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In addition to Bhatt’s lecture notes, I found Drinfeld’s paper on prismatization and Li–Mondal’s
paper very helpful.

1 Some clarifications

In the first two sections we work over a characteristic 0 field k.

1.1 Theorem. Let X be a smooth scheme over k. Let p : XdR,+ → A1/Gm be the structure
morphism. Then Rp∗OXdR,+ ∈ Dqc(A1/Gm) identifies canonically with the Hodge-filtered de Rham
cohomology of X.

Let us first recall some definitions and results from Kenta’s talk.

1.2 Definition. Let GdR
a be the étale sheaf on k-algebras sending R → Rred = R/Nil(R). For a

k-scheme X, let XdR be the étale sheaf sending R → X(GdR
a (R)) = X(Rred).

When X is smooth, the natural map X → XdR is a surjection of presheaves, and one should
think of XdR as a quotient of X by the equivalence relation of being infinitesimally close, in other
words it is the coequalizer (X ×k X)∧∆(X)  X. The category of quasi-coherent sheaves on XdR can
be identified with the category of crystals on the infinitesimal site of X, and also with the category
of quasi-coherent DX -modules.

1.3 Definition. Let GdR,+
a be the stack over A1/Gm given by sending an R-point (L, t) of A1/Gm,

where L is an invertible R-module and t : L → R an R-linear map, to the groupoid

Cone(Nil(R)⊗R L
t−→ R).

Over the open substack Gm/Gm ↩→ A1/Gm, this recovers GdR,+
a , because there t is an isomor-

phism and the cone is just R/Nil(R) = Rred.
Over the closed substack ∗/Gm, where t is zero, this cone is just a split square-zero extension:

it (GHodge
a ) takes the line bundle L to R⊕ (Nil(R)⊗R L)[1].

For a k-scheme X we define a stack XdR,+ over A1/Gm sending (L, t) to X(GdR,+
a (L, t)). Simi-

larly we can define XHodge(L) = X(GHodge
a (L)).

1.4 Remark. In general this process of taking a stack A valued in animated k-algebras (over some
base S), and for any k-scheme X associating the stack XA by XA(T → S) = X(A(T → S)), is
called transmutation.
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Ring groupoids

To explain this more explicitly, this cone can be thought of as either a groupoid object in rings, or
a dga concentrated in degrees 0 and −1, or a 1-truncated simplicial ring. More generally we have
the following definition due to Drinfeld.

1.5 Definition. Let A be a ring. A quasi-ideal is an A-module I together with an A-linear map
d : I → A, such that for any x, y ∈ I, d(x)y = d(y)x.

The data of a quasi-ideal is equivalent to that of a dga

. . . 0 → I
d−→ A → 0 . . .

in degrees 0 and −1, and the nontrivial relation is the Leibniz rule.
This data is also equivalent to that of that of an 1-truncated simplicial ring

A1
→←→ A0

such that ker(d0) · ker(d1) = 0. We can take A0 = A and A1 = A ⊕ I, where A1 is a ring by
(a, x)(b, y) = (ab, ax+ by + xd(y)), and d0(a, x) = a, d1(a, x) = a+ d(x), and s(a) = (a, 0).

This data is also equivalent to that of a groupoid object in rings. The only missing information we
need are a composition mapm : A1×A0A1 → A1 and an involution c : A1 → A1. By definitionm has
to be a homomorphism of rings. In particular it has to be a map of abelian groups, which already tells
us that it has to send (f, g) → f+g−s(a), where a = d1(f) = d0(g). Then it is a ring homomorphism
iff ker(d0) · ker(d1) = 0. Similarly the involution has to send f → c(f) = s(d0(f)) + s(d1(f)) − f .
This groupoid object in rings is called Cone(d). When we’re in a site (e.g. fpqc) we often want to
stackify the prestack Cone(d), which we will also denote abusively by the same notation.

The last thing I need to say about ring groupoids is how to write down the functor of points
shaped like Cone(d). Let R be another ring, then the groupoid of maps R → Cone(d : I → A) in
the (2, 1)-category of ring groupoids is given by commutative diagrams

0 I R R 0

A
d

f

where the upper row is a ring extension and f is a ring map.
In the situation of GdR,+

a , the map Nil(R)⊗R L → R is a quasi-ideal, because L is a line bundle.
The groupoid of maps from its cone to an arbitrary scheme can thus be modeled in an elementary way
by the ring groupoid viewpoint. From this it is clear there is a natural map X ×A1/Gm → XdR,+.

