ker(u)).

8.1.6. Proposition. If both im(u) and coim(u) exist, then there is a natural morphism
u : coim(u) — im(u),

such that u : A — B factors through A — coim(u) - im(u) < B. O
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8.2. Abelian categories.

8.2.1. Definition. An abelian category € is an additive category that satisfies:

e (AB1) All kernels and cokernels exist;
e (AB2) For any u: A — B, w: coim(u) — im(w) is an isomorphism.

8.2.2. Proposition. For an object A € € in an abelian category, the set of subobjects of A are in bijection
with the set of quotient objects of A, given by:
[u: B — Al — [A — coker(u)],
[v:A— B] — [ker(v) — AJ.
Further, the subobjects of A form a lattice: for Ay, As — A,
A1 UAy =im(4; @ As — A),
A1 N Ay =ker(A— A/A; x AJAs),

and similarly do the quotient objects of A. O
8.2.3. Proposition. A map u: A — B is mono iff ker(u) =0, and u is epi iff coker(u) = 0. O
8.2.4. Proposition. In an abelian category, mono and epi together implies isomorphism. (I
8.2.5. Proposition. The sequence 0 - A — B — C' is exact iff

0 — Hom(M, A) — Hom(M, B) — Hom(M, C)
is exact for all M. O

8.2.6. Proposition. Let € be any category, €' be an abelian category, then Hom(€,€') is an abelian
category (with exactness pointwise). a

8.2.7. Theorem (Freyd-Mitchell embedding theorem). Let € be a small abelian category, then there exists
a unital ring R (not necessarily commutative) and a fully faithful exact functor F : € — R-Mod.

8.3. Injective objects.

8.3.1. Definition (injective objects). In an abelian category %, an object M is injective if the contravariant
functor A — Hom(A, M) is exact. (It is automatically left exact; right exactness is the same as saying that
for any subobject A" — A, any morphism A" — M extends to A — M.)

8.3.2. Definition (enough injectives). An abelian category € has denough injectives if for each A € €,
there exists a mono A < M, where M is injective.

8.4. Grothendieck categories.

8.4.1. Definition. A collection of objects {Z;}icr in € is a family of generators if for each A € €, B — A,
B # A, there exists i € I and a morphism Z; — A that does not factor through B.

8.4.2. Definition. A Grothendieck category € is an abelian category that has a family of generators, and
satisfies the following two axioms:

e (AB3) Arbitrary coproducts exist.
e (AB5) Assume AB3, and filtered colimits of short exact sequences are exact. Equivalently, for a
filtered family of subobjects A; — A, ligAi =Y A
8.4.3. Proposition. Suppose € is an abelian category that satisfies (AB3). TFAE:
(1) {Z;} is a family of generators;
(2) Z =\J,; Z; is a generator;
(3) For each A € €, there exists an epi @ Z — A.

8.4.4. Theorem (Grothendieck). Let € be a Grothendieck category, then € has enough injectives.
8.4.5. Example. Ab, R-Mod, Sh(X), QCoh(V), etc.

8.4.6. Proposition. Let € be any category, €' be an abelian category.
(i) If €' satisfies (AB5), then so does Hom(€,€").
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(i1) If €' satisfies (AB3) and has generators, then so does Hom(€,%").

PROOF. Item (i) is not hard to show pointwise. For (ii), given any object Z € ¢’ and A € ¢, define an
object Z4 € Hom(%,%") by
B~ J] 2

Hom(A,B)
with the obvious morphisms. Then observe that Hom oy, (4 ,47)(Za, F') = Home (Z, F'(A)) naturally. From

this, it is not hard to show that if Z is a generator of 4", then the Z4’s form a family of generators for
Hom(%,%¢"). O

8.5. Derived functors.

8.5.1. Definition (0-functors). Let & be abelian, ¢’ additive. A (covariant) d-functor € — €’ is:

e a system of additive functors T : € — ¢’ (i > 0), and
e connecting morphisms § : T*(A”) — T+1(A’), for every i > 0 and each short exact 0 — A" — A —

A” - 0in @,
satisfying:
e Given a map of short exact sequences
0 A A A" 0
0 B’ B B” 0,

the diagram
Ti(A”) J Ti+1 (A/)

Tz’(B//) _6 TH'I(B/)
commutes;
e Given an exact sequence 0 - A" - A — A” — 0, the sequence

0— TO(A') — TO(A) — TO(A") & TH(A) — ...
is a chain complex.
When %" is abelian as well, the d-functor is called ezact if the above chain complex is exact.

8.5.2. Definition. A morphism of two d-functors T*, T"* is a system of natural transformations f* : T — T"¢
that commute naturally with 0.

8.5.3. Definition (universal). A d-functor T = (T%) : € — €" is universal if for each d-functor T' = (T"%)
and each natural transformation f° : 70 — T'0, there is a unique extension to a morphism of d-functors
T—-T.

8.5.4. Definition (effaceable). An additive covariant functor F : € — € is effaceable if for each object
A € €, there is a monomorphism u : A — M in € such that F(u) = 0.

8.5.5. Proposition. Let € be an abelian category with enough injectives, then F : € — %' is effaceable iff
F(M) =0 for all injective M. O

8.5.6. Theorem. Let ¢, %" be abelian categories, and T' = (TY) : € — €' be an exact O-functor. Then
if each T" is effaceable for i > 0, then T is universal. If, in addition, € has enough injectives, then the
converse is also true.

8.5.7. Definition (right derived functors). Let F : 4 — %"’ be a left exact additive covariant functor
between abelian categories. Then its right derived functors R‘F (i > 0) is the (unique) universal exact
O-functor extending F'.

8.5.8. Theorem. When € has enough injectives, right derived functors exist for every left exact additive
covariant functor F'.
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PRrROOF. For A € ¢, consider an injective resolution
0= A— M — M - M?— ...
Then R'F(A) is defined as the ith cohomology of
0— F(M°) = F(M') —» F(M?) — ....

This is functorial and does not depend on the particular injective resolution chosen, because any two reso-
lutions extending the same map are chain homotopic. Also, R*F(M) = 0 for i > 0 and M injective, because
of the injective resolution 0 - M — M — 0, which shows that (R"F') is universal.

It remains to check that this is exact. Given a short exact sequence 0 — A" — A — A” — 0, take
injective resolutions 0 —+ A’ — M’ and 0 — A” — M'*, then we can construct an injective resolution
0— A — M, where M" = M" & M"", such that 0 — M" — M"* — M"" — 0 is exact (horseshoe lemma).

Applying F, each 0 — F(M") — F(M") — F(M"*) — 0 is then exact as well, which gives a desired long
exact sequence. J

We will see this construction in a different light in section 12.

9. More categorical constructions

9.1. Group objects.

9.2. Spectral sequences.

9.2.1. Proposition (five-term exact sequence). For a cohomological spectral sequence EY? = EP14 ] the
sequence

0— B, - E' - EY' - E2° - E?

18 exact.

9.2.2. Theorem (Grothendieck spectral sequence). Let €,%" be abelian categories with enough injectives,
and €" another abelian category. Let F : € — €', G : €' — €" be left exact covariant additive functors,
and suppose F maps injective objects to G-acyclic objects (ones for which R'G is zero for i > 0). Then for
each A € €, there is a spectral sequence

EY? = RPG(RIF(A)) = EPT1 = RPTI(G o F)(A),
and this is functorial in A.

ProOOF. (TODO) U

9.3. Limits and colimits.

9.3.1. Proposition. If an abelian category satisfies (AB3), then it has arbitrary colimits, and colimit is
right exact. (I

9.3.2. Proposition. Right (resp. left) adjoints commute with limits (resp. colimits). a

9.3.3. Definition (pseudofiltered and filtered). A category .# is pseudofiltered if it satisfies:

e (PS1) Each i — j, i — j' can be extended to j — k, j/ — k, such that the square commutes;
e (PS2) Each f,g:i— j can be extended to h: j — k such that ho f =hog.

It is filtered if for any two objects j,j’, there exists an object k and morphisms j — k, j/ — k.

9.3.4. Definition. A full subcategory # of a category & is final if any object A € &/ has a morphism
A — B, where B € A.

9.3.5. Proposition. Let F': & — € be a functor where I satisfies (PS1), and # be a final subcategory
of . Then the natural map

lig F — lig F|
is an isomorphism. In particular, if & has a final object oo, then liﬂF =~ F(o00).
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9.4. Sites.

9.4.1. Definition (sites). A site consists of:
e a category ¥;
e a collection cov(%) of coverings, i.e. families of morphisms {U; — U }4er,
satisfying:
e Given a covering {U; — U};cr, and any morphism V' — U, the fiber products U; xy V exist and
{Ui xu V= V}ier is a covering as well;
o If {U; = Uticr and {U;; = U;}jc, are covering families, then so is {U;; — U tier je;
e Any isomorphism {V — U} is a covering.

9.4.2. Definition (morphisms of sites). A morphism of sites (¢, cov(%)) — (€”,cov(€”)) is a functor F of
categories, such that:

e For any covering {U; — U} in cov(€), {F(U;) = F(U)} € cov(%");
e Given a covering {U; — U }icr, and any morphism V' — U, the maps f(U;xy V) = f(Us) %y f(V)
are isomorphisms.

10. Sheaves on sites

10.1. Definition (sheaves on sites). Let 2 be a category that admits arbitrary products. A Z-valued
presheaf on a site (¢, cov(%)) is a contravariant functor F : € — 9. It is a sheaf if for every covering
0= FU) = [[FW) = [[FW: <0 U;)

i i,j

is exact. (This makes sense when 2 = Set, Ab, R-Mod, etc.)

A morphism of (pre)sheaves is a natural transformation of functors.

Fix a site T = (¢, cov(%)). The category of abelian presheaves on T is denoted by &2, and the category
of abelian sheaves on T is denoted by .#, which is a full subcategory of Z.

10.2. Definition (universal effective epi). Let € be a category with fiber products. An epi f: U — V' is
an effective epimorphism if for any Z,

0 — Hom(V, Z) — Hom(U, Z) = Hom(U xv U, Z)

is exact. It is an universal effective epimorphism if any pullback is effective as well.
More generally, a family of effective epimorphisms is a family {U; — V'} such that for any Z,

0 — Hom(V, Z) — | [Hom(U;, 2) = [ [ Hom(U; xv U;, 2)
i 2%}
is exact. It is a family of universal effective epimorphisms if any pullback is effective as well.

10.3. Proposition. Let {U; — U}, {U;; — U;} be families of universal effective epimorphisms, then so is

10.4. Definition (canonical topology). Let € be a category with fiber products. The canonical topology is
a site whose coverings are the families of universal effective epimorphisms.

10.5. Proposition. With the canonical topology, every representable presheaf of sets (ones of form U —
Hom(U, Z)) is a sheaf. Moreover, the canonical topology is the finest topology in which all representable
presheaves of sets are sheaves. (I

10.1. Canonical topology on the category of left G-sets. Let 4 be the category of left G-sets
with G-maps as morphisms, and equip it with the canonical Grothendieck topology.

10.1.1. Proposition. A family {U; — U} is in cov(¥) iff the images of U; cover U. O
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10.1.2. Proposition. The category of left G-sets is in equivalence with the category of sheaves of sets on
€, where the equivalence is given by

S+ Hom(e, S)
F(G) «~ F
where F(Q) is a left G-set by: for x € F(G), gz is defined as the image of x under the morphism F(G) —
F(G) induced by the map G — G, h+— hg.
PROOF. The key part is constructing isomorphisms

F(H) — Homg (H, F(G))
functorial in H. Consider the covering {¢p : G;, — H}, where each G}, is a copy of the G-set G, and ¢y,
maps 1g to h. Since F' is a sheaf,

0= FH)~ [[ FG)= [ F(Gh xu Ghy)
heH hi,he€H

is exact. It is not hard to verify that, for an element (x), € [ F(Gh),
(@n)n € m(F(H) = [[ F(Gr) = zgn = gan = (xn)n € ker(J [ F(Gr) = [[ F(Gn, xu Gn,)),

so all implications are reversible. This gives a natural isomorphism between F(H) and its image in [[ F(G}),
which is the set of G-maps H — F(G). O

10.1.3. Corollary. The category of left G-modules is in equivalence with the category of sheaves of abelian
groups on € . (]

10.2. Canonical topology on the category of continuous G-sets. Let GG be a profinite group.
10.2.1. Proposition. The open normal subgroups H of G form a neighborhood basis of 1, and G = 1&1 G/H.

A continuous G-set is a G-set U whose action G x U — U is continuous (U equipped with the discrete
topology).
10.2.2. Proposition. TFAE:

(1) U is a continuous G-set;
(2) For every u € U, Stab(u) is open;
(3) U=\JUH, where H ranges among open normal subgroups of G.

Consider the category % of continuous G-sets and G-maps, with the canonical topology. As before:
10.2.3. Proposition. A family {U; — U} is in cov(%) iff the images of U; cover U. O

10.2.4. Proposition. The category of continuous G-sets is in equivalence with the category of sheafs of sets
on €, where the equivalence is given by
U — Hom(e,U)
hﬂF(G/H) — F
where hAlF(G/H) is a continuous G-set as usual.

PRrROOF. We will repeatedly use the argument in Proposition proposition 10.1.2. The nontrivial part is
to give a natural isomorphism F(U) = Homg (U, hﬂF(G/H))
First, using the covering {Uf — U}, we may identify F(U) = l'glF(UH).
Next, fix an open normal subgroup H. Using the covering {G/H — U} sending 1 to each element in
U we may identify
F(U") = Homg,y(U?, F(G/H)}.
Next, we wish to show that

(%) Homg, z(UY, F(G/H) = Homg(U", lim F(G/H")).
H'CH
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This is because, given a fixed H' C H, {G/H' — G/H} is a covering, so F(G/H) is identified with
F(G/H)"/H" 5o the map F(G/H) — h_ngF(G/H’) identifies F(G/H) with liﬂF(G/H’)H, which proves
(*). Putting everything together:
F(U) = lim F(U)

= lim Homg,n (U™, F(G/H))

= lim Homg(U", lim F(G/H"))

= Homg (lip U, lim F(G/H'))

= Homg(U,li_n;F(G/H))7
as desired. 0

10.2.5. Corollary. The category of continuous G-modules is in equivalence with the category of sheafs of
abelian groups on € .

10.3. Functors f, and fP. Let f : T — 1" be a functor between the underlying categories of two
sites. (It does not have to be a morphism of sites, aka a continuous functor.) Let &, ' be the categories
of abelian presheaves on F, F”.

10.3.1. Definition. Given an abelian presheaf F’ on T’, we may define an abelian presheaf fPF’ on T by
Uw— F'(f(U)). This is an additive, exact functor f? : &’ — £ that commutes with colimits.

10.3.2. Proposition. The functor fP has a left adjoint f, : & — P'.

PRrROOF. First, we define the presheaf f,F. Let U’ € T”, then consider the category £y of pairs (U, ¢)
where U € T and ¢ : U’ — f(U) is a morphism. Define

f,F(U") = lim F(U)
where the colimit is taken across all (U, ¢) as above. Let ¢’ : U’ — V' be a morphism, there is an induced
functor S, — Hy+, hence a morphism f, F'(V') — f,F(U").

It remains to show that
Hom(f,F,G") = Hom(F, f*G")

functorially, which is routine. ]
10.3.3. Corollary. If f, is exact, then fP maps injectives to injectives. O
10.3.4. Corollary. If F' € & is represented by Z € T, i.e. F(U) = Hom(U, Z), then f,F is represented by
f(2). O

10.3.5. Example. Taking T the site with only one object and one arrow, and T” any site, let i : T — T"
map the singular object to U € T'. Then & = Ab, and ¥ : &' — &2 maps F to F(U). Conversely, given
an abelian group A and V € 1", i, A(V)) = @yom(v,i)(4). This is exact, so we conclude that if F is an
injective sheaf, then F(V) is injective for all V € T".

10.4. Sheafification. Let T be a site, & be the category of abelian presheaves on T', and . be the
category of abelian sheaves. Let i : ¥ — & be the embedding functor.

10.4.1. Theorem. The functor i has a left adjoint, the sheafification functor & — & .
ProOOF. Consider a functor f: & — &, sending
F Ft:Fl(U) = H°(U, F).

it is routine to verify that Ff is an abelian presheaf, 1 is indeed a functor, and there is a canonical morphism
F — F'. Now, observe that any morphism F — G, where G is a sheaf, factors uniquely as F — Ff — G.
Uniqueness can be seen by noting that if £/ — G is the zero map, then so are the induced maps H°({U; —
U}, F)— H°({U; — U},G) = G(U), and we can simply pass to the colimit.

This finishes the proof of adjointness, provided that F! is a sheaf. Unfortunately, this is not always true,
but it is indeed true that (F7) =: F* is a sheaf, which we prove in the next proposition. Intuitively, the
correct functor should replace a global section with the collection of local sections that agree locally on their
overlaps, hence the need to sheafify in two steps. O
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10.4.2. Proposition. A presheaf F is separated if F(U) — [[ F(U;) is injective for each covering {U; —
U}. Then:

(i) If F is any presheaf, F' is separated.

(ii) If F is separated, then F' is a sheaf, and F — Fl is an monomorphism.

PROOF. Ttem (i) is routine. For (ii), we first show that F' — Ff is a monomorphism, i.e. F(U) =
H°({U — U},F) — H°(U, F) is injective. In fact, it suffices to show that for any refinement of coverings
{V; - U} - {U; —» U}, HH{U; — U},F) — H°({V; — U}, F) is injective. Say s is in the kernel.
Consider the covering {V; xy U; — U} and refinement maps {V; xp U; — U} 22 {U; — U}, and
{V; xp Uy » U} 25 {V; = U} — {U; — U}. By lemma 11.1.7, the two induce the same maps in H°, so s
is mapped to 0 in H°({V; xy U; — U}, F). This map is given by the restriction of

[[Fw) =[] FV; xu U,
which is injective since F' is separated.

Now, we show that F! is a sheaf. Suppose s = (s;) € L Ff(U;) is in the kernel. Pick representing
elements s; € H'({Ujry — U;},F). Then we have that the images of s;,s; in HY(U; xy U;, F) agree,
so they agree in some common refinement of {U;, xy U; — U; xy U;} and {Uj xy Uy — U; xy Uj}.
In fact, by the injectivity proven in the above paragraph, this means that they agree in any common
refinement, such as HO({U;, xu Uy — U; xy U}, F) C Hk,l F(Uir xu Uj;). Now, define the element
t € H({Uyx, — U}, F) < FI(U) by t; = s; € [[;, F(Ui), which lies in the kernel by the above reasoning.
This shows that Ff is a sheaf. O

10.4.3. Corollary. An abelian presheaf F is a sheaf iff for each covering {U; — U}, there is a refinement
{U; = U} such that

(%) 0= F(U) - [[FW)) = [[FU;, xvU},)
18 exact.

PROOF. The coverings which satisfy (x) then forms a final subcategory of all coverings, so the colimit

restricted to these coverings is the same as the colimit over all coverings. So F — F! is an isomorphism, so
F is a sheaf. O

10.5. The category of abelian sheaves.

10.5.1. Theorem. The category . of abelian sheaves on a site T is a Grothendieck category, and therefore
has enough injectives.

ProoF. First, . is an additive category as a full subcategory of & that contains 0.

Next, we construct the kernels and cokernels of a morphism F' — G. The kernel K = K* is constructed
pointwise and can be easily verified to be a sheaf. The cokernel C* is defined to be the sheafification of the
presheaf cokernel C, and this satisfies the universal property by the adjunction.

The image I* is defined similarly by sheafifying the presheaf image I. Since 0 — I — G — C — 0 is
exact, 5o is 0 — I* — G* — C* (left exactness of H®). So I'* = ker(coker(F* — G*)) in .. To show that
this is isomorphic to the coimage J*¥, let J be the presheaf coimage. Then w : J — I is an isomorphism. So
uf : J¥ — I*, which coincides with the natural map from coimage to image, is an isomorphism.

Next, we show that % satisfies (AB3). Let F; be a family of sheaves, and let F' be their pointwise,
presheaf direct sum. Again by the adjunction, F¥ is the sheaf direct sum.

Next, we show that .7 satisfies (AB5). Let A; < B be a filtered family of subobjects, and we wish
to show Y A; = thZ Let A =" A; in &, then A* = Y A; in ., since sheafification commutes with
direct sums and images. In the AB5 category &2, there is a unique extension A — B. This induces a unique
extension A* — B, once again by the adjunction. This shows (AB5).

Finally, we show that .” has a set of generators. In fact, since the presheaves Zy € & generate &,
given a monomorphism of sheaves A < B, there exists Z;; — B that does not factor through A. Then the
induced Z(u] — B does not factor through A either. So Z(u] is a set of generators. O

10.5.2. Proposition. The sheafification functor t: & — . is exact.
PROOF. As a left adjoint, it is clearly right exact. Also, i o f is left exact, thus so is f. |
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10.6. Functors f, and f*. Let f : T — T’ be a map of sites. Define £2,., %' .. Define the two
functors fs, f* as:

fo=tofyoi: s .,
ff=fofPoi . = 7.
It is clear that f* = fP o4’

10.6.1. Proposition. f is left adjoint to f°. If, moreover, fs is exact, then f* maps injectives to injectives.
O

10.6.2. Example (direct and inverse image). Let T,T" be the sites of open sets of two topological spaces
X, X', and let 7 : X’ — X be a continuous map, which induces a map of sites f : T — T’. Then f* is called
the direct image functor, and fs the inverse image functor.

10.6.3. Example (G-sets). Let T,T" be the canonical topologies on the category of left G, G'-sets. Let
7 : G — G be a homomorphism of groups, which induces a map of sites f : T — T’. Denote 7, = f*,7* = fs.
Identifying abelian sheaves with G-modules, we can write explicitly

7.(A") = Homg/ (G, A)
as a G-module by (ga)(h) = a(hg), and
T (A)=A
as a G'-module (cf. corollary 10.3.4). In the case G’ C G, the module 7,(A’) = Homg (G, A’) is called the

co-induced G-module CoIndg, A. The adjunction then translates to half of Frobenius reciprocity.