1.6 Exercise. When X is smooth, the natural map X × A1/Gm → XdR,+ is an étale cover.

Computing pushforwards

Recall also that two talks ago we mentioned a way to compute cohomology of representations of
formal completions of vector bundles along the zero section.

The simplest situation is when the vector bundle is just a trivial line bundle over a point. Then
there is an equivalence of presentably symmetric monoidal ∞-categories

Φ : Dqc(BGa) ≃ Dqc(Ga)

which commutes with the forgetful functors to Dqc(k) on both sides, and takes OBGa
to k = k[t]/t.

So, for a Ga-representation M on the left side, we can compute its cohomology as

RΓ(BGa;M) = RHom(OBGa
,M) = RHom(k,Φ(M)) = fib(Φ(M)

t−→ Φ(M)),
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which is concentrated in degrees 0 and 1.
The next situation is for a general projective module E over a commutative Q-algebra R. Let

V (E) = Spec(Sym∗(E∨)) be the associated vector bundle over SpecR. Let G = V (E)∧0 , which is
a ind-group scheme over SpecR representing the functor sending an R-algebra S to the S-module
E ⊗R Nil(S). Then there is an equivalence

Φ : Dqc(BG) ≃ Dqc(V (E∨))

which commutes with pullback to SpecR on the left, and pushforward to SpecR on the right, and
takes O to the module R where SymE acts trivially. So, for a G-representation M on the left side,
we can compute its cohomology as

RΓ(BG;M) = RHom(O,M) = RHomSym(E)(R,Φ(M)),

which can be computed by the Koszul resolution.
Finally we will use the relative situation. Let f : Y → Z be qcqs morphism of Q-schemes, so

that f∗ preserves quasicoherence. Let L be a line bundle on Z, and G = V (L)∧0 . Suppose G acts on
Y in a Z-linear way, so that there is a map π : Y/G → Z (quotient is stacky). Then Rπ∗ preserves
quasicoherence (using the fiber sequence above).

2 Proof of the theorem

NOTE: this section might not make much sense right now, I’ll try to clarify this in a future upload.
In this section X/k is smooth. Kenta stated the following lemmas last time:

2.1 Lemma. The functor X → XdR,+ commutes with products.

2.2 Lemma. If f : U → X is étale, then

U × A1/Gm UdR,+

X × A1/Gm XdR,+

is a pullback (in the category of stacks). Consequently by étale descent along the horizontal map we
have that UdR,+ → XdR,+ is étale (and are open immersions if f is an open immersion).

The proof of this is just by using the infinitesimal lifting property.

2.3 Corollary. If X ≃ colimU is a finite colimit of open affines, then XdR,+ ≃ colimUdR,+.

Now we begin the proof. The first step is to show that the pushforward Rp∗OXdR,+ is quasico-
herent, and that restricting it to BGm is equivalent to pushing forward along XHodge → BGm. It
suffices (why?) to check this locally on X, so we can assume that there is an étale chart X → An.
Then the commutative square of stacks over A1/Gm

X × A1/Gm XdR,+

An × A1/Gm (An)dR,+

is a pullback. We claim that the bottom map is a torsor over Gn where G = V (O(−1))∧0 is a sheaf
of groups over A1/Gm: this follows from the case n = 1 which is just the definition. Thus so is
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the upper horizontal map. Now, this fits into the discussion in the last section which says that
pushforward along XdR,+ = (X × A1/Gm)/G → A1/Gm preserves quasicoherence.