10.6.4. Example (continuous G-sets). Let G, G’ be profintie groups, and T, T’ be the canonical topologies
on the category of smooth left G,G’-sets. Let 7 : G’ — G be a smooth homomorphism of groups, which
induces a map of sites f : T — T’. Denote 7, = f* 7* = f;. Identifying abelian sheaves with continuous
G-modules, we can write explicitly

7 (A") = Hom{: (G, A') = lig Home: (G/H, A")
and
™ (A) = A.

10.6.5. Proposition. Suppose T,T' have final objects and finite fiber products, and f : T — T’ preserves
them. Then fs is exact.

PrOOF. It is sufficient to show f, is left exact, i.e. given a fixed U’ € T, the functor & — Ab,
F — f,F(U"), is left exact. Let Z be the category of pairs (U, ¢), where ¢ : U' — f(U) is a morphism in T".
Then f,F(U’) = hﬂ(u &) F(U) taken over the category Z°P, so it suffices to show that Z°P is pseudofiltered.
In fact, it is filtered, and this follows from the assumptions on final objects and fiber products. O

Consequently, in all three examples above, f* maps injective objects to injective objects.

11. Cohomology of sheaves

11.1. Cech cohomology. Let T be a site, & the abelian category of presheaves of abelian groups on
T. Tt satisfies (AB5) and has generators, so it has enough injectives, so right derived functors exist for every
left exact covariant additive functor F': &2 — Ab. Also, exactness is verified pointwise.

11.1.1. Proposition. All colimits exist in & and are constructed pointwise. Colimits are additive and right
exact, and are exact if they are pseudofiltered (AB5).

11.1.2. Definition. Let {U; — U} be a covering. Define a functor
H°({U; - U}, ) : & — Ab
Feker([[F(U:) = [ FU xu U))).

Then it is left exact and additive, so we may define RIH?({U; — U}, o) =: HI({U; — U}, »), the g-th Cech
cohomology group associated to {U; — U} with values in F.
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11.1.3. Theorem. Let C*({U; — U}, F) be the Cech cochain, then its q-th cohomology group can be
canonically identified with H1({U; — U}, F).

PROOF. 1t is sufficient to show that the g-th cohomologies H?({U; — U} F) of C*({U; — U}, F) form
a universal O-functor extending H® = = H° , which in turn follows from each H¢ being effaceable, for ¢ > 1,
i.e. kills all injective objects. Let F' be an injective sheaf. Let Zy : V — UHom(wU) Z be the generators of
2, which satisfy Hom(Zy, F)) = Hom(Z, F(U)) = F(U). Then

C'{U; - U}, F) = Hom( €D Zu, xp-xpus,: F)-

20 ,’Lq

Since F' is injective, it suffices to show that the complex
(%) = @B Zvou, (V) = P Zu, (V) 0
4,J i

is exact, for all V. Fix an arbitrary map ¢ : V. — U, we denote S = [[, Homy(V, U;), where Homgy(V, U;)
consists of morphisms that commute with ¢ and U; — U. Then to show (x) is exact, it suffices to show that

—>€BZ—>@Z—>O

SxS

is exact. But the identity on this chain complex is null-homotopic, so its homology groups are all zero, i.e.
is exact. (I

11.1.4. Definition. A refinement map of coverings {U; — U}jes — {U; — Ulier consists of a map
€ :J — I of index sets, and U-morphisms f; : U]{ = Uejy-

BEach refinement map induces a map of Cech cohomology groups in the opposite direction, which is
O-functorial. Thus we may define:

11.1.5. Definition (Cech cohomology). Let U be an object, F' € & an abelian presheaf. Then the ¢-th
Cech cohomology of U with values in F' is defined as

HYU,F) = lig HI({U; = U}, F).

11.1.6. Theorem. The functor F — HO(U, F) is left exact and additive, and its right derived functors are
HY(U,F).

Proor. It is sufficient to show that h%l takes exact sequences of functors of form H7(e, F') to exact
sequences in Ab. To do this, we first prove the following lemma:

11.1.7. Lemma. Let (f,¢),(g,m) be two refinement maps {U; — U} — {U; — U}, then they induce the
same maps

HY({U; = U}, F) — H'{U; = U}, F).

PROOF. Let h:[] F(Us, xu Us,) = [[ F(U;) be the “homotopy” map induced by maps U; — Ue(;) Xu
Up(j)- Then the maps 1060 T FU;) — F(U; ) satisfy fo — go = h od, so they induce the same map in the
zeroth cohomology, so they induce the same map in all cohomologies by universality. (I

Back to the theorem: the lemma tells us that instead of taking the colimit across the category of coverings
with all refinement maps as morphisms, we may as well consider the poset of all coverings, ignoring the
different refinement maps. This is now a filtered category: given coverings {U; — U}, {U; — U}, by the
axioms of a site, {U; xy U; — U} is a covering as well. So taking the colimit is now exact and we are
done. |
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11.2. Sheaf cohomology. Let T be a site, . the abelian category of sheaves of abelian groups on 7.
It satisfies (AB5) and has generators, so it has enough injectives, so right derived functors exist for every
left exact covariant additive functor F': . — Ab. In particular, consider the section functor I'yy : . — Ab
given by F' +— F(U), which is left exact.

11.2.1. Definition. Define the ¢-th sheaf cohomology
HYU,F) := RTy(F).

11.2.2. Example (group cohomology). Let G be a group, A a left G-module, and e the one-element left
G-set. Then I'.(Homg(e, A)) = Homg(e, A) = A%, So

Hi(e,Homg(e, A)) =2 HY(G, A)

is the usual group cohomology. Conversely, given any G-set X, we may write it as the disjoint union of
G-orbits X;, then X; = G/H; as G-sets. Then

HY(X,Homg (e, A)) = [ [ HY(G/H;, Homg(e, A)) = [ [ HY(H;, A).

11.3. Cech-to-derived functor spectral sequence. Let T be a site, & the category of abelian
presheaves on T, and .% the category of abelian sheaves on T'. The composition functor

RNy RGNS
is equal to I'y. For F € ., let HI(F) := R%(F) be the derived functors of i.
11.3.1. Proposition. For each U € T, we have, canonically,
HUF)(U)=HYU,F).

PROOF. Taking ¢ = 0, we have H*(U, F) = F(U) = H°(F)(U), so it is sufficient to show that H(e, F')
(which are easily verified to be presheaves on T') form a universal d-functor . — . But both exactness
and effaceability follow from the definition. O

11.3.2. Proposition. For each abelian sheaf F', HI(F)! =0 for ¢ > 1.

ProOF. We know H9(F)l — HI(F)* is a monomorphism, so it suffices to show that H?(F)* = 0 for
q > 1. Apply the Grothendieck spectral sequence to the composition of functors ids = f o 4. (|

11.3.3. Theorem (Cech—to—derived functor spectral sequence). Let F' be an abelian sheaf.
(i) For each covering {U; — U}, there is a spectral sequence
EYT=HP{U; - U}, HY(F)) = HPTY(U, F);
(i) For each U € T, there is a spectral sequence
EYY = HP(U,H(F)) = HPTI(U, F).

PrOOF. To apply the Grothendieck spectral sequence, we have to show that injective sheaves are G-
acyclic in the category of presheaves, where G = HY({U; — U}, o) or H°(U,e). Because f is exact, i maps
injectives to injectives (corollary 10.3.3), which are G-acyclic for any additive left exact functor. ]

We get edge morphisms H?({U; — U}, F) — HP(U,F) and H?(U, F) — H?(U, F).
11.3.4. Corollary. Let {U; — U} be a covering, and F' an abelian sheaf such that
HY U, xy - xp Ui, F)=0
for all ¢ > 1. Then the edge morphisms HP({U; — U}, F) — HP(U, F) are isomorphisms for all p > 0.

PrOOF. The given data implies that HP({U; — U}, H4(F)) = 0 for all p > 0,q > 1, so the edge
morphisms are isomorphisms. O

11.3.5. Proposition. The edge morphism H”(U, F) — HP(U, F) is isomorphic for p = 0,1 and injective
forp=2.
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ProOF. Using proposition 11.3.2, the five-term exact sequence rewrites as:
0— HU,F)— H (U, F) - 0— H*(U,F) - H*(U,F)
which proves the proposition. |
11.4. Flasque sheaves.

11.4.1. Definition. An abelian sheaf F' on a site T is flasque (or flabby) if for all ¢ > 1 and all coverings
{U; = U}, H1({U; - U}, F) =0.
11.4.2. Proposition. The following are true about flasque sheaves:
(i) Let 0 > F' - F — F" — 0 be exact in 7. If F' is flasque, then it is exact in &.

(i) Let 0 = F' - F — F"” — 0 be exact in 7. If F', F are flasque, then so is F".

(i) If F & G is flasque, so is F.

(iv) Injective abelian sheaves are flasque. O
11.4.3. Corollary. For an abelian sheaf F', TFAE:

(1) F is flasque;

(2) For allq>1, Hi(F) = 0.

0 1 2
PROOF. (1) = (2): Let 0 — F — M° L5 M' L5 M2 L5 . be an injective resolution in .7, we
wish to show it is exact in &2. Split it into short exact sequences:
0—F— M° = ker(f') =0
0 — ker(f') — M' = ker(f?) =0

Then by induction, each of ker(f?) are flasque, and all these short exact sequences are exact in & as well.
Thus the long sequence is exact in & too.

(2) = (1): By corollary 11.3.4, the edge morphisms HY({U; — U}, F) — H%(U, F) are isomorphisms.

O

11.4.4. Corollary. Flasque resolutions can be used to compute sheaf cohomology.

PRrROOF. The key is that flasque sheaves are i-acyclic, by the previous corollary. So suppose we have
an acyclic resolution 0 — F — M?*. This splits into short exact sequences 0 — K® — M? — K+l — 0,
where K = ker(M® — M®*1). Its long exact sequence reads 0 — HY(K'™!) — HITY(K%) — 0, since M*
are acyclic. So by induction, H?(F) = H(K") = H'(K9~1), which by the long exact sequence

0— KTt 5 M7 5 K9 HY (K7 =0
is equal to K9/im(M?~! — K%)= H1(0 — M?) in the category of presheaves. O

11.4.5. Example. Every abelian sheaf is flasque iff i : .7 — &2 is exact. This occurs, for example, when T'
is the site of sets with the canonical topology.

11.5. The Leray spectral sequence. Let f : T — T’ be a map of sites, then f*: . — .7 is left
exact, so right derived functors R?f*® exist.

11.5.1. Proposition. The following diagram commutes:

In other words, given an abelian sheaf F' onT', R1f*F" is the sheafification of the presheaf U — HI(f(U), F")
onT.

PROOF. Applying the Grothendieck spectral sequence to f* = (fo fP)o (i), we have a spectral sequence
EYY =RP(fo fP)(HI(F')) = RPTIfF.
For p > 0, E?? = 0 since f o f? is exact. So (fPHI(F'))f = EY? = RIfsF". O
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11.5.2. Proposition. The functor f* maps flasque objects in /' to flasque objects in .. (Contrast this
with the fact that if fs is exact, then f* maps injectives to injectives.) O

11.5.3. Corollary. Let T" % T ENG maps of sites, then f° maps flabby sheaves to g°-acyclic sheaves.
O

Consequently, we can apply the Grothendieck spectral sequence:

11.5.4. Theorem (Leray spectral sequence). Let T 2 T ENG maps of sites, and F' an abelian sheaf
on T'. Then there is a spectral sequence

(%) EJY = RPg*(RUf*F') = R'™(fg)*(F).