The next step is to identify XHodge. Consider the canonical map XHodge → X. On functors of
points for an R-point L of BGm, it is

X(R⊕M) → X(R)

where M = (Nil(R)⊗R L)[1] and the left hand side is a split square-zero extension. By deformation
theory, the fiber above any point η ∈ X(R) is a torsor for Map(LX/k, η∗M) = Map(η∗LX/k,M) =
η∗TX/k ⊗R Nil(R)⊗R L. This is a trivial torsor because it is a split extension. In other words

XHodge ≃ B(V (TX/k ⊠ O(−1))∧0 )

as stacks over X ×BGm.
Under the equivalence Dqc(BV (E)∧0 ) ≃ Dqc(V (E∨)), we can compute by the Koszul complex

Rp∗OXHodge = RHomSym∗(ΩX/k(1))(OX×BGm
,OX×BGm

) =


i

RΓ(X,Ωi
X/k[−i])(i),

where the differentials are all zero because t = 0.
So we’ve shown that the assignment U → Rp∗OUdR,+ is a Zariski sheaf valued in Dqc(A1/Gm),

which lies in the heart of the Beilinson t-structure (because we’ve identified the associated graded
and at each filtration step it is concentrated in the correct grading). Thus, this is a sheaf on X
valued in chain complexes, equivalently a chain complex of sheaves, and is represented by some chain
complex of the form

OX → Ω1
X → Ω2

X → . . .

It remains to identify the differential. Again it suffices to show this when X = A1, which should
ultimately follow from the explicit identification of k[t]-modules with k[[x]]-comodules by having t
act on k[[x]] by d/dx.

3 Linear algebra in general characteristic

We saw from the above proof that the crucial input was the equivalence of categories

Dqc(BGa) ≃ Dqc(Ga)

over a field k of characteristic 0. Recall that:

• A k[t]-module M on the right side corresponds to the comodule M → M [[x]], m → exp(xt)m.

• The equivalence commutes with pullback to Spec k on the left and pushforward to Spec k on
the right.

• The equivalence is symmetric monoidal with respect to the standard ⊗ on the left and the
convolution ⊗ on the right.

• The equivalence is compatible with the standard t-structure on the left and the torsion t-
structure on the right.

As we know from crystalline cohomology, a good replacement for the formal neighborhood of

0 ∈ A1 is the divided power envelope. Let G
a = SpecZ[t, t2

2! ,
t3

3! , . . . ], which is a group scheme
sending any ring R to the abelian group consisting of elements in R with a compatible system
of divided powers. This is a quasi-ideal in Ga: suppose (x, x[2], x[3], . . . ) and (y, y[2], y[3], . . . ) are
elements in G

a, then we have xny[n] = n!x[n]y[n] = x[n]yn.
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3.1 Proposition. After base change to Z(p), G
a ≃ WF = ker(F : W → W ) as quasi-ideals in Ga,

where W is the p-typical Witt scheme.

Here WF is a quasi-ideal via the map WF ↩→ W ↠ W/VW = Ga.

Proof. Recall that the construction R → W (R) is the right adjoint to the forgetful functor from
δ-rings to rings, which is in turn the right adjoint to the free δ-ring functor. Thus

W (R) = HomRing(Z[y],W (R)) = HomδRing(Z{y},W (R)) = HomRing(Z{y}, R)

and we can identify W as SpecZ{y}. The δ-ring Z{y} is, as a ring, Z[y0, y1, . . . ], and δ(yi) = yi+1.
The Frobenius lift φ(x) = xp + pδ(x) on Z{y} corresponds to the Frobenius on Witt vectors. Thus
the kernel of F is represented by Z{y}/φ(Z{y}) = Z[y0, y1, . . . ]/(yp0 + py1, y

p
1 + py2, . . . ) (then base

changed to Z(p)). On the other hand, (G
a)Zp has ring of functions

Z(p)[t,
tp

p
,
tp

2

pp+1
,

tp
3

pp2+p+1
, . . . ]

which is exactly the same ring.

3.2 Proposition. Let A be p-nilpotent, then RΓfpqc(SpecA;G
a) is concentrated in degrees 0 and 1.

Proof. We observe that the map φ above is faithfully flat: it is certainly so after inverting p because
then the ghost map would be an isomorphism, and on ghost components φ is just a shift map; and
it is so after reducing mod p because then we would have the Frobenius on Fp[y0, y1, . . . ]. This is
enough to conclude that φ itself is faithfully flat. Thus we have a short exact sequence of group
schemes

0 → G
a → W

F−→ W → 0

in the fpqc topology. It suffices to compute RΓfpqc(SpecA;W ) is concentrated in degree 0. We can
write RΓ(SpecA;W ) = RΓ(SpecA; limWn) ≃ R limRΓ(SpecA;Wn). Because the maps Wn(A) →
Wn−1(A) are all surjective, it suffices to show RΓ(SpecA;Wn) ≃ Wn(A)[0] and there are no lim1

terms. By definition there is a filtration of Wn by Ga’s (Witt vectors with first i coordinates zero),
so it suffices to show it for Ga. This is just the classical fpqc descent statement.