In particular, taking T" to be the site with one object * and one morphism, and let g map * to U € T, the
Leray spectral sequence reads

() EY? = HP(U RIf*F") = HPTI(f(U), F').
The edge morphisms read
B} = HP(U, f*F') = H? (f(U), F")
HI(f(U),F') = RUf*(F")(U) = By
The latter can be interpreted as the sheafification map in proposition 11.5.1.

11.5.5. Example. Let 7 : G’ — G be a homomorphism of groups, U = {e} the one-element G-set, and
identify the category of G’-modules with the category of abelian sheaves on Tg/. Then given a G’-module
A, (xx) reads

EY? = H?(G,Rm,(A")) = HPT(G', A).
Here 7, is the functor as in example 10.6.3.

11.5.6. Example (Hochschild-Serre spectral sequence). Let H < G be a normal subgroup, and 7 : G —
G/H the natural homomorphism. Then for each left G-module A,

A =Homg(G/H, A) = A7

so Rim,(A) = HI(H, A), where we identify A with the abelian sheaf Homg (e, A). Then the Leray spectral
sequence in the previous example reads

ER? = HY(G/H, H'(H, A)) = H""(G, A).

The edge morphisms H?(G/H, A") — HP(G, A) are called inflations, and the edge morphisms H9(G, A) —
HI(H, A)S/H are called restrictions. The five-term exact sequence reads

0— HY(G/H,A") » HY (G, A) - H'(H,A)¢/" — H*(G/H, A") = H*(G, A),
where the second-to-last map is also called the transgression.

11.5.7. Example (Shapiro’s lemma). Let 7 : H — G be an inclusion. Then 7, is exact, so EY'? = 0 for
g > 1. Consequently, the edge morphism HP(G, CoIndg (A)) —» HP(H, A) is an isomorphism.

11.5.8. Example (Tate cohomology). (TODO: example 3.7.11 in Tamme)

11.6. Localization. Let T be asite, Z € T an object, then there is naturally a site 7'/Z on the category
of Z-objects. The map i : T/Z — T is then a map of sites.

11.6.1. Lemma. The functor i® is exact.

PROOF. We know from proposition 11.5.1 that R%*F = (i*?H%(F))*. From proposition 11.3.2, H?(F)*
0, so it suffices to show that ¥ commutes with 4, which is easy to check.

Ol

11.6.2. Corollary. There are natural isomorphisms
HP(U — Z,i°F) 2 HP(U, F)
given any abelian sheaf F on T, and any object U — Z in T/Z.
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PrOOF. Applying the Leray spectral sequence, we get
EY?=HP(U — Z,R%*F) = HPTY(U, F).
But R%* = 0 when ¢ > 1, so the edge morphism H?(U — Z,i*F) — HP?(U, F) is isomorphic. O

11.6.3. Example. Let T be the canonical topology on left G-sets. Let H < G be a subgroup, then the left
cosets G/H is an object in T, and in fact the functor T /(G/H) — Ty given by [A 2, G/H] — ¢ 1(1cH)
is an equivalence of sites.

11.7. Comparison lemma.

11.7.1. Theorem (comparison lemma). Leti: T — T be a map of sites, satisfying that:

o i is fully faithful (and therefore T' is equivalent to a full subcategory of T');
o A covering {U; — U} of T, where all U; and U are in T, is a covering in T';
e FEach object U € T admits a covering {U; — U}, where U; € T".

Then i° and is are quasi-inverses.

Proor. We will show that the unit n : id s — % o i5 and the counit ¢ : is 0 t®* — id» are natural
isomorphisms. (TODO) O
11.7.2. Corollary. Leti: T — T be a map of sites, satisfying that:

e i is fully faithful;
o Any covering {U; — U} of U € T", where U; € T, admits a refinement {U; — U} where U; € T".
Then i :idgs — i° o i is a natural isomorphism, and i® is exact.

PROOF. The proof of exactness of ¢° is similar to lemma 11.6.1, since the second condition tells us that
i? commutes with . O

11.7.3. Corollary. Leti:T' — T be a map of sites, satisfying the two conditions in the previous corollary.
Let U € T' and F, F’ be abelian sheaves on T, T, then we have natural isomorphisms
HP(T';U,i*F) — HP(T;U, F)
and
HP(T";U,F') — HP(T;U,isF").
PROOF. The former comes from the Leray spectral sequence
EY? = HP(T';U, R%*F) = HPTY(T;U, F).

Since #° is exact, the edge morphisms HP(T";U,i*F) — HP(T;U, F') are isomorprhisms.

The latter comes from the composite

HP(T;U,F") — HP(T'; U,i%i,F") — H?(T; U, i F")

where the two maps are both isomorphisms by the previous corollary. (]
11.7.4. Example. Let G be a profinite group, T¢; the canonical topology on continuous G-sets, and T¢, the
canonical topology on finite continuous G-sets. Then it is easy to see that i : T, — T satisfies the three

conditions in the comparison lemma theorem 11.7.1: each continuous G-set U can be covered by the orbits
Gu for uw € U, which are finite since the stabilizer of u is open.

11.8. Noetherian topology.

11.8.1. Definition. Let T be a site. An object U is quasicompact if for any cover {U; — U };cr, there exists
a finite subset I’ C I such that {U; — U}iep is still a cover.
We call T' Noetherian if every object is quasicompact.

11.8.2. Example. Let X be a topological space, and T the site of open sets. Then X is a Noetherian space
iff T is Noetherian.

Let T be a site. Then we may define a site 7 allowing only the finite coverings. Let i : 77 — T be the
identity map. Clearly, ¢® is fully faithful.
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11.8.3. Proposition. Let T be Noetherian. Then the following are true:
(i) i® is an equivalence of categories.
(ii) There are §-functorial isomorphisms HI(T?;U,i*F) = HY(T;U, F) for any abelian sheaf F on T.
(iti) Flasque sheaves on T can be checked on finite covers.

Let T be a site, and F; a family of abelian sheaves on T' indexed by some category Z. There are natural
morphisms

(%) liqu(U7 F) — Hq(U,liénFi)

which are not isomorphisms in general. However:

11.8.4. Theorem. If T is Noetherian and T is pseudofiltered, then the map () is an isomorphism.
ProOOF. (TODO) U

For example, we obtain that hgn commutes with arbitrary direct sums.

12. Derived categories

12.1. The category of cochain complexes up to homotopy. Let us first consider a concrete
example. Let A be an abelian category, and denote by K (A) the following category:
e objects: cochain complexes (X*,d®);
e morphisms: maps of complexes up to homotopy. This means that Homg4)(X,Y) is the abelian
group of maps X — Y of chain complexes quotient the subgroup of maps that are null-homotopic.
This forms an additive category (in general not abelian).
Let X[1] denote the complex given by X[1]* = X" 1 with the sign of the differential flipped; denote the
functor X — X[1] by T. It is an additive automorphism. Be careful that for a chain map f: X — Y, the
sign of T'(f) is not flipped; only the differentials are.

12.1.1. Definition. Let v : X — Y be a map of chain complexes. Define the mapping cone C(u) of u by:
C"(u) = X" @ Y™, with differential d(z",y" 1) = (—dz", u(z™) + d(y"~1)).

12.1.2. Definition. A distinguished triangle is a 6-tuple (X,Y, Z,u,v,w), where X =Y % Z % X[1],
that is isomorphic (in K (A)) to one of the form (X,Y,C(u),u,,p).

Note there are obvious maps ¥ = C(u) £ X[1]. It is not hard to check that p : C(u) — X[1] is
isomorphic to the mapping cone of i : ¥ — C(u), and u : X — Y is isomorphic to the mapping cone of
—p[-1] : C(u)[-1] = X. So (X,Y, Z,u,v,w) is distinguished iff (Y, Z,T(X),v,w, =T (u)) is.

We also define the full subcategory of bounded complexes: K (A), K_(A), Ky(A) are the complexes
(isomorphic to ones that are) bounded below, above, and on both sides, respectively.

12.2. Triangulated categories.

12.2.1. Definition. Let C' be an additive category. Let T : C' — C be an additive automorphism, called
the translation functor. In addition, suppose there is collection of 6-tuples (X,Y, Z, u, v, w) called triangles,
where X &Y 5 Z2 % T(X). Together, this data is called a triangulated category if the following are
satisfied:
e (TR1) Every 6-tuple as above isomorphic to a triangle is a triangle itself. For every morphism
u: X — Y, there is a triangle of form (X,Y,Z,u,v,w). The 6-tuples (X, X,0,idx,0,0) are
triangles.
e (TR2) The 6-tuple (X,Y, Z, u,v,w) is a triangle iff (Y, Z,T(X),v,w, =T (u)) is.
e (TR3) Given the solid arrows (rows represent triangles), there exists a (not necessarily unique) h
making the diagram commute. (J. P. May observed that this axiom and the “if” part of (TR2) are
actually redundant; but (TR3) itself is very often used.)

YLy Y 7 Y T(X)

X
] o

Xy 2 oz (XY




12. DERIVED CATEGORIES 168

e (TR4) “Verdier’s octahedral axiom”: in the following diagram, suppose we are given all solid lines
(collinear points represent triangles), then there exist f, g (the dotted maps) making the diagram
commute, and forming a triangle together with T'(j) o ¢. (This axiom relates the distinguished
triangles formed from u, v, and v o u. Two more common ways of drawing this diagram are shown:
the “braid” version and the original octahedral version.)

T(X)
A
A
J
Y J
u \v‘ u
X 37—V — T(X)
N
N T (u)
Ao
X’ )
N TY
NS0
T(Z")
Y’
vou T(J) f . - \\ g
/\ 7 I
X Z i p!

e \yr’/‘f \ >/T >< )><
NN A

If all but (TR4) are satisfied, C is said to be pretriangulated. It is a consequence of the first three axioms
that for any triangle (X,Y, Z,u,v,w), the composition v o v = 0. In addition, using exercise 12.2.5 and the
five lemma, it is easy to see that in (TR3), if f, g are isomorphisms, then so is h. Consequently, the triangle
in (TR1) based at any v : X — Y is unique as well (but up to non-unique isomorphism).

12.2.2. Exercise. The previously mentioned category of cochain complexes, K(A), is triangulated.

12.2.3. Definition. An additive functor F' : C' — C’ between triangulated categories is a covariant 0-
functor if it commutes with T¢, T{, and maps triangles to triangles. A contravariant O-functor F commutes
with T¢, TCT,l and maps triangles to triangles.

12.2.4. Definition. An additive functor H : C — A from a triangulated category to an abelian category is
a (covariant) cohomological functor if for any triangle (X,Y, Z, u,v,w), the sequence

= H(T"X) - H(T"Y) - H(T"Z) - H(T" "' X) —
is exact. Notice it suffices to require H(X) — H(Y) — H(Z) to be exact.

12.2.5. Exercise. For any triangulated category C and object X, Hom¢ (X, —) and Home(—, X) are both
cohomological functors. In addition, for C' = K(A), H°(—) is also a cohomological functor.

12.3. Localization. Let C be a category. Let S be a collection of morphisms in C, satisfying:
e (MS1) S is closed under composition, and contains all identity maps;
e (MS2) Any diagram X 2 Y « Z, such that s € S, can be completed to

w—ts 2z

|

X —Y
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where ¢t € S; and the same statement holds for all arrows reversed.
e (MS3) For any two morphisms f,g: X — Y, there exists s € S such that fos = go s if and only
if there exists t € T such that to f =tog.

Such a collection S is called a multiplicative system.

12.3.1. Proposition. There exists a category Cg, called the localization of C with respect to S, and a
functor Q : C — Cg, satisfying the following universal property:

(1) For any s € S, Q(s) is an isomorphism.
(2) Any functor F : C — D, such that the images of elements in S are isomorphisms, uniquely factors
through Q.

Further, Cg is an additive category if C' is.
PROOF. One defines Cg as having the same objects as C', but define

Home (X,Y) = lim Home(X',Y) = lim Homc(X,Y).
s: X' =X tY =Y’
sES tes
To see this equality, and to define the composition of morphisms (and showing it is well-defined) relies on
using (MS1) through (MS3). O

Now, let C be a triangulated category, with translation functor T'. Suppose S satisfies, in addition, that
S is compatible with the triangulation, meaning that:

o (MS4) For se S, T(s) € S.
e (MS5) In the situation of (TR3), if f,g € S, then so is h.

12.3.2. Proposition. In this situation, Cs admits a unique structure of a triangulated category such that
Q : C — Cg is a O-functor, and it satisfies the corresponding universal property with respect to O-functors
F:C — D mapping S to isomorphisms.

PROOF. Declare a triangle in Cg to be one isomorphic to the image of a triangle in C. It is clear
that (TR1) and (TR2) hold. For an illustration of the general level of such arguments, let us verify (TR3).
Let (X,Y, Z,u,v,w), (X", Y, Z' u/,v',w') be two triangles in Cs. Without loss of generality, they lie in
the image of C. Let f: X — X', g : Y — Y’ be morphisms in Cs. The key step is to find morphisms
1,9 u1,s,tin C, where s,t € S, in the diagram which commutes in C

’

x L x, e x

o] v

Y—/>Y1<t—Y’
)

with f = s"1o f', g =t ! og. By definition f is represented by a pair (f' : X — X1, s : X’ = X;). By
(MS2) we may find Y] along with maps «: X3 — Y/, 8:Y’ — Y/ such that 8 € S and fou' = aos. Now,
Bog:Y — Y/ is a morphism in Cg, and therefore is represented by some (6 : Y — Y/, v: Y/ = Y/") with
~v € S. The picture looks like this:

Now, in Cg, we have yoao f' =yofou o f =v0Fogou=4dou,ie. the left pentagon commutes in
Cs. Therefore, it commutes in C' once we post-compose by another map 1 : Y] — Y7 in S. Finally, we let
g =nod,u; =no~vyoa, and t = no~yo 3, completing the key step. Now, we may extend u; : X; — Y7 to a
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triangle (X1,Y1, Z1,u1,v1,w) in C, and by (MS5) we can extend this to the commutative diagram

LY Y Z Y T(X)

X
A b L

X1 u—1> Y U—1> 1 —— T(X1>

w1
0T e
X' — Y — 7 — T(X)
where r € S. Let h ="' o h, and we get a map of triangles as desired. O

12.4. The derived category. We now return to the example of K(A), for an abelian category A.
Let S be the collection of quasi-isomorphisms of chain complexes, i.e. ones that induce isomorphism on
homology.

12.4.1. Proposition. The collection S satisfies axioms (L1) through (L5).
12.4.2. Definition. The derived category D(A) of A is the triangulated category K(A) localized at S.

12.4.3. Example. Let 0 - X = Y % Z — 0 be a short exact sequence of cochain complexes. In the
present context, this is a triangle in D(A): the map w : Z — X|[1] is represented by p : C'(u) — X[1] and a
map C(u) — Z, given by X" @Y™ 3 (z,y) — v(y) € Z", which is a quasi-isomorphism.

We also define full subcategories Dy (A), D_(A), Dy(A) of complexes isomorphic to ones that are bounded
below, above, and on both sides, respectively. By the following proposition (proof left as exercise), they can
also be equivalently defined as the localization of K (A), K_(A), K,(A) with repsect to quasi-isomorphisms.

12.4.4. Proposition. Let C' be a category, S a multiplicative system, D a full subcategory of C' such that
SN D is a multiplicative system in D. Then, the natural map Dsnp — Cys is fully faithful, as long as one
of the two following conditions hold:
e For any morphism s :' Y — X in S, with X € D, there exists a morphism f : Z — Y such that
ZeDandsofes;
o For any morphism s : X — Y in S, with X € D, there exists a morphism f : Y — Z such that
ZeDand foseS.

Now, we give an alternative description of D4 (A).

12.4.5. Lemma. Let I be a chain complex bounded below, consisting of injective objects. Let X be an exact
(i.e. acyclic) complex. Then any map f: X — I is null-homotopic.

12.4.6. Lemma. Let I be a chain compler bounded below, consisting of injective objects. Let Y be another
chain complex, and let s : I —Y be a quasi-isomorphism. Then it has a left homotopy inverse.

PRrROOF. Consider the mapping cone X of s. By the previous lemma, the map p : X — I[1] is null-
homotopic. Let h be the homotopy, which splits into two sequences of maps a : I"t! — I" and b: Y™ — I".
The equality dh + hd = p implies that b is a map of complexes ¥ — I, and b o s is homotopic to the
identity. (I

12.4.7. Lemma. Suppose the abelian category A has enough injectives. Then any X € K (A) admits a
quasi-isomorphism to a chain complex bounded below consisting of injective objects.

PROOF. Say X" =0 for n < 0. Let I"™ = 0 for n < 0. Pick a mono f°: X% < I where I is injective.

Suppose we have constructed 19,..., 1"~ . Pick a mono (I"~!/im(I"2)) [ yn-1 X™ <> I" (recall pushouts
exist in any abelian category as a coequalizer), and let d : "~ — [, f*: X™ — I™ be the obvious maps.
This satisfies the required properties, and in addition f™ are mono. (I

Let I be the additive subcategory of injective objects of A. We analogously define K (I). There is a
natural functor K (I) — K;(A) — D4(A). By lemma 12.4.6 and proposition 12.4.4, one sees that this is
in fact fully faithful. Then, by lemma 12.4.7, we have:

12.4.8. Proposition. Suppose A has enough injectives, then there is an equivalence K (I) ~ D, (A).
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12.5. Derived functors, according to Verdier. Let F' : A — B be an additive functor between
abelian categories. It naturally extends to a functor F' : K(A) — K(B). However, if F is not exact, this
does not obviously extend to a functor D(A) — D(B).

Instead, using proposition 12.4.8, we may use the composition

RF: D, (A) = K (I) » K(A) 5 K(B) - D(B).

This is called the derived functor of F. It is a covariant d-functor (definition 12.2.3).

By construction, the nth cohomology of the complex RF (M), where M € A is viewed as embedded
in Dy (A), is precisely the nth right derived functor R"F(M). The classical construction of a long exact
sequence of right derived functors obtained from a short exact sequence of objects in A is then interpreted
in this light using example 12.4.3.

13. Etale sheaves
13.1. The étale site.

13.1.1. Definition. The (small) étale site X¢ of X is defined by:

e underlying category: étale X-schemes
e coverings: surjective families.

Denote by PSh(Xs;) and Sh(Xe;) the category of abelian (pre)sheaves on Xg.
There is a map of sites € : X, — X from the Zariski site to the étale site. Applying the Leray spectral

sequence, we get
EYY = HY (X,R%*(F)) = HYM(X,F)

Zar
for each abelian sheaf F' on Xg;.

13.2. Direct and inverse image functors. Let f : X — Y be a morphism of schemes. Then this
induces a map of sites fg : Yoy — X¢¢. So we may define
fo=(fer)® : Xev = Yer
o= (fer)s : ?;ét — Xét
which are called the direct image and inverse image, respectively. More explicitly:
(fF)Y') =F(Y' xy X)
(f"G)(X') = lim G(Y)
(Y’,9)
where the colimit ranges through all X-morphisms ¢ : X’ — Y’ xy X, or equivalently, all Y-morphisms
X’ = Y'. In fact, f* is exact by proposition 10.6.5. So we conclude that:
13.2.1. Proposition. The following are true about f, and f*:
(i) f* is left adjoint to fi;
(i) f« is left exact and maps injectives to injectives;

(iti) f* is exact and commutes with colimits. O

Let Y € Y, F € )N(ét. The Leray spectral sequence reads:
EPT = Hg’t(Y',qu*(F)) = HPT(Y' xy X, F).
As in corollary 11.7.3, we obtain for F' € )Z'ét, G e i;ét, natural morphisms
Hé’t(Y',f*F) — Hé’t(Y’ xy X, F)
and
HE(Y',G) —» HE (Y xy X, f*G)
obtained by composing H., (Y',G) — HL (Y', f. f*G) — HP(Y' xy X, f*G).
In general, let f: X - Y, g:Y — Z be morphisms of schemes. Let F' € X, then we have
Ey? = RPg.(Rf.(F)) = RV (g f).(F).

The edge morphisms can be easily read.
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13.2.2. Definition (base-change morphism). Let

x Ly

ool
x 1y
be a commutative square of schemes. Let F' be an abelian sheaf on Xg. We consider the composition
RPf.(F) = RV f. (00" F)
= RP(fv').(v"F) = RP(vf'). (v F)
— 0. (RP fL0" F),
whose corresponding morphism under the adjunction is
v (RPfu(F)) = RPfL(0™(F)).
This is called the base change morphism, which is functorial in F'.

13.2.3. Definition (restriction of a sheaf). Let f: X’ — X be étale. Then X/, is naturally identified with

Xei /X' as sites. Let F' € Xg. Define F|x: = f*F as an abelian sheaf on X/ ; this is the restriction of F' on
X/,. It is not hard to see that F'|x/(U) = F(U) for U — X’ étale.

13.2.4. Corollary (cf. corollary 11.6.2). There are canonical isomorphisms
HY(Xg; X', F) =2 HI(X,; X', F/X").

étr

13.3. The restricted étale site.

13.3.1. Definition. A morphism of schemes f : X — Y is finitely presented if it is locally finitely presented
and qcgs. Define the restricted étale site X¢ipp as the category of finitely presented étale X-schemes, together
with surjective covers.

13.3.2. Proposition. Let X be quasicompact, then X, 15 a Noetherian site.

PROOF. Let X’ — X be finitely presented and étale. Because X is quasicompact, so is X'. Because
étale morphisms are open, if {X; — X'} cover X', a finite subset cover X. ]

There is an obvious map of sites i : X¢p, — Xgi. The functors %, 4, are also denoted res, ext.
13.3.3. Proposition. If X is quasi-separated, then res,ext are quasi-inverses.

PROOF. To apply the comparison lemma, it suffices to show that for any étale X-scheme X', there exists
a cover by finitely presented étale X-schemes X;.