3.3 Remark. Bhatt makes a remark here that flat cohomology requires a cutoff cardinal to define
in general, but in this case there is no issue. Because H1 of an abelian sheaf is the same as the
isomorphism classes of torsors, this proposition is equivalent to saying that the functor taking a
p-nilpotent ring R to the groupoid of torsors BG

a(R) (which by Dold–Kan can be viewed as an
object in D(Z)) is a fpqc sheaf.

3.4 Proposition. We have a natural equivalence

Dqc(BG
a) ≃ Dqc(Ga)

which commutes with pullback to SpecZ on the left and local cohomology at 0 on the right.

Recall that local cohomology is just the colimit of the cohomology of pullbacks to SpecZ[x]/xn.

Proof. Let f : SpecZ → BG
a. Given an object V on the left, I need to give f∗V a locally nilpotent

operator on it. There is a short exact sequence of quasicoherent sheaves on BG
a:

0 → OBG
a
→ f∗OZ

N−→ f∗OZ → 0

where N corresponds to the map d/dt on f∗OZ = Z[t, t2

2! , . . . ]. Thus we have a cofiber sequence in
the derived category,

0 → V → V ⊗ f∗OZ → V ⊗ f∗OZ → 0.
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By the projection formula,

RΓ(BG
a;V ⊗ f∗OZ) = RHom(OBG

a
, f∗f

∗V ) = RHom(OZ, f
∗V ) = f∗V.

Thus we get an operator NV : f∗V → f∗V . To see it is locally nilpotent, it suffices to show that
RΓ(BG

a;−) commutes with filtered colimits, and by the exact sequence we’ve reduced to showing
RΓ(BG

a;−⊗ f∗OZ) = f∗(−) commutes with filtered colimits, which is clear. Thus we can assign V
to the pair (f∗V,NV ) which belongs to the right side.

We can give the inverse map just for abelian groups M with a locally nilpotent operator N (and
extend to the full derived category by sifted colimits and desuspensions). This goes by making. the
coaction

M → M ⊗ Z[t,
t2

2!
, . . . ]

taking m → exp(tN)m =


N im · ti

i! .

3.5 Remark. Monoidality: let’s test this in the simplest case. For M,N abelian groups the coaction

on M ⊗N should take m⊗n →


i N
i(m⊗n) · t

i

i! =


i


j


i
j


N j(m)⊗N i−j(n) t

i

i! which is correct.
t-structure: let’s define the torsion t-structure...

3.6 Remark. Cohomology of BG
a: let s : SpecZ → Ga be the zero section. Then

RΓ(BG
a;OBG

a
) = RHomGa

(s∗OZ, s∗OZ) = Z⊕ Z[−1]

using the resolution

0 → Z[[t]] t−→ Z[[t]] → Z → 0.

3.7 Remark. There is also a version of this in families: suppose E is a locally free finite rank sheaf
on a scheme, and V (E) its total space, then define V (E) to be the divided power envelope of the
zero section. Then we would have an equivalence

Dqc(BV (E)) ≃ Dqc( V (E∨))

enjoying similar properties. Using the Koszul resolution we also have

RΓ(BV (E);O) =


i

∧iE∨[−i].

4 de Rham stack in positive/mixed characteristic

Throughout, we will let V be a p-complete ring with bounded p∞-torsion, such as a p-nilpotent ring
Fp or a p-torsion free ring Zp. The output of the de Rham stack functor will be a p-adic formal
stack, which we now briefly explain:

The category St∧Zp
of p-adic formal stacks is defined as

St∧Zp
= limStZ/pnZ

For any stack over Zp we can thus associate it with a p-adic formal stack. Another way to say the
same is that a p-adic formal stack is just one that takes as input p-nilpotent rings.