Let f : X’ — X be the structure morphism. Let x € X’ be a point, then there exists an affine open
neighborhood U = Spec A of f(x), whose preimage f~!(U) is covered by spectrums of finitely presented
A-algebras. One of these, say V C X', contains x. Then f|y : V — X is finitely presented, because it is the
composition V' — U C X of a finitely presented morphism and a quasicompact (this uses X quasiseparated)
open immersion, which is also finitely presented. (I

13.3.4. Corollary. Let X be qcgs, then Hf (X, o) commutes with pseudofiltered colimits, e.g. direct sums.

13.4. The case X = Speck. The setup is as follows. Let k be a field. Let_E be the separable closure
of k, so that k/k is Galois. Let G = Gal(k/k). Let X' be a k-scheme, and X'(k) the set of k-points of X,
which corresponds to pairs (' € X', ¢ : k(z') — k). There is a natural G-action on X’(k), and for an open

subgroup H < G, X' (k)" = X'(k"), where & /k is finite by infinite Galois theory. Furthermore, X’ (k) is
a continuous G-set, since X'(k) = {J, X' (EH) (here k(x)/k is finite by nullstellensatz).

13.4.1. Theorem. The functor X' = X'(k) is an equivalence of sites (Spec k)¢, and T (with the canonical
topology).

This is not so surprising, since any étale k-algebra is the product of finitely many separable extensions
of k anyways.
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13.4.2. Corollary. There is an equivalence of categories between (Speck)y, and the category of continuous
G-modules, given by

F e lim F(G/H) = liAlF(Speck’)
as k' ranges among the finite (normal) subextensions of k/k.
The RHS is also the stalk Fp at the geometric k-point P = Speck — Speck, cf. section 13.11.

13.4.3. Corollary. Let F' be an abelian sheaf on (S/pe\c/k)ét,
HY (Speck, F) — HY(G, lim F'(Spec k")

then there are O-functorial isomorphisms

where the right side is Galois cohomology.

13.4.4. Corollary. Let k be separably closed, then F +— F(Speck) is an equivalence of categories (S’gec\k)ét
and Ab, hence additive and ezact.

13.5. Representable sheaves on X¢. Here is an important criterion for a Zariski sheaf to be an
étale sheaf.

13.5.1. Proposition. Let F' be a presheaf of sets on X¢. Then to verify F is a sheaf, it suffices to verify
it for the following two types of coverings:

o {U! — X'}, where each map is an open embedding (i.e. “usual” coverings by open sets)

o {Y' = X'}, a single surjective morphism of affine schemes. O

13.5.2. Theorem. The coverings in X¢ are families of universal effective epimorphisms in the category of
X -schemes.

The converse is false; in other words, the étale topology is coarser than the canonical topology. However,
when X = Speck, the two topologies agree.

PROOF. The key part is to show that a surjective X-morphism of affine schemes is effective. This follows
from a general result in faithfully flat descent theory. |

13.5.3. Corollary. For each X-scheme Z, the functor X' — Homx (X', Z) is a sheaf of sets.

13.5.4. Proposition. Let f: Y — X be a morphism of schemes. If Z is an étale X -scheme, then
f*Homy (e, Z) — Homy (e, Z xx Y)

s an isomorphism.

13.5.5. Definition (group schemes). A group scheme over a scheme X is an X-scheme G, together with
either of the following equivalent data:

e a contravariant functor Z — Homx (Z, G) from schemes over X to Grp;
e a triple of morphisms p: Gxx G — G, e: X — G, and i : G — G, satisfying associativity, identity,
and inverse axioms.

For a (commutative) group scheme G over X, let Gx denote the sheaf on Xg; represented by G, which
is a sheaf of (abelian) groups.

13.5.6. Example. Some examples of group schemes:

e the additive group G, = SpecZ[t] xz X, and the functor sends X' — Ox (X');
e the multiplicative group G,, = SpecZ[t,t~!] xz X, and the functor sends X' — Ox/(X')*;
e the n-th roots of unity p, = SpecZ[t]/(t" — 1) xz X, sending X’ — {s € Ox/(X’) : s™ = 1}.

We have the following exact sequence of abelian sheaves:
0— pin = Gy = Gy,

where the last map is raising to the n-th power.
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13.5.7. Example. The constant sheaf Ay, given an abelian group A, is defined as the sheafification of the
abelian presheaf X’ — A. Then one can verify that

Ax(X') =Homx (X', [ [ X) = Homop (X', A).
A
When the connected components of X’ are open (e.g. X’ is locally Noetherian), this is the same as [ A

~

over its connected components, but in general this is not true. In addition, it is clear that Hom(Ay, F) &
Hom(A4, F(X)).

Consider the constant sheaf Z/(n)  on Xe. The isomorphisms Z/(n) — pu, correspond to primitive
roots of unities in the global section of X. Note however that even if Z/(n) ~ p,, the defining group schemes
are not necessarily isomorphic.

When n is invertible on X (equivalently, n is coprime to the characteristics of residue fields at every
point), we have that u,, and Z/(n) are locally isomorphic, i.e. for every X', there exists a cover {X] — X'}
in X¢; where i, |x/ = Z/(n)|x;. In fact, given X’ = Spec A, consider Y’ = Spec B, B = A[z]/(z" —1). Then
Y’ — X' is faithfully flat and unramified, hence an étale cover.

13.6. Etale cohomology of (G,)x.

13.6.1. Proposition. Let M be a quasicoherent sheaf of Ox-modules on X. Then
X' = T(X' M ®o, O)
is an abelian sheaf on X, denoted by M. O

The functor M +— Mg, from the category of quasicoherent Ox-modules to the category of abelian
sheaves on Xg, is additive and left exact (recall that X’ — X is flat).

13.6.2. Theorem. Let M be a quasicoherent Ox-module. The edge morphisms
HY (X, M) — HE (X, Me)

Zar

of the Leray spectral sequence

Eg#) — HP

Zar

(X, Rie*(Myg)) = HETU(X, Mey)
are isomorphisms.

PROOF. As usual, it suffices to show that R%e®(My;) = 0 for ¢ > 1, where ¢ : Xza, — Xt

Assume first X is affine. Let T be the full subcategory of X consisting of affine schemes. By the
comparison theorem, H%(X¢; X, Mgy) = HU(T; X, Me). We claim that My is flasque on T', which would
imply what we wanted. Since T' is Noetherian, flasque sheaves can be checked on finite covers, which can
be further reduced to covers consisting of one single morphism {Spec B — Spec A}. In this case, M is an
A-module, so the Cech complex goes

0—-M-—->M@rB—MisB,4B— ...

which is exact since A — B is faithfully flat (the Amitsur complex).
In general, let X be any scheme. For any X’ — X étale,

HY(Xep; X', Mey) = HY( X X', My x0) = HY (X X', (M| x0)at)-

et

So (R9e°Mg)|x» = R%e®(M|x )¢t Taking X’ to be affine opens of X, we have shown that R%e® My is zero
when restricted to all affine opens, so it is zero. O

13.6.3. Corollary. If X is affine, then HY (X, M) =0 for p > 1. In particular, taking M = Ox itself, we
have HY (X, (G4)x) = 0.

13.7. The Artin-Schreier sequence. Let X be a scheme with prime characteristic p. This means
the following equivalent things:
charI'(X,Ox) = p;
char (U, Ox) = p for every open U C X;
char Ox , = p at every point x € X
X is an [Fp-scheme.


https://math.stackexchange.com/questions/3178359/constant-sheaves-on-the-%C3%A9tale-site-of-a-scheme
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Consider the constant sheaf Z/(p) on X¢. The unit global section gives a morphism of sheaves

- Z/(p) — Ga

which is easily verified to be injective. Let
F:G, — G,
be the Frobenius.

13.7.1. Theorem. The sequence

O—>Z/(p)—>Gaﬂ>Ga—>0

is exact, where F' —id is the map x — xP — x on each Go(X') = Ox/(X'). This is called the Artin-Schreier
sequence on X.

PrOOF. Exactness in the middle: suppose s € Ox/(X’) such that s = s, then X' = V(s? — s) =
V(s(s—=1)...(s—=p+1)) =|]V(s—1), so each closed subscheme V(s — i) is open as well. So we conclude
that s is in the image of the constant sheaf.

Surjectivity: Consider s € Go(X’) = Ox/(X’). It suffices to show that there is a cover {X] — X'} in
X, such that each s; = s\X; € Ox; (X7) is of the form ¢ —¢t; for t; € Ox; (X]). It suffices to show this for
X' = Spec A affine. Let Y/ = Spec B, where B = A[t]/(t” —t — s). Since B is free over A, Y’ — X' is flat
and surjective. It is unramified since (t? —t — s)’ = —1. This completes the proof. O

The Artin-Schreier sequence then gives the following long exact sequence:
0 — H(X,Z/(p) — H°(X,0x) — H(X, Ox)

— HY(X,Z/(p)) - H (X,0x) — H'(X,0x)

— H*(X,Z/(p)) = ...

from which we obtain:

13.7.2. Corollary. There is an exact sequence

0
(F —Hidgjlg’o((l)))(( )ox> = H'(X,Z/(p)) = H'(X,0x)" 0.

13.7.3. Corollary. When X = Spec A is affine of characteristic p,

A/(F —id)A ifq=1,
0 ifq> 2.

0—

HY(X,Z/(p)) =

13.7.4. Corollary (see here). Suppose k is separably closed of characteristic p, and X is a reduced, proper
k-scheme. Then

HY(X,Z/(p) = H'(X,0x)".

13.8. Etale cohomology of (G,,)x.
13.8.1. Theorem (Hilbert’s Theorem 90). There is a canonical isomorphism
H}(X,G,,) = Pic(X),
where Pic(X) is the Picard group of X, i.e. H} (X,0%).

PRrOOF. Using the five-term exact sequence associated to € : Xygza., — Xg¢, it suffices to show that
R'e*(G,,)x = 0. (TODO) O

We remark that by the usual Hilbert 90, H}, (Speck, G,,) = H*(Gal(k), (k*P)*) = 0. Another way to
view this is that the above theorem tells us that H}, (Speck,G,,) = Pic(Speck), which is trivial because
Speck is just a point.

13.8.2. Definition (Brauer group). The Brauer group of a field k is defined as

HZ (Speck,G,,) = H?*(Gal(k), (k5P)*).


https://math.stackexchange.com/questions/3917041/global-sections-of-integral-proper-k-scheme-is-finite-field-extension-of-k
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13.9. The Kummer sequence.

13.9.1. Theorem. Let X be a scheme, and n is invertible on X. Then there is an exact sequence

0— pup — Gy i'is—ﬂf} — 0,

called the Kummer sequence on X.

PRrROOF. This is essentially the same as Artin-Schreier, except that we use the observation that Spec A[t]/ ("

s) — Spec A is etale for any ring A in which n is invertible. |

Denote, for an abelian group A, ,A = ker(a — na) and A,, = coker(a — na). Then we obtain from the
Kummer sequence that:

13.9.2. Corollary. There is an exact sequence
0— HY(X,0%), — H' (X, up) = » Pic(X) — 0.
13.9.3. Corollary. If X = Spec A for A local in which n is invertible,
HY (X, pn) & AX/(AX)"

13.9.4. Corollary. Suppose k is separably closed with characteristic coprime to n, and X is a reduced,

proper k-scheme. Then
Hl(X7 pin) = 4 Pic(X).

13.10. The sheaf of divisors on Xg. Let X be a Noetherian scheme, so that it has finitely many
irreducible components. Recall that K = K(X), the ring of rational functions on X, is defined as the set of
rational maps X — A}, which has a natural ring structure. In this case, K(X) is naturally isomorphic to
the product [[ Ox,, of stalks at the generic points of each irreducible component.