4.1 Definition. Let GdR
a be the ring groupoid Cone(G

a → Ga), stackified in the fpqc topology. By
the vanishing result, we see that on functor of points, it takes a p-nilpotent V -algebra R to

GdR
a (R) = cofib(BG

a(R)[−1] → R)

which is given by an explicit chain complex whose cohomology is concentrated in degrees 0, 1.
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4.2 Proposition. GdR
a ≃ Cone(p : W → W ).

Proof. By the previous characterization, the map G
a → Ga is the same as the map WF →

W → W/VW . Thus, Cone(WF → W/VW ) = Cone(VW → W/WF ) = Cone(VW
F−→ W ) =

Cone(W
FV=p−−−−→ W ).

4.3 Definition. Let GdR,+
a → A1/Gm send an R-point (L, t) to

cofib(BG
a(R)⊗R L[−1]

t−→ R)

which recovers GdR
a above the open locus. Above the closed locus it is given by the split, square-zero

extension
GHodge

a (L) = R⊕BG
a(R)⊗R L.

4.4 Definition. Let X be a smooth p-adic formal scheme1 over V . Define (X/V )dR,+ → A1/Gm

by taking an R-point of A1/Gm to X(GdR,+
a (R)) in the derived algebraic geometry sense. Similarly

we have (X/V )dR, (X/V )Hodge.

4.5 Proposition. The set of p-nilpotent rings R such that all G
a-torsors are trivial forms a basis

of the fpqc topology.

Bhatt says that this follows from a small object argument. (...)
For such an R, the surjection R → GdR

a (R) = R/ im(G
a(R)) has locally nilpotent kernel. In par-

ticular it is an universal homeomorphism, thus induces an isomorphism on étale sites. Similarly, on
π0, the map R → GdR,+

a (R) is surjective with locally nilpotent kernel, thus induces an isomorphism
on étale sites.

4.6 Theorem. Let X be a smooth p-adic formal scheme over V . Let p : XdR,+ → A1/Gm be the
structure morphism. Then Rp∗OXdR,+ ∈ Dqc(A1/Gm) identifies canonically with the Hodge-filtered
de Rham complex of X/V .

Let’s try to adapt the proof in the characteristic 0 case here. The following justify the analogs
of the lemmas appearing there:

1. It is still clear that the functor X → XdR,+ commutes with products.

2. The maps X → (X/V )dR, X × A1/Gm → (X/V )dR,+ are fpqc covers. Indeed, it suffices to
show that X(R) → X(S) is surjective for R → S a map of animated p-nilpotent V -algebras
which is surjective on π0 with locally nilpotent kernel. But this is just the smooth lifting
criterion.

3. Similarly the pullback square can be checked on rings with no nontrivial G
a-torsors.

4. The same argument gives the colimit statement.

The same proof then goes through.

Crystalline cohomology

From this theorem, we obtain a conceptual explanation of the “crystalline miracle”:

4.7 Corollary. Let X be a smooth qcqs p-adic formal scheme over a torsion-free V . Then RΓ(X;Ω∗
X/V )

depends functorially on the V/p-scheme Xp=0.

1Recall this means a formal scheme which is locally of form Spf(B, (p)) for an V -algebra B.
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Proof. It suffices to show that (X/V )dR depends functorially on Xp=0. Thus it suffices to show that
for any p-nilpotent V -algebra R, GdR

a (R) admits a functorial animated V/p-algebra structure. We
can further reduce this to showing that Cone(G

a(Zp) → Zp) = Fp, which follows because the only
elements in Zp which admit divided powers are pZp.

One can in fact define the crystallization of an V/p-scheme X to be the stack

(X/V )cris(R) = HomV/p(Spec(GdR
a (R)), X),

and consider the cohomology of its structural sheaf. One can show formally by the same argument as
the main proof that this is an object in CAlg(D(V ))∧p which lifts the de Rham complex of X/(V/p),
and in fact this is exactly the crystalline cohomology.

4.8 Remark. When V is the Witt vectors of a perfect Fp-field, the above shows that the de Rham
complex M = RΓ(X;Ω∗

X/V ) (and in fact, the de Rham stack) admits a Frobenius φM : φ∗M → M
induced by the relative Frobenius on Xp=0 over k.
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