Let j : Spec K — X be the natural map, which induces a natural map of abelian sheaves (G,,)x —
J+(Gm) k. If X has no embedded points (TODO: why necessary?), then j is dominant, then so are the
Spec K xx X' — X' (étale implies open), so we conclude that (G,,)x — J«(Gm)x is injective. Therefore,
we may define a sheaf Divy by the short exact sequence

0— (Gm)X — j*(Gm)K — Divxy — 0.
Intuitively, these are formal sums of codimension-1 subschemes modulo the principal ones.
Applying the long exact sequence associated to € : Xz, — Xg, we obtain
0— 0% = K5 — &*Divy = R'e*(G)x,

where Ky is the sheaf of rational functions on X: it is the sheafification of the presheaf mapping each open
U C X to STIT(U,Ox), where S is the set of elements in I'(U, Ox) that are non-zerodivisors in all Ox ,,
u € U. Because R'e*(G,,)x = 0, €* Divy is the usual sheaf of divisors in the Zariski topology.

If f: X’ — X is also finite type, then X’ is Noetherian and has no embedded components as well. In
this case, applying f*, we get Divx |x» = Div|x/.

By EGA 1V, there is a canonical morphism

Divyx — @D (ix).Z
x

where z ranges among the points where the local rings have dimension 1. If X is regular, then this is an
isomorphism.
Since X is qcgs, étale cohomology commutes with direct sums, so

H} (X, Divy) @ ).

13.10.1. Lemma. Let X be a scheme, © € X, i, : Speck(x) = X, then
H (X, (iz)«A) =0,
where A is any torsion-free abelian group.
PROOF. The group Hj (X, (iy)+A) injects into H' (Spec r(x), A) = H'(Gal(k(z)), A), which is the group

of continuous maps f : Gal(k(z)) — A, which there is none: suppose f~!(14) = H is an open subgroup,
then [G : H] is finite, which contradicts with the fact that A has no torsion. O
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Consequently, H} (X, Divy) = 0 for X a regular Noetherian scheme.

13.10.2. Lemma. Let X be a scheme, x € X, i, : Speck(x) — X, then
RY(i2) (G (o) = 0.

PROOF. This is the sheafification of H'(X’ x x Spec r(x), (G )y (x)), which is zero by Hilbert 90. O

13.10.3. Corollary. Let X be a reqular Noetherian scheme. There is an injection
HE(X, (G)x) > [T Br()),

where K; runs through the fields of rational functions on each irreducible component.

PRrOOF. This is just the composition

HZ (X, (Gn)x) = H&(X, ju(Gm) k) = [ [ H*(Spec Ky, (G k) = | [ Br(K),
where the first injection is because of H}, (X, Divx) = 0, and the second is because of the previous lemma. [
13.10.4. Corollary. Let X be a reqular algebraic curve over a separably closed field k, then
H?*(X,Gy,) = 0.
PROOF. By Tsen’s theorem, Br(kK;) all vanish, therefore so does H?(X,G,,). O

13.10.5. Theorem (Tsen). Let K be a field of transcendental degree 1 over an algebraically closed field k.
Then K is C' (meaning that any homogeneous polynomial of degree d with coefficients in K and at least
d + 1 variables has a nontrivial zero). Consequently, HI(Gal(K), (K®P)*) =0 for all ¢ > 1.

13.11. Stalks. Let T : Spec2 — X be a geometric point of X, where ) is separably closed. By
corollary 13.4.2, the category of abelian sheaves on (Spec Q)4 is equivalent to Ab via F — F(Spec ).

13.11.1. Definition. The stalk of an abelian presheaf F € PSh(X¢;) at the geometric point Z is the colimit
Fe =l F(U),
U

as U ranges over the directed set of étale neighborhoods of T. More precisely, we consider diagrams

Spec 2

I
U—— X.

étale
These form a filtered category, because for any étale neighborhoods U and V, 1) there is at most one
morphism U — V' if they are connected, and 2) U x x V is also an étale neighborhood.

13.11.2. Example. Take F = Ox, then the strict local ring of X at 7 is defined as the stalk Ox z. This
is simply the strict Henselization of the local ring Ox , where z is the underlying point of Z.

13.11.3. Proposition. For any abelian presheaf F, we have
Fi =T (F*)(Spec Q).
In particular, Fz ~ Fg& .

13.11.4. Example. Let F be represented by an étale group scheme G, then T*F is represented by G X x
Spec Q. So Fz = Homq (2, G xx Q) = Homx (2, G), i.e. the stalk Fz consists of all Q-points of G.

13.11.5. Proposition. The following are true about stalks:

(i) The functor F — Fp from Xe to Ab is ezact.
(i1) If v: P' — P is a morphism of geometric points of X, then Fp: = Fp.
(i1i) Let f: X =Y be a map of schemes, then for any abelian sheaf F on Ye, (f*F)p = Fp.

PROOF. (i) Both u* and I'p are exact (corollary 13.4.4). Note that the isomorphism in (ii) is not
canonical. (]
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There is a similar definition of stalks as a colimit: consider the category of “étale neighborhoods of P”,
which consists of pairs (X', u’), where X’ is étale over X, and «' : P — X’ is an X-morphism. In fact, by
definition of the presheaf functor f,, we see that u*F is the sheafification of the presheaf (ug;)pF', which
maps P — hﬂ(xxu') F(X'"). Therefore, there is a canonical map

(*) lim F(X') = Fp.

(X7,u’)
13.11.6. Proposition. The above map (x) is an isomorphism.

PrROOF. In fact, it is clear that any abelian presheaf on Py is a sheaf. O
13.11.7. Proposition. More generally, let G be any presheaf on Xg, then
lim G(X') = G5

(X7u')

s an isomorphism.

PRrooOF. It suffices to show the following: let f : T'— T’ be a map of sites, and G a presheaf on T'. Then
(f,G)* = f,(G*). This follows from adjunction. O

13.11.8. Proposition. Mono, epi, and isomorphisms between abelian sheaves on X¢ can be checked at the
level of stalks at each point. O

13.11.9. Corollary. A global section s € F(X) is zero iff it is zero at each stalk.
PROOF. A global section is the same as a map of sheaves Z — F. (I
13.11.10. Definition (support). Let s € F(X), then its support is
Supp(s) = {z € X : sz # 0}.
This is Zariski-closed: suppose sz = 0, then there is an étale X-scheme X', with ¢ : X’ — X, such that

s|x: = 0. Then for any point y € ¢(X’), which is a Zariski-open set, sy = 0.
The support of the sheaf F' is the closure of

Supp(F) ={z € X : Fz #0}.

13.12. Godement resolution. This is a construction that came from sheaf theory on topological
spaces. Let F € Sh(X¢;), we will imbed F inside a flasque sheaf G°(F), defined as follows.

13.13. Geometric meaning of first cohomology. The first Cech cohomology provides “gluing data”
for geometric objects. If a class of objects on X satisfy étale descent, then it is classified by the first étale
cohomology of X with coefficients in the sheaf of “transition functions”. Here are two examples:

13.13.1. Definition. An Ox ¢-module L is an étale line bundle if there exists an étale covering {U; — X},
such that L|y, = Oy, st

Let Picei(X) be the group of isomorphism classes of étale line bundles, and let Pic(X) be the group of
isomorphism classes of (Zariski) line bundes.

13.13.2. Proposition. The natural map Pic(X) — Picgt(X) is an isomorphism.
13.13.3. Corollary. We have H'(X, O% &) = Pic(X).

13.13.4. Definition. Let F be a finite abelian group. An etale X’ — X is an F-torsor if F acts on X',
and the map ([[p X) xx X’ = X’ xx X', given by (0,z) — (o(x),x), is an isomorphism.

13.13.5. Proposition. The set of isomorphism classes of F-torsors is naturally bijective to elements of
HY(X,Fy).



CHAPTER 10

D-Modules

1. Modules over the Weyl algebra
All rings are associative and unital, but not necessarily commutative.
1.1. Weyl algebras.

1.1.1. Definition. Let R be a commutative ring. The Weyl algebra A, (R) is the free associative R-
algebra generated by 2n indeterminates x1,...,2,,01,...,0,, modulo the relations [z;,z;] = [0;,0;] = 0,
[z, 05] = =i 5.

In this section, we study (finitely generated) modules over the non-commutative ring A,, = A, (k), where
k is a fixed field of characteristic 0.

1.1.2. Remark. To give a k[zy,...,2z,]-module M the structure of a left A,-module is just to give a
family of commuting k-linear endomorphisms dy, ..., d, of M, such that d;(x;m) — z;d;(m) = §; jm for any
1 <4,j <n. Similarly, for M to be a right A,-module is just to have d;(z;m) — x;d;(m) = —6; jm. Thus,
any left A,-module can be made into a right A,-module by flipping the sign of d;, and vice versa.

1.1.3. Proposition. A, (k) is a simple algebra, i.e. it has no nontrivial proper two-sided ideals.

1.2. Examples. To systematically study solutions to differential equations, consider the following for-

malism.
Let P;; € A, (k) be differential operators, and we wish to solve the system of linear partial differential
equations Z‘;—:l Piju; =0, where ¢ = 1,...,p and u; are a certain class of functions on which A, acts (say,

from the left). Consider the map of left A,-modules f : A2 — A%, mapping each generator e; (1 <i < p) to
(Pi1,...,Py) € Al. Let M = coker f, then it is a finitely generated A,-module. Then, for any A,,-module S
(the class of functions we allow u; to be), the k-vector space of solutions to the above system of differential
equations is precisely Hom 4, (M, S).

1.2.1. Example. Consider the 1-dimensional case, and consider f(z) = e®. This solves (0 —1)f = 0, and
in fact the A;-module generated by f is isomorphic to A;/A;(0 — 1).

Functions naturally give rise to left A,,-modules. Dually, distributions® give rise to right A,-modules.

1.2.2. Example. Consider the delta function dp, which acts on test functions by f — f(0). Therefore it

satisfies the equation dpxy = - -+ = dpx,, = 0, and in fact the right A,-module generated by g is isomorphic
to Ap/(x1, ..., xn)An.

1.3. Filtered algebras and modules.
1.3.1. Definition. A filtered algebra over k is a k-algebra R along with a chain of k-subspaces
0=F RCFRCFRC---CF,RC---CR,
such that R =J F;R, 1 € FyR, and F;R - F;R C F;{;R.
1.3.2. Definition. To every filtered algebra R with filtration F, R, one can associate a graded algebra
S=grR=EPFR/F, 1R

i>0
It is clear that if [F;R, F;R] C F;1;_1 R, then S is commutative.

1Here7 continuous linear functionals on compactly supported smooth functions on R™, with the topology of uniform convergence
of all derivatives on compact sets.

179
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1.3.3. Example. On A = A, there are two natural filtrations:

e The Bernstein filtration has F; A spanned by x6”, where |a| + 3] < j.
e The degree filtration has F;A spanned by %6, where |3| < j.

Both give rise to the graded algebra k[x1, ..., 2y, d1,...,0,], but the Bernstein filtration makes all variables
degree 1, while the degree filtration makes 0’s degree 1 and z’s degree 0.

Let us now focus on left A-modules.

1.3.4. Definition. Let M be a left A-module. Fix a filtration FyA. A compatible filtration F¢M is a chain
of subspaces
O=F MCFKMCFMC---CF,MC---CM,

such that M = |JF;M, F;A- F;M C FiyjM, and F; M are finitely generated FyA-modules. Similarly one
can form the associated graded module gr M = 69220 F;M/F;_1M, which is a graded module over gr A.
1.3.5. Definition. A compatible filtration FeM is good if any of the following equivalent conditions hold:

(1) gr M is finitely generated over gr A.

(2) There exists jo such that for all j > jo and i > 0, F;A - F;M = F; ;M.
1.3.6. Proposition. A left A-module M admits a good filtration iff M is finitely generated over A.

1.3.7. Proposition. Let FoM,G4M be two compatible filtrations, where FoM is good. Then there exists a
positive integer ¢ such that for any index ¢ > 0, F;M C Giy.M.

1.3.8. Proposition. The Weyl algebra A is left Noetherian.

PROOF. Let M be a finitely generated A-module, and N a submodule. Since M is finitely generated,
we can consider a good filtration Fe M. This induces a compatible filtration F¢N by F;N = F;M N N. The
associated graded gr N C gr M is a gr A-submodule, hence finitely generated; so the filtration is good, and
N is finitely generated over A. a

1.4. Dimension. For this subsection, let M be a finitely generated left A-module. Choose a good
filtration F; M, compatible with the Bernstein filtration. We will define a notion of dimension of M.
Let us first recall:

1.4.1. Theorem (Hilbert syzygy theorem). Every finitely generated graded S = k[x1,...,xy]-module has a
finite, graded, free resolution® of length at most n.

In particular, we may apply this to gr M associated to some good filtration Fy M. Counting the dimension
(over k) of each graded piece shows that for j sufficiently large, dimy gr; M = dimy(F;M/F;_1M) is a
polynomial in j with rational coefficients, of degree at most 2n — 1. So dimy, F; M is a polynomial in j with
degree at most 2n. This is the Hilbert polynomial x(M, FeM,t), whose leading term is of form %td. In fact,
although x may in general depend on F,M, it is not hard to see that:

1.4.2. Exercise. The numbers d and m do not depend on the good filtration FeM we used.
1.4.3. Definition. Let d = d(M) be the dimension of M, and m = m(M) its multiplicity.

It is clear that d < 2n. In fact there is also a surprising lower bound to dimension, which is certainly
not true for modules over commutative rings:

1.4.4. Theorem (Bernstein’s inequality). Let M # 0, then d(M) > n.

PROOF. The key claim is that the action FPA — Homy (F; M, F»; M) is injective (B for Bernstein). This
places a lower bound dimy F; M - dimy, Fo; M > dimy, FPM = (Hf”), which gives the inequality. O
1.4.5. Definition. M is holonomic if M =0 or d(M) = n.

1.4.6. Proposition. The following are true about holonomic modules:

(1) For a short exact sequence 0 — M' — M — M" — 0 of finitely generated left A-modules, M is
holonomic iff both M’ and M" are.

2meaning that each term in the resolution is a direct sum of finitely many Sle]’s, and the maps are all degree 0 maps compatible

with the grading.
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(2) If M is holonomic, then it is both Noetherian and Artinian, and it has finite length.

1.4.7. Proposition (Dimension criterion for holonomicity). Let M be a left A-module (not necessarily
finitely generated a priori). Let FoM be a filtration compatible with the Bernstein filtration. Suppose there
exist constants a,b > 1 such that

dimy FjM < "+ b(j + 1),
n!
then M is holonomic (in particular finitely generated), with multiplicity at most a.

1.4.8. Example. The A,-modules k[zy,...,z,] and A, /A, (x1,...,2z,) are holonomic with multiplicity
1. The Aj;-module k[z,r7!] is holonomic with multiplicity 2. In fact, for any nonzero polynomial p €
k[z1,...,x,], the A,-module M = k[x1,...,2,,p '] is holonomic.

1.5. Equality of dimensions. In the last subsection, we defined the dimension of a finitely generated
A-module M via the Hilbert polynomial of gr M, using the Bernstein filtration. It is well-known that this
is the same as the dimension of Suppgr M as a module over gr A = k[zq,...,2,,01,...,0,]. This latter
definition generalizes to the degree filtration as well, and it will be shown that these two dimensions agree.

Consider the general framework. Let R be a filtered algebra, whose associated graded algebra S is
a commutative Noetherian regular ring of dimension 2n. For example, R = A, (k). Let M be a finitely
generated left R-module. Since M is finitely generated, it has a good filtration FeM, hence we have an
S-module gr M. Consider

J(M) = rad(Anng(gr M)).
Even though Anng(gr M) may depend on the good filtration used (e.g. good filtrations of M = A;/A;(z)
corresponding to the generator 1 or 9), we have:

1.5.1. Proposition. The radical ideal J(M) does not depend on the good filtration chosen.

1.5.2. Example. Consider the degree filtration on A,,. Then a finitely generated A,-module M is finitely
generated over k[xy,...,z,] iff (01,...,0,) C J(M).

1.5.3. Definition. The characteristic variety of M is the closed subscheme cut out by J(M).
The main goal of this and the next subsection is to prove the following:

1.5.4. Theorem. Let d(M) = dimSuppgr M = dim S/J(M) and j(M) = min{j > 0 : EX‘L%(M, R) # 0}.
Then d(M) + j(M) = 2n.

1.5.5. Corollary. The dimension d(M) for Bernstein and degree filtrations agree: they are both 2n— j(M).

Note that Ext%,(M, R) can be given the structure of right R-modules.
The proof of theorem 1.5.4 proceeds in two main steps: (1) Prove the case where R is commutative; (2)
Compare Ext groups of M and gr M using spectral sequences. We carry out step (1) now.

1.5.6. Lemma. Let M be a finitely generated module over a commutative Noetherian ring R, and let N be
an R-module. Let S be a multiplicative subset of R. Then for any k > 0,

S™Y(Extk (M, N)) ~ Exth . ,(S~'M,S7IN)
naturally.

1.5.7. Proposition. Let S be a commutative Noetherian regular ring of dimension 2n. Let M be a
finitely generated S-module. Then Ext% (M, S) vanishes except possibly for 2n — d(M) < j < 2n, and
d(Ext} (M, S)) < 2n —j for all j > 0.

ProOF. First by lemma 1.5.6 we may localize at maximal ideals of S containing Ann(M), to assume
that S is a regular Noetherian local ring of dimension 2n. We use induction on d = d(M).

When d = 0, J(M) = m is the maximal ideal of S. Since m is finitely generated, m‘M = 0 for some
¢. By induction and the Ext long exact sequence for 0 — m‘M — m‘~!M — m~'M/m*M — 0, we may
assume ¢ = 1. In this case, M is a finite-dimensional k = S/m-vector space, so we can reduce to the case
M = k. The Koszul complex for any 2n system of parameters for m is a resolution for k, and it can be used
to explicitly compute that Ext’(k,S) = k for j = 2n, and zero otherwise. This proves the base case.
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For the induction step, it suffices to assume there exists f € m which is a non-zero-divisor on M. By
Stacks 0B52, d(M/fM) = d(M) — 1. The long exact sequence for 0 — M ERy Vg M/fM — 0 reads

-+ — Ext? (M/fM) — Ext? (M) L Ext? (M) — Ext/ T (M/fM) — ---
The first conclusion then follows from Nakayama lemma and the induction hypothesis. For the second
conclusion, since Ext? (M) /f Ext? (M) is a submodule of Ext? ™! (M/fM), we have
d(Ext? (M)) < 1+ d(Ext?(M)/fExt!(M)) < 1 + d(Ext' ™ (M/fM)) < 2n — j.
This finishes the proof. O
1.5.8. Proposition. Under the above hypothesis, d(M) + j(M) = 2n.

PROOF. By the above proposition, for j > j(M), d(Ext’ (M)) < 2n—j < 2n—j(M) < d(M), with strict
inequality for j > j(M). Suppose d(Ext?™)(M)) < d(M), so that if we let E = @322n—d(M) Ext’ (M), then
d(E) < d(M). So there exists an element f € J(E)\J(M), and after inverting f, M # 0 but all Ext groups
Exté(M, S) vanish (j > 0), which is impossible. So d(M) = d(Ext’*)(M)) < 2n — j(M), in other words
J(M) <2n—d(M). But j(M) > 2n — d(M) by the above proposition, fo j(M) = 2n — d(M). O

Therefore, in the setting of theorem 1.5.4, we have d(gr M) + j(gr M) = 2n. By definition d(M) =
d(gr M), so our next task is to compare Ext groups of M and gr M. To do this we need to construct a free
resolution of M over R that also induces a corresponding resolution of gr M over S:

1.5.9. Proposition. Let R be a filtered algebra, M a finitely generated left R-module with good filtration
F M, then there exists a free resolution

(1.5.10) oo —Lo—Li—Lo—M—0

where each L; is a finite direct sum of shifts Rle] with filtration F;R[e] = Fj1.R, and such that the induced
coo—=grlyg—grly —wgrLyg—grM —0

18 exact.

We also need a consistent way to take duals.

1.5.11. Proposition. Let L be a finitely generated left R-module with good filtration FeL. Then L* carries
a natural good filtration F;L* = {f € L* : f(F;L) C Fi4;R Vi > 0}. When L ~ Rle], L* ~ R[—e].

So, taking the dual of eq. (1.5.10), Extf,é(M, R) is the cohomology of this dual chain complex, and because

gr L ~ Homg(gr L;, S), we have Exté(gr M, S) is the cohomology of the associated graded complex of that
dual complex. So the problem reduces to comparing the cohomology of a filtered chain complex and that of
its associated graded complex.

1.6. Spectral sequence of a filtered complex. Let (K*,d) be a cochain complex of modules over a
fixed ring. Suppose each K™ is filtered by F; K", compatible with the differential, such that Uj F;K" = K"
and ();(F; K" + L) = L for every submodule L C K™ (for example if F; K™ = 0 for j < 0 then certainly
this holds). There is a natural filtration

F;H"(K) =im(H"(F;K) - H"(K))
under which it is not hard to see that
F; K™ Nker(d)
Fj_lKn n ker(d) + FJKn N 1m(d)

gr; H"(K) =

and
Fan n d_l(Fj_lKn+1)
Fj_lKn + d(Fan_l) '
Our goal is to compute the first using the second.
The idea is to approximate F; K™ Nker(d) by F;K" Nd *(Fj_¢K"") as £ € N. More precisely, for
j,n € Z and ¢ € N, let

Hn(grj K) =

Zp; = F;K"nd ' (F;_(K"*") C F;K"
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and
Bi; =Zy; N (Fj1 K" + d(Fjpe—1 K"1)) = Zgq -1t d(Z?—_ll,jH—l)a
and by construction the differential d induces differentials d : ZZ]- — ZZj—le and d : sz — BZ;_—lw hence
they induce a degree —¢ map of graded modules
d: B} — Ej*', where E} = (D E}; = P 275/ By
J J
For example, By = @, F;K"/F;_1K" = gr K". We can also define Zf, ; = F;K" Nkerd and Bu; =
F;_1 K™ Nker(d) + F; K™ Nim(d) in the obvious way, so that E7, = gr H"(K). So the cohomology of these
complexes E7 interpolate between H"(gr K') and gr H"(K). In fact:

1.6.1. Lemma. H"(E} ;) = E41,;.
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